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Simple Summary: The brown planthopper (BPH) Nilaparvata lugens can develop into either long-
winged or short-winged adults depending on environmental stimuli received during larval stages.
The transcription factor NlFoxO serves as a key regulator determining alternative wing morphs
in BPH, but the underlying molecular mechanism is largely unknown. Here, we investigated the
transcriptomic profile of forewing and hindwing buds across the 5th-instar stage, the wing-morph
decision stage. Our results indicated that NlFoxO modulated the developmental plasticity of wing
buds mainly by regulating the expression of cell proliferation-associated genes.

Abstract: The brown planthopper (BPH), Nilaparvata lugens, can develop into either short-winged
(SW) or long-winged (LW) adults according to environmental conditions, and has long served as a
model organism for exploring the mechanisms of wing polyphenism in insects. The transcription
factor NlFoxO acts as a master regulator that directs the development of either SW or LW morphs,
but the underlying molecular mechanism is largely unknown. Here, we microinjected SW-destined
morphs with double stranded-RNA (dsRNA) targeting NlFoxO (dsNlFoxO) to change them into
LW-winged morphs. In parallel, SW-destined morphs microinjected with dsRNA targeting the
gene encoding green fluorescence protein (dsGfp) served as a negative control. The forewing and
hindwing buds of 5th-instar nymphs collected at 24, 36, and 48 h after eclosion (hAE) were used for
RNA sequencing. We obtained a minimum of 43.4 million clean reads from forewing and hindwing
buds at a single developmental time. Differentially expressed genes (DEGs) were significantly
enriched in various Gene Ontology (GO) terms, including cellular process, binding, and cell part.
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis showed that up-
regulated genes in dsNlFoxO-treated forewing and hindwing buds were largely associated with the
cell cycle and DNA replication. Furthermore, most up-regulated genes displayed higher expression
at 24-, and 36-hAE relative to 48 hAE, indicating that wing cells in LW-destined wings might actively
proliferate during the first 36 h in 5th-instar nymphs. Our findings indicated that LW development
in BPH was likely dependent on the duration of cell proliferation in the 5th-instar stage, which sheds
light on the molecular basis of wing polymorphism in insects.

Keywords: planthopper; wing polyphenism; RNA-seq; FoxO; cell proliferation

1. Introduction

The brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), is the
most destructive rice pest in Asia [1]. BPH feeds exclusively on the phloem sap of rice
plants and transmits plant viruses such as rice ragged stunt viruses and rice grassy stunt
viruses, leading to huge losses in rice yields [2,3]. BPH is one of the most extensively
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studied wing-dimorphic insects due to the natural occurrence of short- and long-winged
(SW and LW) adults [4]. As a hemimetabolous insect, newly hatched first-instar nymphs
look like miniature adults, and wing buds grow gradually as the developmental stages
advance. Our recent studies showed that the N. lugens FoxO homolog NlFoxO relied on
the insulin/insulin-like signaling (IIS) activity to direct wing buds developing into SW or
LW morphs during the wing-morph decisive stage (the 5th-instar stage). High IIS activity
inhibited NlFoxO activity, leading to LW morphs, and vice versa [5–7]. However, the
molecular basis by which NlFoxO influences alternative wing morphs remains largely
unknown.

FoxO transcription factors belong to the large Forkhead family of proteins, which
are characterized by a conserved DNA-binding domain termed the “forkhead box” [8].
FoxO proteins are tightly involved in various cellular processes including regulating the
expression of genes associated with cell cycle, DNA repair, apoptosis, and energy balance.
Loss of FoxO is associated with increased cancer in mammals [9,10]. In the nematode worm
Caenorhabditis elegans, the FoxO homolog daf-16 was initially isolated as a dauer defective
mutant [11], and overexpression of daf-16 can extend lifespan via dauer formation [12].
In addition, FoxO mediates the effects of the IIS pathway in stress resistance, fat storage,
immunity, and reproduction [13–18]. In the absence of IIS activity, FoxO induces cell cycle
arrest and entrance into cellular quiescence [19]. FoxO transcription factors play a major
role in G1 arrest by both up-regulating cell cycle inhibitors (p21 and p27) and by repressing
cell cycle activators (cyclin D1/D2) [20,21]. In the model insect Drosophila melanogaster, fly
FoxO homolog dFoxO mutants were viable and of normal size, but lost protection against
oxidative stress [22]. In contrast, ectopic expression of dFoxO caused a decrease in cell
number and cell size [22–24], leading to a reduction in body size.

The emergence of next-generation sequencing technology has profoundly improved
our understanding of the molecular basis of wing polymorphism in insects. Our early
RNA sequencing (RNA-seq) study identified hundreds of genes including those correlated
to respiration and energy metabolism were up-regulated in LW versus SW BPH adults,
indicating LW BPH adults might require more energy than SW for flight [25]. In the
cotton aphids (Aphis gossypii), genes associated with flight-reproduction trade-offs were
differentially expressed in winged versus wingless morphs through RNA-seq analysis [26].
In the brown citrus aphid (Toxoptera citricida), RNA-seq identified both lipid and glyco-
gen metabolism-associated genes that were differentially expressed between winged and
wingless adults, indicating that these genes might contribute to energy metabolism during
aphid wing development [27].

In the present study, we microinjected SW-destined morphs with double stranded-
RNA (dsRNA) targeting NlFoxO (dsNlFoxO) to change them into LW-winged morphs. In
parallel, SW-destined morphs microinjected with dsRNA targeting the gene encoding green
fluorescence protein (dsGfp) served as a negative control. Forwing and hindwing buds were
dissected from dsNlFoxO- and dsGfp-treated nymphs at the wing-morph decisive stage (the
5th-instar stage), and were then used for RNA-sequencing. Comparative transcriptomic
analysis indicated that NlFoxO-regulated alternative wing morphs were likely through
modulating genes involved in cell proliferation. These results advanced our understanding
of the molecular basis of wing dimorphism in insects.

2. Materials and Methods
2.1. Insect Colony

The SW N. lugens strain (SW > 95%) was initially collected from a rice field in
Hangzhou, China, in 2009 [25]. Insects were maintained on rice seedings (rice variety:
Xiushui134) in a walk-in chamber at 26 ± 0.5 ◦C with a relative humidity of 50 ± 10% and
a photoperiod of 16:8 h (light: dark).
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2.2. RNA Extraction and cDNA Library Construction

4th-instar nymphs were collected for microinjection with dsNlFoxO to generate LW-
destined morphs. For a negative control, 4th-instar nymphs were microinjected with
dsGfp, which produced SW-destined adults as the SW N. lugens strain. For transcriptome
sequencing, forewing and hindwing buds were dissected from 5th-instar nymphs (n = 200
for each biological replicate) at 24, 36, and 48 h after ecdysis (hAE). Three independent
biological replicates were performed at each designed time. Total RNA was isolated
from wing buds using TRIzol (Takara, Dalian, China), and the RNA concentration and
quality were determined using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher,
Waltham, MA, USA). RNA samples (>2 µg) were subsequently used for cDNA library
construction using a NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, Ipswich, MA,
USA) according to manufacturer’s recommendations, and index codes were added to each
sequence. Library fragments of 250–300 bp in length were preferentially purified using an
AMPure XP system (Beckman Coulter, Woerden, The Netherlands), and library quality
was assessed using the Agilent Bioanalyzer 2100 system. Clustering of the index-coded
samples was performed on a cBot Cluster Generation System using a HiSeq PE Cluster Kit
v4-cBot-HS (Illumia, San Diego, CA, USA) according to the manufacturer’s instructions.
The cDNA libraries were sequenced on an Illumina Hiseq platform and 150-bp paired-end
reads were generated.

2.3. Gene Annotation and Mapping

Clean reads were derived from raw reads by removing adapter reads, low-quality
reads, and reads containing poly-N and ambiguous bases using the trimmomatic [28].
Clean reads were aligned to the reference genome [29] using Hisat2 [30] for gene expression
analysis. Differential genes expression (DGE) in dsNlFoxO versus dsGfp was analyzed
using DEseq2 [31]. False discovery rate (FDR) was used to measure the threshold p-value
in multiple tests, and transcripts with fold change ≥2 and FDR < 0.05 were subjected to
differentially expressed gene (DEG) analysis [32,33].

2.4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Analyses

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways were analyzed using an online platform (https://www.omicshare.com/tools/) on
15 February 2021. GO terms with corrected p-value <0.05 were defined as significantly
enriched GO terms [29]. DEGs were used for KEGG analysis to identify markedly enriched
metabolic pathways or signal transduction pathways with corrected p-value < 0.05 [34].

3. Results
3.1. Overview of Transcriptomes

A total of 36 cDNA libraries were prepared from 12 samples with three biological
replicates each, then used for Illumina sequencing. More than 44.6 million raw reads
were generated from each cDNA library with Q30 values in all libraries exceeding 93.85%.
Following the removal of adaptors, poly-N and low-quality reads, more than 43.4 million
clean reads were retained for each sample (Table S1). The mapping rate of clean reads
against the N. lugens reference genome ranged from 66.25% to 74.78%.

3.2. DEGs in Wing Buds of 5th-Instar Nymphs Treated with dsNlFoxO and dsGfp

Using the fold change ≥2 and FDR < 0.05 as criteria, we identified 2128 (784 up-
regulated and 1344 down-regulated), 2902 (1473 up-regulated and 1429 down-regulated),
and 1813 (732 up-regulated and 1081 down-regulated) DEGs in forewing buds of dsNlFoxO-
treated 5th-instar nymphs at 24, 36, and 48 hAE, respectively, relative to dsGfp treatment.
For hindwing buds, 3466 (1294 up-regulated and 2172 down-regulated), 2533 (1496 up-
regulated and 1037 down-regulated), and 2279 (1381 up-regulated and 898 down-regulated)
DEGs were identified in dsNlFoxO-treated 5th-instar nymphs at 24, 36, and 48 hAE, respec-
tively (Figure 1B).

https://www.omicshare.com/tools/
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Figure 1. Schematic depiction of long-winged (LW)- and short-winged (SW)- destined BPHs, and
differentially expressed genes (DEGs) in wing buds. (A) 4th-instar nymphs were microinjected with
dsNlFoxO and dsGfp to generate LW and SW destined BPHs, respectively. Forewing and hindwing
buds were dissected from 5th-instar nymphs at 24, 36, and 48 h after ecdysis (hAE), then collected for
RNA-sequencing. (B) DEGs in LW-destined (dsNlFoxO) versus SW-destined (dsGfp) wing buds.

3.3. Functional Enrichment Analysis of DEGs in Forewing and Hindwing Buds at 24 hAE

To better understand the regulatory mechanisms of long wing development regulated
by dsNlFoxO, DEGs were used for GO term and KEGG pathway enrichment analyses.
For forewing buds at 24 hAE, 2128 DEGs were enriched in 54 GO terms associated with
24 biological process (BP) categories (GO:0008150), 16 cellular component (CC) categories
(GO:0005575), and 14 molecular function (MF) categories (GO:0003674) with FDR < 0.05
as the criterion (Table S2; Figure 2A). The top-ranked terms included cellular process
(259 up-regulated and 534 down-regulated genes), binding (239 up-regulated and 462 down-
regulated genes), and cell part (211 up-regulated and 438 down-regulated genes; Figure 2A).
KEGG enrichment pathway analysis showed that the 2128 DEGs of forewing buds at 24 hAE
were annotated into six KEGG classes (Figure 3A); genetic information processing (four
pathways), metabolism (12 pathways), human diseases (eight pathways), environmental
information processing (three pathways), organismal systems (10 pathways), and cellular
processes (four pathways) (Figure 3A). The “global and overview maps” pathway was the
most enriched, followed by “signal transductions” and “infectious diseases” pathways.

Subsequently, up-regulated and down-regulated DEGs were further separately col-
lated for KEGG pathway analysis. Out of 784 up-regulated DEGs, only 54 genes were
assigned to KEGG pathways (p-values < 0.05; Table S3; Figure 4A), and the ribosome
pathway (ko03010) was at the top of the list (q-values < 0.05; Figure 4A). Out of 1344
down-regulated DEGs, 124 out of 1344 genes were the most significantly enriched in the
metabolic pathway (ko01100; Table S3; Figure 4B).

For hindwing buds at 24 hAE, 3466 DEGs including 1294 up-regulated and 2172
down-regulated genes were assigned to 54 GO terms (Table S4; Figure 2B), among which
the terms cellular process (531 up-regulated and 1027 down-regulated genes), cell part
(468 up-regulated and 828 down-regulated genes), and binding (443 up-regulated and 841
down-regulated genes) contained the most enriched DEGs (Figure 2B). This observation
is in line with GO analysis of forewing buds at 24 hAE. The 3466 DEGs were classified
into six KEGG classes, and the top-ranked pathways included “global and overview maps”
and “signal transduction” (Figure 3B). For up-regulated DEGs in hindwings, 218 out of
1294 genes could be matched to KEGG pathways. Analogous to forewings, “ribosome”
was the most enriched term, followed by spliceosome, and DNA replication (ko03030;
Table S3; Figure 4C). For down-regulated DEGs, 217 out of 1081 genes were assigned to
KEGG pathways, and “metabolic” was the most significantly enriched pathway (Table S3;
Figure 4D), consistent with forewing buds at 24 hAE.
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Figure 2. Gene Ontology (GO) classification of differentially expressed genes in forewing (A) and
hindwing (B) buds of 24 hAE-5th-instar nymphs with NlFoxO and Gfp knockdown. GO analysis
is summarized as three main categories: cellular component (CC), molecular function (MF), and
biological process (BP).

3.4. Functional Enrichment Analysis of DEGs in Forewing and Hindwing Buds at 36 hAE

For forewing buds at 36 hAE, 2902 DEGs (1473 up-regulated and 1429 down-regulated)
were categorized into 24 BP, 14 MF and 16 CC GO terms based on FDR < 0.05 (Table S5).
As shown in Figure 5, cellular process (732 up-regulated and 524 down-regulated genes),
binding (710 up-regulated and 424 down-regulated genes), and cell part (613 up-regulated
and 403 down-regulated genes) were the top-ranked GO terms, respectively. KEGG analy-
sis showed that DEGs in forewing buds at 36 hAE were significantly enriched in six KEGG
classes including genetic information processing (4 pathways), human diseases (eight path-
ways), organismal systems (10 pathways), cellular processes (four pathways), environmen-
tal information processing (three pathways), and metabolism (12 pathways) (Figure 6A).
The “global and overview maps” and “signal transductions” were the two most enriched
KEGG pathways (Figure 6A), including 227 and 212 genes, respectively. KEGG analysis
of the 1473 up-regulated genes showed that the top 20 enriched pathways included DNA
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replication (ko03030), cell-cycle yeast (ko04111), and cell-cycle (ko04110), suggesting that
these pathways played important roles in long wing development (Figure 7A). KEGG anal-
ysis of the 1429 down-regulated genes showed that the metabolic pathway was apparently
the most enriched pathway (Figure 7B).
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Figure 4. Top 20 enriched KEGG pathways of DEGs in 24 hAE-5th-instar nymphs with NlFoxO and
Gfp knockdown. (A,B) Top 20 enriched KEGG pathways of up-regulated and down-regulated genes
in forewing buds, respectively. (C,D) Top 20 enriched KEGG pathways of up-regulated and down-
regulated genes in hindwing buds, respectively. The q-values in different colors denote significant
enrichment. Different sizes of dots represent the number of genes enriched in each pathway.
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Figure 5. GO classification of DEGs in forewing (A) and hindwing (B) buds of 36 hAE-5th-instar
nymphs with NlFoxO and Gfp knockdown. GO is summarized as three main categories (CC, MF
and BP).

For hindwing buds at 36 hAE, 2533 (1496 up-regulated and 1037 down-regulated)
DEGs were annotated using GO classifications, including 25 BP, 13 MF, and 16 CC terms,
among which cellular process (807 up-regulated and 412 down-regulated), binding (753 up-
regulated and 327 down-regulated), and cell part (691 up-regulated and 300 down-regulated)
were the top-ranked terms (Table S6; Figure 5B). In line with forewing buds at 36 hAE,
the 2533 DEGs in hindwing buds at 36 hAE were distributed in 41 KEGG pathways,
and the “global and overview maps” and “signal transductions” pathways contained the
most DEGs (Figure 6B). KEGG analysis of the 1496 up-regulated genes showed that DNA
replication and cell cycle were significantly enriched (Figure 7C), consistent with the results
for forewing buds at 36 hAE. For the 1037 down-regulated DEGs, a metabolic pathway
contained the most DEGs in hindwing buds at 36 hAE (Figure 7D).
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Figure 7. Top 20 enriched KEGG pathways of DEGs in 36 hAE-5th-instar nymphs with NlFoxO and
Gfp knockdown. (A,B) Top 20 enriched KEGG pathways of up-regulated and down-regulated genes
in forewing buds, respectively. (C,D) Top 20 enriched KEGG pathways of up-regulated and down-
regulated genes in hindwing buds, respectively. The q-values in different colors denote significant
enrichment. Different sizes of dots represent the number of genes enriched in each pathway.
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3.5. Functional Enrichment Analysis of DEGs in Forewing Buds and Hindwing Buds at 48 hAE

For forewing buds at 48 hAE, the 1813 (732 up-regulated and 1081 down-regulated)
DEGs were mapped to 52 GO terms (Table S7; Figure 8A). Analogous to forewing buds
at 24- and 36-hAE, most genes were assigned to single-organism processes, binding, and
cell part terms (Figure 8A). KEGG analysis showed that “global and overview maps”
and “signal transductions” were the two most enriched pathways (Figure 9A), including
156 and 115 genes, respectively. In addition, KEGG analysis of the up-regulated genes
showed that the top enriched pathways included DNA replication and cell cycle (Table S3;
Figure 10A), while metabolic pathways was the most significantly enriched pathway in the
down-regulated genes (Table S3; Figure 10B).
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Figure 10. Top 20 enriched KEGG pathways of DEGs in 48 hAE-5th-instar nymphs with NlFoxO and
Gfp knockdown. (A,B) Top 20 enriched KEGG pathways of up-regulated and down-regulated genes
in forewing buds, respectively. (C,D) Top 20 enriched KEGG pathways of up-regulated and down-
regulated genes in hindwing buds, respectively. The q-values in different colors denote significant
enrichment. Different sizes of dots represent the number of genes enriched in each pathway.
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For hindwing buds at 48 hAE, greater percentages of the 2279 DEGs (1381 up-regulated
and 898 down-regulated) were mapped to the single-organism process, binding, and cell
part terms (Table S7; Figure 8B). KEGG analysis showed that “global and overview maps”
and “signal transductions” were the two most enriched pathways (Figure 9B), including
192 and 165 genes, respectively. The top enriched pathways in the up-regulated genes
included endocrine resistance, human papillomavirus infection, and cell cycle (Table S3;
Figure 10C), while “metabolic pathways” was the most significantly enriched pathway in
the down-regulated genes (Table S3; Figure 10B).

3.6. Expression Pattern of Cell Proliferation-Associated Genes in LW- and SW-Destined
Wing Buds

Because the cell cycle and DNA replication pathways were repeatedly detected in up-
regulated genes of LW-destined buds (dsNlFoxO treatment; Figures 4A,C, 7A,C and 10A,C),
we investigated their expressional profile across 5th-instar stage using heat-maps with p-
value <0.05 as a cutoff criterion. A total of 39 cell-cycle- and 25 DNA-replication-associated
genes were significantly regulated by dsNlFoxO versus dsGfp in forewing and hindwing
buds (Table S9; Figure 11). For both forewing and hindwing buds treated with dsNlFoxO,
most genes exhibited a higher expression at 24-, and 36-hAE relative to 48 hAE (Figure 11),
indicating that cells of LW-destined wings might actively proliferate within the first 36 h of
5th-instar nymphs. In contrast, for both forewing and hindwing buds treated with dsGfp, a
higher expression level was detected at 24 hAE than 36- and 48-hAE, indicating that wing
cells in SW-destined wings might proliferate within the first 24 h of 5th-instar nymphs.
Thus, these observations indicated that the duration of cell proliferation might contribute
significantly to long wing development in dsNlFoxO-treated BPHs.
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4. Discussion

Previous studies showed that inactivation of NlFoxO resulted in a switch from SW to
LW morphs in BPH [4,5,35]. To further explore the molecular basis regulated by NlFoxO,
transcriptomic profiles were conducted on LW- and SW-destined wing buds of 5th-instar
nymphs, the wing-morph decisive stage of BPH [7]. We showed that knockdown of
NlFoxO significantly altered the expression of 2128, 2902, and 1813 genes in forewing
buds of 5th-instar nymphs at 24, 36, 48 hAE, respectively, and simultaneously altered the
expression of 3466, 2533, and 2279 genes in hindwing buds. This observation indicated that
differentiation of wing morph caused a remarkable change in gene expression in wing cells.

Based on the comparative transcriptomic data, we noticed that dsNlFoxO-treated
forewing had a similar gene expression pattern to that of hindwing buds at 24, 36, and
48 hAE. GO analysis showed that DEGs were mostly enriched in cellular process, binding,
and cell part terms in forewing and hindwing buds at each time-point (Figures 2, 5 and 8).
KEGG pathway analysis showed that the up-regulated DEGs were largely assigned to
the ribosome pathway in both forewing and hindwing buds at 24 hAE. However, the top
enriched KEGG pathway was switched from ribosome to DNA replication and cell cycle as
developmental time proceeded into 36 hAE. This observation suggested that knockdown
of NlFoxO might increase the expression levels and duration of cell proliferation-associated
genes in wing buds, which might be the main driver of long wing development. This
assumption was also supported by heatmap analysis on cell-cycle- and DNA-replication-
associated genes across the 5th-instar developmental stage (Figure 11). We noticed that
genes were highly expressed in dsNlFoxO-treated forewing and hindwing at both 24 and
36 hAE. In contrast, cell proliferation-associated genes were only active at 24 hAE in
dsGfp-treated forewing and hindwing buds (Figure 11).

Previous studies in mammals showed that FoxO transcription factors play a major
role in cell cycle arrest at the G1/S and G2/M transitions, two checkpoints that are critical
in the cellular process [13]. FoxOs promote cell cycle arrest at the G1/S boundary by
both up-regulating cell cycle inhibitors (p21 and p27) [36,37] and by repressing cell cycle
activators (cyclin D1 and D2) [21,38]. FoxOs arrest cell progression at the G2/M boundary
by regulating the expression of cyclin G2 [39], and trigger DNA repair by modulating the
expression of growth arrest and DNA damage-inducible protein 45 (Gadd45) [40,41]. This
regulatory mechanism may explain the decrease in cell number [22–24] and cell size [22,23]
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in Drosophila caused by ectopic expression of dFoxO. In the present, our results show that
knockdown of NlFoxO significantly enhanced the expression of cyclin D2 (Nl.scaffold.0432;
Table S9; Figure 11) in wing cells of BPH, which may partially explain the long wing
development in BPH upon NlFoxO knockdown.

5. Conclusions

This study investigated the transcriptional profile of wing-morph transition from SW
(dsGfp) to LW (dsNlFoxO) in 5th-instar nymphs, the wing-morph decisive stage. Com-
parative transcriptome analysis revealed that a large percentage of genes (10–19%) were
significantly differentially expressed in both forewing and hindwing buds. GO enrichment
analysis showed that DEGs were mainly related to cellular process, binding, and cell
part categories. The up-regulated genes were significantly enriched in DNA replication
(ko03030), and cell cycle (ko04110 and ko04111) pathways in KEGG analysis. Thus, the
duration of cell proliferation might contribute significantly to long wing development
modulated by NlFoxO.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/insects12050413/s1. Supplementary Table S1: Data quality of RNA-seq. Supplementary Table
S2: Differentially expressed genes of GO classification in forewing at 24 hAE. Supplementary Table
S3: KEGG enrichment of differentially expressed genes in forewing and hindwing buds at 24, 36, and
48 hAE. Supplementary Table S4: Differentially expressed genes of GO classification in hindwing at
24 hAE. Supplementary Table S5: Differentially expressed genes of GO classification in forewing at
36 hAE. Supplementary Table S6: Differentially expressed genes of GO classification in hindwing at
36 hAE. Supplementary Table S7: Differentially expressed genes of GO classification in forewing at
48 hAE. Supplementary Table S8: Differentially expressed genes of GO classification in hindwing at
48 hAE. Supplementary Table S9: Differentially expressed genes associated with cell cycle and DNA
replication.
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