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Abstract

Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable
for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient
approximation (STEME) to the EM algorithm that is at the core of many motif finders such as MEME. This approximation
allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that
are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a
fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders.
We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13
sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate
motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to
Nagarajan et al. for the efficient calculation of motif E-values. STEME’s source code is available under an open source license
and STEME is available via a web interface.
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Introduction

Transcriptional regulation
Spatio-temporal regulation of gene expression is critical for the

correct function of many cellular processes. There are several

mechanisms through which the genome achieves this control.

Transcriptional regulation is one of the most prevalent and highly

studied mechanisms. In transcriptional regulation, proteins called

transcription factors (TFs) bind to DNA and influence the rate of

transcription of particular genes. These TFs usually exhibit

sequence specific binding specificities such that they preferentially

bind to particular binding sites in the genome (TFBSs).

Several high-throughput experimental techniques have recently

been developed to investigate the locations at which TFs bind.

These include ChIP-chip [1–4], ChIP-seq [5,6], and DamID [7].

A typical experiment will report that a given TF binds to

thousands of regions across the genome under a particular

condition. These techniques cannot determine the exact location

of the TFBSs: the regions they report can be several hundred base

pairs long.

Given the binding data from one or several of these experiments

it is natural to ask if we can identify the sequence binding

preferences of the TFs. With this information we can determine

the exact location of the TFBSs which can be useful to investigate

interactions between TFs. The sequence preferences also allow us

to computationally predict binding sites under conditions for

which we do not have experimental data. The task of determining

the sequence preferences of a TF from binding data is termed

motif finding.

Motif finders
The sequence binding preferences of TFs can be modelled in

several ways, such models are called motifs. The simplest motif

model is the consensus sequence which defines the preferred base

in each position of the TFBS. This can be extended to model some

variability by replacing bases with characters from the IUPAC

nucleotide code. The most general model in which the positions in

the TFBS are independent is the position weight matrix (PWM).

The PWM models the probability of every base at each position in

the TFBS. The PWM remains the most popular and flexible motif

model.

In general, motif finders can be classified as probabilistic or

enumerative. Probabilistic motif finders optimise or learn the

parameters of a generative model, whereas enumerative motif

finders search in the space of consensus sequences for words that

optimise some suitable statistic. MEME [8], AlignAce [9] and

HMS [10] are examples of probabilistic motif finders. DREME

[11] and Trawler [12] are examples of enumerative motif finders.

The two most popular methods for learning the parameters of

models in probabilistic motif finders are the Expectation-Max-

imisation (EM) algorithm and Gibbs sampling [13]. In a previous

publication [14] we showed how suffix trees could be used to

implement an efficient approximation to the EM algorithm that is

at the core of MEME. The main contribution of this work is to

show how to use suffix trees to efficiently implement the rest of the

MEME algorithm.

MEME [8] was one of the first motif finders and is still one of

the most popular. It performed well in a benchmark evaluation by

Tompa et al. [15]. MEME uses the EM algorithm to iteratively

refine estimates of PWMs. However, the EM algorithm only
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converges to a local optimum. This forces MEME to try many

different initialisations when looking for the global optimum. The

search for the best initialisations is inefficient and makes MEME

impractical to run on large data sets. Our motif finding method,

STEME, uses the EM algorithm in a similar manner as MEME.

However, it incorporates features designed to make it applicable to

much larger data sets.

Recently much research has been done on discriminative motif

finders [11,12,16–20]. Motif finders such as MEME use a

generative model that typically explains the input sequences in

terms of a background model and a model for binding sites. They

learn motif representations that optimise some significance

statistic. This statistic is usually based on the strength of the motif

and the number of binding sites in the input sequences. In

contrast, discriminative motif finders find motifs that distinguish

the input sequences from an additional set of control sequences.

Typically some statistic that takes into account how many input

and control sequences have binding sites is optimised. In this way

discriminative motif finders use information from the control

sequences as well as the input sequences. Discriminative motif

finders such as DREME [11] and Trawler [12] have become the

methods of choice when a suitable set of control sequences are

available. In this work we compare the performance of STEME to

DREME and Trawler.

Motif finding algorithms appear to be caught in the ‘self-

assessment trap’ as identified by Norel et al. [21], where the

editorial policy of scientific journals dictates that investigators must

evaluate their method against other methods. Norel et al. point out

that in these evaluations, the novel method is reported as best an

unreasonably high number of times. They argue that this bias is

typically a result of a selective evaluation in the niche in which the

algorithm performs best. Not wishing to fall into this trap, we have

not tailored our evaluations to present STEME as a superior motif

finding algorithm. We chose to evaluate STEME against other

motif finders on 13 data sets that these motif finders had already

been evaluated on.

In the rest of this paper we discuss the difficulty of evaluating

motif finders; we describe the results of evaluating STEME,

DREME and Trawler on 13 data sets from mouse ES cells; we

show that STEME is better at finding long degenerate motifs in

these data sets; we discuss how DREME and Trawler are sensitive

to the choice of control sequences and how STEME is robust to

this choice. Finally we present STEME’s algorithm which includes

a generalisation of a method by Nagarajan et al. [22] for

calculating a motif’s significance.

Results and Discussion

Difficulty of evaluating motif finders
Like many other tasks in computational biology such as protein

interaction prediction [23] and gene regulatory network inference

[24], the lack of a gold standard makes the evaluation of motif

finding algorithms difficult at best. The results of motif finding

algorithms are usually scored against matches to known motifs

from the literature. Any difference between the literature motifs

and the binding specificities of the factor will bias the evaluation.

This can happen in several ways: in vitro derived motifs in the

literature may not accurately represent in vivo specificities; the

transcription factors may have context dependent binding

specificities subject to the presence of co-factors [25]; or a factor

may have more than one mode of binding [26]. Comparison of

motif finders in this way is also difficult. Presumably a motif finder

that reports one matching motif is better in some way than one

that reports 100 motifs of which one matches. This distinction can

be difficult to quantify. However, the volume of data from high-

throughput experiments like ChIP-chip, ChIP-seq, and DamID

provides opportunities for the empirical evaluation of motif finding

algorithms.

Evaluation on ChIP-seq data from Chen et al.
In order to evaluate STEME, we used ChIP-seq data from

mouse ES cells [27] for 13 sequence-specific TFs (Nanog, Oct4,

STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb,

Tcfcp2l1, E2f1, and CTCF). These data have been well used

as test data for motif finders and this allows us to compare the

the results of our evaluation against those of others. Indeed, the

author of DREME used the same data to evaluate his method

[11]. We evaluated three motif finders: STEME, DREME and

Trawler. The evaluation was configured as a discriminative task

where the methods were asked to find motifs in the input

sequences as compared to a set of control sequences. The

authors of DREME and Trawler differ in their recommenda-

tions for control sequences: the DREME author recommends

dinucleotide-shuffled versions of the input sequences and the

Trawler authors recommend using 5 kb upstream promoter

regions of genes. We used both types of control sequences in our

evaluations.

For the analysis of the results we followed the DREME

protocol. We used the TOMTOM tool [28] from the MEME

suite to compare the discovered motifs to established motifs for

the ChIP’ed transcription factor. We used motifs from the

JASPAR core vertebrata database [29], mouse motifs from the

UniProbe database [30] and individual motifs for Nanog [31,32]

and Smad1 [33] that were not in either of the JASPAR or

UniProbe motif sets.

We show the results using the shuffled control sequences in

Table 1 and the results using the promoter control sequences in

Table 2. As expected, DREME and Trawler performed best

when used with the control sequences recommended by their

authors. DREME finds the correct motif in 10 out of the 13 data

sets using the dinucleotide-shuffled control sequences but also

reports over 300 motifs in total. STEME also finds 10 correct

motifs but only reports 29 in total. Trawler performs best using

the promoter control sequences, finding 10 of the correct motifs.

The correct motif was never found on two of the data sets:

Smad1 and E2f1 and Trawler was the only method to find the

Zfx motif.

STEME is better than Trawler and DREME at finding
longer degenerate motifs

Discriminative methods such as DREME and Trawler may be

quicker than STEME but they search in the space of regular

expressions for motifs. The size of this space grows exponentially

as the width of the motif increases making it difficult to find wide

motifs. STEME’s approach, like MEME’s, differs in that it

searches in the space of suitable starting seeds and uses the EM

algorithm to move from these seeds to motifs. This enables

STEME to reach a bigger space of putative motifs including

longer and more degenerate motifs. We found that DREME and

Trawler were excellent at finding short motifs that matched part of

long literature motifs but they did not recover them in their

entirety. However, STEME was able to recover these motifs. We

show the two most extreme examples here.

First, the CTCF motif reported by DREME using the shuffled

control sequences is a good match to part of the known CTCF

motif. On the other hand, STEME recovers an almost exact

match to the entire motif (see Figure 1). Using the promoter

control sequences, Trawler recovers part of the CTCF motif. The

STEME: A Robust, Accurate Motif Finder for Large Data Sets
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TOMTOM E-value for STEME’s match to the CTCF motif is

9.7e-14, as compared to 3.4e-7 for DREME’s match, demonstrat-

ing that the STEME motif is much closer to the known motif.

Second, the Tcfcp2l1 motif that STEME recovers matches the full

length motif of Tcfcp2l1 binding as a homodimer. DREME’s and

Trawler’s motifs (with the shuffled and promoter control sequences

respectively) represent the binding specificity of one half of this

homodimer and are not as close a match to the reference motif

from the JASPAR database (see Figure 2). TOMTOM reports E-

values of 1e-9 (respectively 1.7e-3) for STEME’s (respectively

DREME’s) match to the known motif. For both TFs, STEME

reports a good match to the full motif using both sets of control

sequences. In contrast Trawler and DREME can only match part

of the reference motif with one set of control sequences and do not

always find a match at all with the other control sequences.

The ability to discover these longer degenerate motifs is the

reason why Bailey argues that MEME is complementary to

DREME: ‘Consequently, our algorithm complements rather than

replaces existing motif discovery tools for the analysis of ChIP-seq

data’ [11]. STEME is a motif finder with similar properties to

MEME in this respect but unlike MEME it does not take a

prohibitively long time to run on large data sets. MEME’s

authors suggest that sequences should be discarded when running

MEME on large data sets. In practice this approach seems to

work well as evidenced by the evaluation of MEME on the same

data sets by Bailey [11]. We believe STEME has an advantage at

Table 1. Results using the dinucleotide-shuffled control sequences.

DREME Trawler STEME

Nanog 1/34 4/7 1/2

Oct4 1/13 8/8 1/2

STAT3 1/10 1/4 1/3

Smad1 -/6 -/6 -/3

Sox2 1/16 14/18 1/2

Zfx -/23 -/8 -/3

c-Myc 1/11 -/1 1/2

n-Myc 1/24 1/5 1/3

Klf4 1/28 1/3 1/2

Esrrb 1/32 1/5 1/3

Tcfcp2l1 1/43 -/1 1/2

E2f1 -/26 -/5 -/1

CTCF 1/36 -/2 1/1

Total 10/302 7/73 10/29

For each of the three methods, we show the rank of the most significant motif that matched a known motif for the ChIP’ed factor and how many motifs were reported
in total. The last row shows how many times a correct motif was reported against how many motifs were reported in total.
doi:10.1371/journal.pone.0090735.t001

Table 2. Results using the promoter control sequences.

DREME Trawler STEME

Nanog 1/29 4/4 1/2

Oct4 3/15 2/3 1/1

STAT3 3/12 1/1 1/2

Smad1 -/6 -/3 -/2

Sox2 1/16 1/2 1/2

Zfx -/10 1/2 -/-

c-Myc -/9 1/2 -/-

n-Myc -/8 -/1 -/-

Klf4 3/14 1/1 1/1

Esrrb 1/30 1/1 1/1

Tcfcp2l1 -/36 1/22 1/1

E2f1 -/15 -/1 -/-

CTCF 1/44 1/8 1/1

Total 7/244 10/51 8/13

For each of the three methods, we show the rank of the most significant motif that matched a known motif for the ChIP’ed factor and how many motifs were reported
in total. The last row shows how many times a correct motif was reported against how many motifs were reported in total.
doi:10.1371/journal.pone.0090735.t002
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least in a theoretical sense, in that it uses all of the data to infer

the motifs.

Running times
In Figure 3 we show the running times for the three algorithms

on the data from Chen et al. STEME is up to two orders of

magnitude slower than DREME and Trawler on the smaller data

sets. On larger data sets this is reduced to roughly one order of

magnitude. STEME has a configurable run time in that the user

can specify how long it spends searching for good seeds to run the

EM algorithm on. For our evaluations we used a fairly

conservative value for this parameter of two hours. We note that

it is not practical to run MEME, upon which STEME is

modelled, on the larger data sets.

The choice of control sequences is important
In our evaluation, there was a marked difference in perfor-

mance between DREME and Trawler when different control

sequences were used. DREME was more successful on dinucle-

otide-shuffled control sequences and Trawler was more successful

with random promoter sequences. STEME showed a robust

performance when using both sets of control sequences, finding

the correct motif 10/13 times on the dinucleotide-shuffled control

sequences compared to DREME which found the correct motif

10/13 times. On the promoter control sequences, STEME found

the correct motif 8/13 times, compared to Trawler which found

the correct motif 10/13 times.

Since dinucleotide-shuffled sequences are always available, why

not exclusively use DREME with these as controls? When using

Figure 1. Logos for CTCF motifs. First: The reverse complement of the known CTCF motif from the JASPAR database (MA0139.1). Second: The
motif recovered by STEME using the shuffled control sequences. STEME also recovers a near identical motif using the promoter control sequences.
Third: The reverse-complement of the motif recovered by DREME using the shuffled control sequences. Fourth: One of the CTCF-like motifs recovered
by Trawler using the promoter control sequences.
doi:10.1371/journal.pone.0090735.g001

Figure 2. Logos for Tcfcp2l1 motifs. First: The reverse complement of the known Tcfcp2l1 motif from the JASPAR database (MA0145.1). Second:
The motif recovered by STEME using the shuffled control sequences. STEME recovered a near identical motif using the promoter control sequences.
Third: The reverse-complement of the motif recovered by DREME using the shuffled control sequences. Fourth: The Tcfcp2l1 motif recovered by
Trawler when using the promoter control sequences.
doi:10.1371/journal.pone.0090735.g002
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shuffled sequences as controls, DREME reports large numbers of

significant motifs: in our evaluation DREME reported an average

of over 20 motifs per data set. Some of these motifs are very likely

to be co-factors of interest to the experimenter. However, others

may well be motifs for ubiquitous transcription factors that are also

prevalent in other areas of the genome. These will be false starts

for the experimenter who is typically interested in those factors

that drive expression in the specific regions of the genome he has

sequenced. Genomic sequences can show structure at Markov

orders higher than one [34]. This structure is removed by the

shuffling, hence some of these motifs may in fact just model this

higher-order structure which may not be related to transcription

factor binding. Whilst using dinucleotide-shuffled control sequenc-

es has been shown empirically to be a practical method of finding

motifs, we believe that it is not ideal and if they are available, real

genomic control sequences should be used additionally or instead

of them.

DREME is sensitive to the choice of control sequences: using

the promoter control sequences, DREME only reported 7 correct

motifs across all 13 data sets. We could have relaxed DREME’s

significance threshold for reporting motifs but without any

guidance for choosing a suitable threshold in this instance, we

chose to report the results as they stand.

Bailey chose to use dinucleotide-shuffled sequences for the

control set when evaluating DREME against Trawler [11]. It is

possible this did not do Trawler justice.

STEME as a discriminative motif finder
STEME is not a discriminative motif finder in that it does not

explicitly optimise a statistic that discriminates between the input

sequences and the control sequences. However, it does incorporate

information from the control sequences when they are used to

train its background Markov model. STEME’s background model

is an important part of its generative model and is used at every

stage of its algorithm. W -mers that are favoured by the

background model will be less likely to modelled as binding sites.

In this way, the background model can play a discriminative role

in how STEME finds motifs.

This is not a novel approach: NestedMICA [35] uses a mosaic

Markov model for the background sequence. NestedMICA’s

authors show that their rich background model can capture

information present in the control sequences and make motif

finding more sensitive. They recommend using a four class first

order mosaic Markov model for mammalian sequences. STEME

does not implement a full mosaic background model but our

experience shows that using higher order Markov models can be

beneficial. In particular, we have had successes with background

Markov models of orders five and six (data not shown). Thijs et al.

showed that fourth order models can be be superior to lower order

models [36]. Their study was performed on a limited amount of

sequence data which constrained it from investigating higher order

models.

Conclusions
Motif finding is a heavily studied area of computational biology

and there are many excellent motif finders, each of which has

demonstrated its superiority over some of its competitors. In this

work we do not attempt to prove that STEME is superior to all

these motif finders, indeed we would be surprised if it were. We

compare STEME to two popular motif finders DREME and

Trawler and showed that STEME predicts a comparable number

of correct motifs. Unlike DREME and to some extent Trawler,

STEME does not overwhelm the user with many motif

predictions.

We also show how STEME can find longer more degenerate

motifs than those found by the enumerative methods in the

comparison. The results from TOMTOM show that these are

closer matches to the known motifs from the literature.

We present several extensions to the original STEME EM

approximation. These extensions enable STEME to be used as a

Figure 3. Log-log plot of timings for the three evaluated algorithms. STEME is slower than DREME and Trawler but this difference is less
pronounced on larger data sets.
doi:10.1371/journal.pone.0090735.g003
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fully-fledged motif finder in its own right. We think that these

algorithms are of some theoretical interest. We have showed how

to use suffix trees to implement approximations to the parts of the

MEME algorithm our original publication did not address. In

addition we made a small generalisation to a method for

accurately computing p-values due to Nagarajan et al.

Our analysis of the mouse ES binding data highlights some of

the problems inherent in the comparison of motif finders. Many

evaluations of motif finders only use simple statistics such as the

number of correct motifs reported. We have shown that these do

not always tell the whole story. Some motif finders report many

significant motifs. These can be difficult for the user to interpret.

Also, the quality of the match to the known motif is often ignored.

Many evaluations score short motifs that match part of the known

motif as highly as almost exact matches to the whole motif. A

consensus as to the best way to compare motif finders would

ensure motif finders are compared on an equal footing. This would

help reduce the effects of the ‘self-assessment trap’ which we

believe is prevalent in this and several other areas of computa-

tional biology.

Materials and Methods

Availability
STEME is available through a web interface (http://sysbio.

mrc-bsu.cam.ac.uk/STEME/) where the user can upload their

sequences and vary some of the basic STEME parameters. For

more control over the full parameter set, STEME can be installed

as a python package from PyPI (https://pypi.python.org/pypi/

STEME/) and the source code is available on github (https://

github.com/JohnReid/STEME).

The STEME motif finding algorithm
The STEME algorithm in its previously described form [14]

was an approximation to the EM algorithm for the type of mixture

model used by motif finders such as MEME [8]. Here we describe

how we have extended it into a fully-fledged motif finder. There

are 3 major parts to these extensions. Firstly, we have extended

MEME’s model to allow for position-specific priors. Secondly, we

have designed and implemented an algorithm that efficiently

searches for suitable seeds with which to initialise EM. Lastly, we

also present a generalisation of a previous algorithm by Nagarajan

et al. for the significance calculations.

The model. STEME can search for motifs of different widths,

however its probabilistic model only considers one width at a time.

STEME’s model is an extension of the model used by MEME: for

a fixed width, W , STEME models each W -mer as an independent

draw from a two-component mixture. One mixture component

models binding sites, the other component models background

sequence. We index the set of W -mers by fn : 1ƒnƒNWg where

NW is the number of W -mers in the input sequences. We define

Xn as the nth W -mer in the input sequences. We define a

corresponding set of latent variables, fZng, that represent whether

each Xn is drawn from the binding site component or the

background component. We make an assumption that the Zn are

independent. This is a simplifying assumption as the Xn overlap.

STEME uses the same technique as MEME to avoid problems

resulting from this simplification. Without these techniques

STEME tends to converge on motifs of low-complexity with

self-overlapping binding sites. We discuss the techniques further

below.

STEME extends MEME’s mixture model to include position-

specific priors. Position-specific priors were introduced by Narlikar

et al. [37] and are a method by which almost any information that

is position-specific can be introduced into the motif finding

process. Typical examples of such information are: phylogenetic

conservation [38]; nucleosome occupancy [37]; a negative set of

control sequences (a.k.a. discriminative motif finding) [39]. In this

work, we introduce two new variables into STEME’s model: gn

represents the prior probability that the n’th W -mer is not

available to be a binding site; Yn is an indicator variable that

determines if Xn is available as a binding site. gn is observed data

in our model and Yn is a hidden variable. Note that gn is

parameterised in a negative sense. Typically most W -mers are

available as binding sites, so in this parameterisation many gn are

0. This allows STEME to use efficient sparse data structures to

represent the few nonzero gn representing sites that are known to

be unavailable. The model is depicted in Figure 4 and the model

parameters are described in Table 3.

So we have

p(YnDgn)~
gn if Yn~0

1{gn if Yn~1

�
ð1Þ

If Yn~0 then the W -mer, Xn, is not available as a binding site and

Zn~0

p(Zn~0DYn~0)~1

and if Yn~1 then Xn is available and Zn will be 1 according to the

prior probability of a binding site, l

p(Zn~1DYn~1,l)~l

Now if Zn~1, Xn is drawn from the binding site model

p(XnDZn~1,hBS,hBG)~p(XnDhBS)

and conversely if Zn~0, Xn is drawn from the background model

p(XnDZn~0,hBS,hBG)~p(XnDhBG)

Summing out Yn

p(Znjgn,l)~
X

Yn[f0,1g
p(Zn,Ynjgn,l)

~gn(1{Zn)z(1{gn)½(1{l)(1{Zn)zlZn�

~
gnz(1{gn)(1{l)½ � if Zn~0

l(1{gn) if Zn

( ð2Þ

giving the following likelihood

Figure 4. Our model in plate notation.
doi:10.1371/journal.pone.0090735.g004
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p Zn,Xnjgn,l,hBS,hBGð Þ~

gnz 1{gnð Þ 1{lð Þ½ �p Xn hBGjð Þ if Zn~0

l 1{gnð ÞZnp Xn hBSjð Þ if Zn~1

(
ð3Þ

and posterior

p Zn,Xnjgn,l,hBS,hBGð Þ!

gnz 1{gnð Þ 1{lð Þ½ �p Xn hBGjð Þ if Zn~0

l 1{gnð Þp Xn hBSjð Þ if Zn~1

(
ð4Þ

The expectation of Zn is

SZnT~
l(1{gn)p(XnDhBS)

l(1{gn)p(XnDhBS)z½gnz(1{gn)(1{l)�p(XnDhBG)

~
1

1z
gnz(1{gn)(1{l)

l(1{gn)

p(XnDhBG)

p(XnDhBS)

~
1

1z
1

l(1{gn)
{1

� �
p(XnDhBG)

p(XnDhBS)

ð5Þ

Branch-and-bound approximation. Several parts of the

STEME algorithm enumerate the W -mers efficiently using a

branch-and-bound descent of a suffix tree. These include

searching for starts, the EM algorithm and finding instances of a

motif. The efficiency of these descents depends on the availability

of an upper bound for the SZnT. In the model presented in the

original STEME algorithm [14], this bound was easy to calculate

using an upper bound on p(XnDhBS) and a lower bound on

p(XnDhBG). The introduction of position-specific priors means that

we also need a lower bound on the gn for each node in the suffix

tree.

Each node in a suffix tree represents a common prefix of a set of

suffixes. In our model each node q represents a common prefix

X{
q of a set of binding sites indexed by Tq

Tq~fn : X{
q is a prefix of Xng ð6Þ

For each node q in the suffix tree we define bounds on the

likelihoods of the binding sites indexed by Tq and on the position-

specific priors associated with those binding sites gn

p
q
BS~ max

n[Tq
p(XnDhBS) ð7Þ

p
q
BG~ min

n[Tq
p(XnDhBG) ð8Þ

gq~ min
n[Tq

gn ð9Þ

Now we have the required bound on the expectation of Zn for all

the binding sites prefixed at node q (c.f. Equation (5))

SZnTƒ

1

1z
1

l(1{gq)
{1

 !
pq

BG

p
q

BS

V n[Tq ð10Þ

The gn are fixed across all parts of the algorithm so we can

calculate lower bounds gq for all nodes q in the suffix tree as a pre-

processing step. We recalculate these bounds when searching for

multiple motifs.

Note that Equation (10) is an improvement over the bound

given in the EM-algorithm of our original publication [14]. In that

publication we used a lower bound of 0 for p(XnDhBS) for part of

the calculation. Here we have removed the need for this coarse

bound.

Each part of the STEME algorithm that uses this branch-and-

bound descent provides a global bound Z�. On each descent, we

can ignore all the Xn for which SZnTvZ�. The bound on the

likelihood under the PWM model that we can use at node q is

given by

p
q
BS~

Z�

1{Z�
1

l(1{gq)
{1

 !
p

q
BG ð11Þ

The binding site and background model. For the binding

site component of the model STEME uses the popular position

weight matrix (PWM) model where each position is treated

independently.

hBS~ffwb : 1ƒwƒW ,b[fA,C,G,Tgg

where fwb is the frequency of base b at position w in the PWM.

Other more complex binding site models are possible within the

framework.

Table 3. The parameters of our model.

Xn : The n’th W-mer

hBS : The parameters of the binding site model

hBG : The parameters of the background model

Zn : Indicator variable: determines whether Xn is a binding site

l : Prior probability for Xn being a binding site

Yn : Indicator variable: determines if Xn is available as a binding site

gn : Position-specific prior on Yn

doi:10.1371/journal.pone.0090735.t003
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hBG is treated as constant throughout the STEME algorithm. A

Markov model of an order specified by the user is built from the

input sequences (or the control sequences if available). This model

is used to calculate p(XnDhBG) as a pre-processing step. The

STEME algorithm could be easily extended to use estimates of the

p(XnDhBG) provided by the user, thereby enabling the use of

custom background models.

Finding starting points. The EM algorithm finds a local

maximum of the expected likelihood of the model. It is a proven

technique for motif finding but when the EM algorithm is

initialised with different starting points, different local maxima are

often found. In order to improve their chances of finding a global

maximum, motif finding algorithms such as MEME devote many

of their resources to finding good starting points. STEME follows

this design pattern.

The EM algorithm needs a consensus sequence and a number

of sites to be initialised. Given a consensus sequence, S, STEME

initialises the binding site model, hBS, as

fwb!cz (Sw~b)

where c is a pseudo-count parameter and Sw is the w’th base of S.

The number of sites is used to initialise the prior probability of a

binding site

l~
#sites

#W{mers

In general, the motif width and number of sites are not known

ahead of time so STEME considers a range of values for both.

These can be specified by the user but default to widths of 6, 8, 11

and 14 base pairs and numbers of sites between M=10 and M,

where M is the number of input sequences. STEME uses a

geometrical progression to select values in the range specified. We

denote the range of widths by fvig and the numbers of sites by

fnjg where nmax is the largest number of sites considered. For each

combination of vi and nj STEME searches for the best consensus

sequences with which to initialise EM.

Given a potential starting point, Q~fS,njg, consisting of a

consensus sequence, S, of width vi and a number of sites, nj ,

STEME uses a similar algorithm to MEME to calculate Q’s score.

STEME initialises its binding model with the consensus sequence,

S. Using this model, STEME finds the best nj vi-mers in the sense

that they are the nj vi-mers with the highest SZnT. A PWM is built

from these vi-mers and the significance of its log-likelihood ratio is

used as the score for Q. The significance calculation is described

below.

For each width, vi, STEME’s default behaviour is to consider

every vi-mer, Xn, in the data as a consensus sequence and

examine every starting point fXn,njg for all n and j. However, this

can be very expensive when W is large and the input sequences

are numerous or long. STEME allows the user to limit the amount

of time spent looking for starts. STEME divides this time equally

amongst all possible of widths of motif. When looking for the starts

for each width, STEME estimates how long it takes to evaluate

each start and skips an appropriate number of subsequent starts so

it finishes in the specified time.

When finding multiple motifs, MEME performs a search for

starts before learning each motif. This is an expensive operation.

STEME chooses to run this search for starts just once. It finds

many starts for each vi,nj combination prior to looking for any

motif. STEME does not just store the highest scoring starting

points. Oftentimes the best starting points represent the same

motif, only with minor edits in the W -mer. STEME will only store

starting points when the set of their best W -mers do not overlap

any better starting point’s W -mers by 50% or more at a base pair

level. In this manner, STEME avoids storing redundant starting

points.

The EM algorithm and discretisation. After finding

suitable starting points, STEME runs the EM algorithm on the

best starting point for each vi,nj combination. STEME’s EM

algorithm implementation has been described in some detail in the

original STEME paper [14], so we do not repeat it here.

In a similar manner to MEME, STEME performs a discretisa-

tion step immediately following the EM algorithm. This

discretisation step serves to sharpen the motif and determines

the number of sites for which the motif’s significance is maximised.

For each n in ½minfnjg,maxfnjg� STEME finds the best n sites in

the data for the motif (in the sense that their SZnT are maximal).

STEME builds a motif from these sites and evaluates its

significance. The motif with the greatest significance is selected

and this is the motif that is reported to the user. In general the

discretisation step serves to increase the significance and the

information content of the motif.

Finding motif instances. At several stages in its algorithm,

STEME is required to find the best W -mers in the sequences

given a current motif. For example when finding starts, STEME

needs the best W -mers given a motif built from the starting point’s

consensus sequence. In STEME’s discretisation step, the best W -

mers given the motif learnt during the EM algorithm must be

found. STEME finds these W -mers using the algorithm described

here. Once again, STEME can use the suffix tree representing the

input sequences to do this efficiently.

Suppose STEME is looking for the n best W -mers. As in the

EM algorithm, STEME descends the suffix tree and as it does so it

keeps track of an upper bound on the SZnT of the W -mers

represented by the current node. During this descent STEME

stores the best W -mers seen so far and only descends those parts of

the tree which could contribute better W -mers. One further detail

accelerates this method, STEME descends the suffix tree in an

order where preferred bases in the motif are examined first. For

example, if ‘A’ was the preferred base at the fifth position in the

motif, then STEME would always descend the ‘A’ branches of the

suffix tree at depth five first. In this way STEME tends to find the

best W -mers earlier and STEME is able to use higher bounds to

ignore larger parts of the suffix tree.

Unfortunately in general STEME needs to find non-overlap-

ping W -mers, otherwise it converges too easily on motifs that have

self-overlapping binding sites. Suffix trees do not lend themselves

to analysis of overlaps so STEME removes the overlapping

instances as a post-processing step. That is, it looks for the best W -

mers without regard for overlaps and when it has found them, only

retains the W -mers that are not overlapped by better W -mers.

Finding multiple motifs. Like most other motif finders,

STEME can find more than one motif concurrently. STEME uses

a similar technique as MEME. Once the first motif has been

found, its instances are probabilistically erased from the sequences

by modifying the position-specific priors. That is, the data in the

model is changed to make the instances of the discovered motif less

available for binding.

Additionally, we remove any starting points that overlap either

the instances of the starting point that was used when finding the

motif, or the instances of the motif after the EM algorithm.

Significance calculations. In general, the user of a motif

finder will not know how many motifs are present in their input

sequences. The user will rely on the motif finder to quantify the

significance of the motifs discovered. Many different statistics have
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been used by motif finders to measure significance. STEME uses

the same approach as MEME.

STEME assesses a motif’s significance using its information

content, width and the number of sites it was created from.

STEME reports an E-value statistic based on these properties.

The E-value represents how many motifs of higher information

content we would expect to find in a random set of sequences.

Specifically, suppose we drew a hypothetical set of sequences

from a 0-order Markov model based on the input sequences. The

E-value estimates the expected number of motifs of the same

width and number of sites we could find in the random sequences

that have a higher information content than the given motif. E-

values defined in this way are widely used as measures of motif

significance, for example by MEME, Hertz et al. [40] and

Nagarajan et al. [22].

Suppose we have a motif built from n W -mers. Let nwb denote

the number of occurrences of base b in the w’th position of the

motif. The information content of the w’th position of the motif is

defined as

Iw : ~
X

b[fA,C,G,Tg
nwb log

nwb=n

pb

where pb is the probability of base b in the background. Due to the

independence of the positions of the motif, its information content

is

I : ~
XW
w~1

Iw

Motifs with higher information content are more interesting as

they represent more specific binding preferences. The informa-

tion content can be used to rank motifs with the same W and n.

However, the information content does not quantify the

significance of the motif directly and does not allow us to

compare the significance of motifs of varying W and n. For this

we would like to calculate a p-value for the information content.

Our null hypothesis is that the W -mers that form the motif are

drawn from a 0-order Markov model generated from the base

pair frequencies in the input sequences. We calculate the

probability mass function (p.m.f.) for the information content of

a motif built from n W -mers drawn at random under this model.

An exact calculation of this p.m.f. is intractable for typical I , n
and W so we use an approximation.

Hirji [41] presented an algorithm to calculate the p.m.f. of the

information content of a motif column on a lattice. The same

dynamic programming algorithm was later rediscovered by Hertz

and Stormo [40]. Nagarajan et al. [22] presented an exponen-

tially shifted version of this algorithm that avoids underflows and

hence removes the need for logarithmic arithmetic thus

improving the runtime. Nagarajan et al. presented the algorithm

as a solution to calculating the p.m.f. of the information content

of a column for a fixed n. STEME needs to calculate the

significance for many different motifs of varying n. Here we show

how Nagarajan’s algorithm can be adapted to calculate p.m.f.s

for a range of n simultaneously.

Extending the notation of section 2.1 in Nagarajan et al. [22] we

define

J(n1, . . . ,na)~
Xa

b~1

jb(nb)~

Xa

b~1

round(d{1nb log
nb=n

pb

) V a,nb s:t: 1ƒaƒA,
X

b

nbƒn

Note we do not assume
P

b nb~n or that a~A where A is the size

of the alphabet. In the case above where n~
P

b nwb we have

Iw

d
&J(nwA,nwC ,nwG,nwT )zn log

n

n

or more precisely

D
Iw

d
{J(nwA,nwC ,nwG,nwT ){n log

n

n
Dƒ

A

2
ð12Þ

Having established a relationship between Iw and J where the

accuracy depends on d, we claim that the p’d,a,n’(j) defined in

Nagarajan et al. can be interpreted as a p.m.f. for j~J(n1, . . . ,na)
as follows

p’d,a,n’(j)

~
n!

n’!
e{dj{n’(log(n){1)p(j~J(n1, . . . ,na)Dn1, . . . ,na*Mult(n’; p1, . . . ,pa))

~
n!

n’!
e{dj{n’(log(n){1)

X
n1,...,na such that

n’~
Pa
b~1

nb and j~J n1,:::,nað Þ

n’! P
a

b~1

p
nb
b

nb!

ð13Þ

~n!e{dj{n’(log(n){1)
X

n1,...,na such that

n’~
Pa
b~1

nb and j~J n1,:::,nað Þ

P
a

b~1

p
nb
b

nb!
ð14Þ

Hence the p’d,a,n’(j) are shifted versions of the p-values for the

statistics J(n1, . . . ,na) under the null hypothesis. This is a simple

generalisation of the claim presented by Nagarajan et al. It has a

similarly straight-forward proof by induction that we give here.

For a~1, the claim is trivial although we do note a minor

correction to Equation (4) presented by Nagarajan et al. We

believe the case where a~1 should read

pd,1,n’(j)~

P
n’s:t:j~j1(n’)

n!r1(n’) n’[½0 . . . n�

0 otherwise

8<
:

as it is possible for two different n’ to give the same value of j.

Perhaps this is only possible when d is chosen badly. Continuing

our proof by induction, we suppose the claim is true for a given

a{1 and for all n’,j where 1ƒn’ƒn. We will show this implies the

claim is true for a.

Re-writing n’’ as na from the shifted version of Equation (4)

presented by Nagarajan et al. we have

p’d,a,n’(j)~
Xn’

na~0

r’a(na)p’d,a{1,n’{na
(j{ja(na))

(13)
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where

r’a(na)~
bna

a

na!
edja(na)zna(log(n){1)

is defined as by Nagarajan et al. Rearranging and using Equation

(14), we have

p’d,a,n’(j)~
Xn’

na~0

pna
a

na!
edja(na)zna(log(n){1)

n!e{d(j{ja(na)){(n’{na)(log(n){1)

X
n1,...,na{1 such that

n’{na~
Pa{1

b~1

nb and j{ja(na)~J(n1,...,na)

P
a{1

b~1

p
nb
b

nb!

~n!e{dj{n’(log(n){1)
Xn’

na~0

pna
a

na!

X
n1,...,na{1 such that

n’~
Pa
b~1

nb and j~J(n1,...,na)

P
a{1

b~1

p
nb
b

nb!

~n!e{dj{n’(log(n){1)
X

n1,...,na{1 such that

n’~
Pa
b~1

nb and j~J(n1,...,na)

P
a{1

b~1

p
nb
b

nb!

ð15Þ

which proves the claim by induction. Equation (13) gives us the

p.m.f. of the statistic J(n1, . . . ,na) for any n1, . . . ,na where

0ƒ

P
b nbƒn under the null hypothesis. Equation (12) relates Iw

to J so we have the p.m.f. of Iw up to the accuracy specified by d.

Once we have the p.m.f. of the information content of a motif

column, we use the QFAST algorithm [42] to combine the p-

values for all the columns into one p-value for the motif. We could

have selected any n W -mers from the input sequences but we

chose to select W -mers to increase the significance of our motif.

We need to correct this p-value for the number of different ways

we could have chosen n W -mers from the sequences. Multiplying

the p-value by this number gives us an E-value, a statistic that we

can use to assess the significance of the motif. It is an

approximation to the number of motifs we would expect to find

with as good or better an information content were we to select the

best n W -mers from a pool of N W -mers distributed as our 0-

order Markov model.

Position-specific priors. As described in the model section,

position-specific priors work at the level of individual W -mers.

However, as STEME considers several different widths of motifs,

STEME will need to consider position-specific priors at all these

different widths. We describe here STEME’s method for

converting position-specific priors from W -mers to a base pairs

and back again.

Suppose STEME found an instance of a motif, Xn, and must

probabilistically erase it from the base pair priors, hi. STEME uses

the following update rule

h�i ~min(1,hizSZnT)

Note that the hi are parameterised in a negative sense so that

hi~1 means that the base pair indexed by i is not available as a

binding site. So the availability of all the base pairs in the instance

is lowered by SZnT.

Conversely, suppose STEME needs position-specific priors for

W -mers. It generates them from the base pair priors as follows

gn~maxfhi : i[Xng

So the prior for Xn is simply the prior for the least available base

pair in Xn.

Evaluation on mouse ES cell data from Chen et al.
The 13 sets of sequences were downloaded from Tim Bailey’s

website to ensure we used the same data as in his evaluation of

DREME. The 5 Kb promoter control sequences were download-

ed from UCSC website and repeat masked. We ran DREME

(version 4.9.1) with all the default options. STEME (version 1.8.17)

was asked to look for motifs of widths, 6, 8, 11, 14 and 18. STEME

used a first order Markov background model when using the

dinucleotide shuffled control sequences and a fifth order Markov

background model when using the promoter control sequences.

STEME was asked to search for up to 5 motifs and any motif with

a log E-value less than 0 was deemed significant. Trawler

(standalone version 1.2) was run with all the default parameters.

To compare the recovered motifs to the motif databases we ran

the tool TOMTOM (version 4.9.1) from the MEME suite with the

same parameters as in Bailey’s evaluation: -min-overlap 5 -dist

pearson -evalue -thresh 0.05 -no-ssc.
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