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Abstract: Despite numerous efforts to identify the molecular and cellular effectors of the adaptive
immunity that induce a long-lasting immunity against dengue or Zika virus infection, the specific
mechanisms underlying such protective immunity remain largely unknown. One of the major
challenges lies in the high level of dengue virus (DENV) seroprevalence in areas where Zika virus
(ZIKV) is circulating. In the context of such a pre-existing DENV immunity that can exacerbate ZIKV
infection and disease, and given the lack of appropriate treatment for ZIKV infection, there is an
urgent need to develop an efficient vaccine against DENV and ZIKV. Notably, whereas several ZIKV
vaccine candidates are currently in clinical trials, all these vaccine candidates have been designed
to induce neutralizing antibodies as the primary mechanism of immune protection. Given the
difficulty to elicit simultaneously high levels of neutralizing antibodies against the different DENV
serotypes, and the potential impact of pre-existing subneutralizing antibodies induced upon DENV
infection or vaccination on ZIKV infection and disease, additional or alternative strategies to enhance
vaccine efficacy, through T cell immunity, are now being considered. In this review, we summarize
recent discoveries about cross-reactive B and T cell responses against DENV and ZIKV and propose
guidelines for the development of safe and efficient T cell vaccines targeting both viruses.
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1. History

Zika virus (ZIKV) is a Flavivirus transmitted by Aedes species mosquitoes. It is a single
positive-stranded RNA virus closely related to yellow fever virus (YFV), dengue virus (DENV) and
West Nile virus (WNV) [1]. First isolated in Uganda in 1947 [2], it remained confined to several
regions in Africa and Asia from that time until the early 2000s. In 2007, however, it caused an explosive
outbreak for the first time outside of Africa and Asia, on Yap Island, Federated States of Micronesia [3,4],
followed by subsequent outbreaks with higher numbers of cases in 2013–2014 in French Polynesia
and other South Pacific Islands and more recently in the Americas [5–9]. Although initially believed
to only cause mild disease, the 2013–2014 and 2015 outbreaks in French Polynesia and Brazil clearly
revealed that ZIKV causes neurological complications, such as Guillain-Barré syndrome in adults and
microcephaly in infants born to ZIKV-infected women [10–13]. Phylogenetic studies indicated the
presence of two lineages of ZIKV, the African and Asian lineages, the latter being responsible for the
recent major outbreaks in French Polynesia and South America [14,15]. Notably, it was suggested that
the enhanced infectivity of the Asian lineage of ZIKV was due to a spontaneous mutation in the gene
coding for Non-Structural Protein 1 (NS1) leading to its higher secretion in the serum and infectivity to
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mosquitoes [16], which could explain its recent re-emergence in the Americas [14,15] despite its relative
absence in South East Asia. More strikingly, several amino acid substitutions in the proteome or more
specifically in the precursor membrane (prM) protein with possible functional implications for ZIKV
biology and pathogenesis have been identified from ZIKV outbreak strains in South America [17,18].

In addition to the high infectivity of the Asian lineage in the Americas, one of the most
important concerns today is related to the high level of DENV seroprevalence in areas where
ZIKV is circulating [19]. This is particularly important given the structural similarities between
ZIKV and DENV [20–22], and the existence of cross-reactive immune responses associated with
disease pathogenesis [23–27]. Nevertheless, while it is now well established that a secondary infection
with a heterologous DENV serotype represents a risk factor for the development of severe dengue
disease, because of serotype cross-reactive or sub-neutralizing antibodies which can mediate antibody
dependent enhancement (ADE) [28], it remains to be determined whether a previous DENV infection
can also increase the risk of developing a more severe ZIKV disease in humans, as suggested by studies
in mice [26]. Likewise, while ZIKV-immune plasma can enhance DENV infection in immune-deficient
mice [24], the role of ZIKV immunity in protection or enhancement of dengue disease in humans is
still unknown.

In this review, we address the most recent findings regarding the adaptive immune response
against ZIKV, focusing on the effect of DENV pre-existing immunity on ZIKV infection, the underlying
idea being to identify immunological parameters predictive of increased susceptibility or protection
against ZIKV infection and disease. In this respect, we will review the current state of knowledge on
the impact of anti-DENV antibodies on ZIKV infection and disease, and then summarize the recent
data on the potential role of T cells in DENV and ZIKV immunity, with the aim to promote a long
lasting immune protection against these two viruses.

2. Antibody Cross-Reactivity between Zika and Dengue Viruses

The high level of cross-reactivity among flaviviruses, especially DENV and ZIKV which share
54–59% sequence identity in the E protein [20,29,30], and their co-circulation in the same endemic
regions have complicated serological approaches to discriminate between these two viral infections.
In most cases, reverse transcription-polymerase chain reaction (RT-PCR)-based assays within a
week post-infection, in combination with serological binding assays to recombinant proteins and
functional neutralization assays in vitro, either by Plaque Reduction Neutralization Test (PRNT) or
Flow-Cytometry-Based Neutralization Assay have been developed to distinguish between ZIKV and
DENV infections [23,24,31–34].

Upon primary DENV infection, different types of antibodies have been found in polyclonal human
sera: serotype-specific antibodies with strong neutralizing activity against the homologous DENV
serotype, and cross-reactive antibodies with weak neutralizing activity and strong enhancing potential
against heterologous DENV serotypes [35,36]. In secondary DENV infections, both type-specific and
cross-reactive neutralizing antibodies, as well as cross-reactive enhancing antibodies to the other
DENV serotypes, are elicited [37]. Following multiple DENV infections, the polyclonal response has
been shown to contain mainly cross-reactive antibodies that recognize the different DENV serotypes,
these antibodies being potentially associated with a more durable cross-protective immunity [37,38].

Upon ZIKV infection, it has been shown that the quality and type of antibody response
depends on previous infection with DENV, with a more restricted specificity against ZIKV in
DENV naïve individuals [24,25]. Using a panel of monoclonal antibodies (mAbs) derived from
ZIKV-infected individuals with or without previous DENV immunity, it was shown notably that
the antibody response against ZIKV includes envelope domain III (EDIII)-specific antibodies with
strong neutralizing activity against ZIKV, as well as envelope domains I and II (EDI/II)-specific
antibodies with high degree of cross-reactivity against the E protein of all four DENV serotypes and
low neutralizing potential against ZIKV [24]. Thus, just like how EDI/II-specific and cross-reactive
antibodies induced after DENV infection can enhance DENV and ZIKV infection [23,39–43], EDI/II
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cross-reactive antibodies raised by ZIKV infection can also potently enhance DENV and ZIKV
infection [24,27]. Interestingly, not all cross-reactive antibodies are enhancing, as shown in a recent
study where memory B cell clones derived from different ZIKV-infected individuals could produce
antibodies that neutralize both ZIKV and DENV serotype 1 (DENV1) [44]. In this case, cross-reactivity
was shown to result from a previous DENV1 infection and the clonal expansion of memory B cells
specific of an EDIII epitope of ZIKV and DENV1 and neutralize both types of viruses. This observation
provides the first evidence for a ZIKV-neutralizing antibody response that derives from pre-existing
immunity to DENV. However, the low frequency of these cross-reactive memory B cells within
the polyclonal population of circulating memory B cells raises the question of the impact of such
responses in the immune protection against ZIKV infection. In this sense, it would be helpful to
determine whether multiple DENV infections could boost such memory B cells with a broad spectrum
of neutralization, in the same manner as the DENV1-induced cross-neutralizing response [44].

At the polyclonal level, it was confirmed that while a primary ZIKV infection could induce
predominantly ZIKV-specific antibodies that poorly cross-react with the four DENV serotypes, a ZIKV
infection in individuals with previous DENV infections results in the production of both ZIKV-specific
and DENV-cross-reactive antibodies [45]. Interestingly, depletion of these DENV-cross-reactive
antibodies did not affect the level of anti-ZIKV neutralizing antibodies, suggesting that ZIKV-specific
neutralizing antibodies are produced after ZIKV infection regardless of previous DENV immunity [45].

Thus, while it is clear that DENV infections can induce the production of cross-reactive antibodies
that recognize the four DENV serotypes, and to a lesser extent ZIKV, in most cases, they do not induce
durable, high-level ZIKV cross-neutralizing antibodies [45].

Similarly, upon primary or secondary DENV infections, it is now well established that the level of
DENV-specific neutralizing antibodies decay rapidly in the absence of re-exposure, or more slowly in
endemic settings [46–49], and individuals with high neutralizing antibody titers have lower probability
of symptomatic infections, in comparison with individuals with low neutralizing antibody titers [49].
In this sense, a positive correlation was clearly established between the low level of pre-existing
anti-DENV antibodies and the severity of secondary dengue disease in humans, with a higher risk
of severe dengue with anti-DENV antibody titers of 1:21 to 1:80 and a stronger protection against
symptomatic dengue disease observed with higher antibody levels [19,50]. More recently and finally,
while type-specific neutralizing responses were initially thought to elicit life-long immunity against
homologous reinfections [51,52], there is now clear evidence that homologous reinfection can occur
in the presence of serotype-specific neutralizing antibodies, leading to symptomatic disease [53,54].
While in some cases these homotypic reinfections have been observed more than 10 years after the initial
infection [53], in other cases, such reinfections were identified with a shorter time interval of 1 to 2 years
between the successive infections [54]. In both situations, the specific level of pre-existing anti-DENV
antibodies provides an explanation for the homologous serotype reinfection and symptomatic disease
observed in individuals from different endemic regions [53,54]. Although it is too early to determine
whether the same correlation applies to ZIKV infection, it seems likely that the decay in the level
of ZIKV-specific neutralizing antibodies in the absence of re-exposure to this virus should affect the
outcome of future ZIKV infection and disease.

3. T Cell Responses against DENV and Prospects for a Vaccine

Although the exact role of T cells during dengue virus infection and disease is still a matter of
debate [55], there is currently a growing body of evidence supporting a protective role for T cells in
dengue virus infection, both in human and mouse studies [56,57].

Briefly, similarly to the ADE phenomenon hypothesis associated to cross-reactive antibodies, it was
proposed that DENV-specific T cells could play a detrimental role during secondary dengue infection.
In this “original antigenic sin” scenario, an expansion of cross-reactive T cells with higher avidity to
the previous infecting serotype would mask the specific T cell response against secondary infection,
and would result in less efficient elimination of DENV-infected cells [58–60]. These cross-reactive
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T cells, stimulated upon a secondary infection with a different serotype, also displayed quantitative
and qualitative differences in their response to the cross-reactive epitope [61], with higher ratios
of Tumor Necrosis Factor alpha (TNF-α) to Interferon gamma (IFN-γ)-producing CD4 T cells [62],
suboptimal degranulation but high cytokine production [63], or more specifically impaired IFN-γ
production [64].

However, in spite of these studies, the direct demonstration of a pathogenic role of DENV-specific
T cells in patients experiencing natural secondary dengue infection is still missing, and recent
reports do not support a causative role for cross-reactive T cells in the pathogenesis of dengue
hemorrhagic fever during secondary infections [65,66]. Indeed, increased frequencies of DENV-specific
CD4+ and CD8+ T cells were detected in school children who subsequently experienced subclinical
infection, in comparison with symptomatic secondary DENV infections [67]. In addition, protection or
susceptibility to severe dengue disease has been associated with the expression of certain Human
Leukocyte Antigen (HLA) molecules [68–73] and a beneficial function of CD8+ T cells against
DENV infection was demonstrated after depletion of the CD8 T-cell compartment in interferon-α
receptor knock-out mice (ifnar−/−) [74]. More strikingly, a strong correlation was established between
protection against severe dengue and a polyfunctional memory CD8+ T cell response with a high
magnitude in healthy dengue-immune individuals [75]. Finally and more recently, we observed a
higher activation of Natural Killer (NK) cells and T cells in asymptomatic dengue viral infection;
different T cell populations proliferate more and have an activated phenotype, with increased
pathogen recognition, signal transduction and higher cytotoxic activity in asymptomatic DENV
infected individuals compared to individuals with symptoms during DENV infection [76].

While CD4+ T cell responses are mainly directed toward the structural proteins capsid (C) and
envelope (E) and the non-structural protein NS1, similarly to DENV-specific B cells that target prM,
E and NS1, most CD8 T cell epitopes reside in the non-structural proteins NS3, NS4B and NS5, and to
a lesser extent in the structural protein E [60,75,77–80].

Besides the identification of DENV-specific T cell epitopes recognized by activated T cells,
these studies contributed to identifying correlates of protection, as the result of an efficient T cell
activation by immunodominant peptides restricted by certain HLA alleles, and a robust and
polyfunctional CD4 or CD8 response [75,81–85]. This is true, for example, for the HLA-B*0702 and
-B*3501 class I molecules, and the HLA-A*0101 and -A*2402 associated with a high and a low CD8
T-response frequency and magnitude, respectively [75]. The same goes for the HLA-DRB1*0401 or
-DRB1*0802 class II alleles, which are associated with an increased resistance or susceptibility to severe
dengue disease, respectively, and the phenotype of responding cytotoxic CD4 T cells [81].

4. Identification ZIKV-Specific and DENV/ZIKV Cross-Reactive T Cells

In contrast to a large number of studies on T cell responses to DENV infection, to date,
relatively little is known regarding the analysis of T cell responses to ZIKV infection.

First predictions of ZIKV T cell antigens were conducted by modelling potential epitopes that
could bind to different HLA class I or class II alleles, from the ZIKV proteome [86–88], and by
identifying short peptides targeted by DENV-specific CD8+ T cells with conserved sequences
between DENV and ZIKV [89], with the underlying assumption that these epitopes should stimulate
cross-reactive T cells after sequential DENV and ZIKV infection.

While such sequence conservation between several immunogenic CD8+ T cell peptides from
DENV and the corresponding ZIKV sequence was highlighted in the E, NS1, NS3 and NS5 proteins [89],
a study revealed that memory T cells against NS1or E proteins were poorly cross-reactive, even in
donors previously infected by DENV [24].

To identify first the dominant epitopes of ZIKV recognized by CD8+ T cells in the context of
human HLA class I molecules, and to clarify the protective role of CD8+ T cells in ZIKV infection,
different mouse models have been used. Type I interferon receptor-deficient mice expressing human
HLA class I molecules (HLA-B*0702 or HLA-A*0101), which are susceptible to DENV and ZIKV
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infection, enabled identification of ZIKV peptides that are targeted by CD8+ T cells, and to show that
dengue or Zika virus infections can induce the development of cross-reactive CD8+ T cells that are
protective against ZIKV infection [90]. In HLA class II transgenic mice, CD4 immunodominant epitopes
have also been mapped from ZIKV Envelope, and from non-structural proteins NS1, NS3 and NS5,
among which several peptides in the envelope revealed cross-reactivity with other flaviviruses [91]
(Figure 1).
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In another mouse model, which lacks the type I interferon receptor in a subset of myeloid
cells [92], adaptive transfer of ZIKV-immune CD8+ T cells was shown to inhibit primary ZIKV infection
and replication [93]. Likewise, in ifnar−/− and in wild-type mice, adoptive transfer and depletion
experiments have demonstrated that DENV-immune CD8+ T cells, but not DENV-immune sera can
mediate cross-protective responses against ZIKV infection [94]. Although a correlation was previously
established in mice and rhesus monkeys between the level of neutralizing antibodies induced upon
ZIKV vaccination and the immune protection against ZIKV challenge [95,96], these studies highlight
the essential role of CD8+ T cells in providing a protective immunity, in the presence or not of
pre-existing DENV immunity, a finding that could help define future strategies of vaccine against
DENV and ZIKV [97]. Finally, wild-type immunocompetent mice, ifnar−/− mice and Interferon Alpha
Receptor (IFNAR)-depleted rag1−/− mice, have helped to characterize the phenotype of responding
T cells after ZIKV infection and to demonstrate the protective effect of CD8+ T cells against ZIKV
infection in various organs, including the brain and testes [98–100]. However, while these studies
clearly demonstrate a major role for CD8+ T cells in controlling ZIKV infection, they all relied on
experiments performed in mice with an altered immune system, a model that supports DENV or ZIKV
infection but does not reflect the human situation. In addition, these mouse models do not take into
account the human innate immune response against these flaviviruses, more specifically the NK cells
that kill infected cells through the recognition of viral peptides in the context of HLA-C*0102 [101].
In summary, even though HLA transgenic mice expressing a single HLA allele do not mimic the
human situation, the identification of immunodominant epitopes in these transgenic mice constitutes
an important step towards preclinical evaluation of T-cell based vaccines.

For this purpose, to formally identify ZIKV-derived peptides in humans, and to determine
whether a previous DENV infection can activate cross-reactive T cells, functional studies have been
performed using human Peripheral Blood Mononuclear Cells (PBMC) collected from ZIKV endemic
areas. From blood donors from different countries in Central and South America, the majority of
the CD8+ T cell responses in DENV seronegative individuals were shown to be directed against
structural proteins, whereas in DENV seropositive donors, a large proportion of CD8+ T cell responses
were directed against the non-structural proteins with cross-reactivity for peptides in NS2A, NS3,
and NS5 [102] (Figure 1). Strikingly, cross-reactive CD4+ and CD8+ T cells recognized peptides with
identical or highly conserved sequences between DENV and ZIKV, with a higher magnitude of
response, showing that DENV-specific memory CD8+ T cells can enhance the T cell responses to ZIKV.

In light of the low protection observed in individuals DENV-seronegative at the time of vaccination
with Dengvaxia, which lacks DENV non-structural proteins and fails to induce a competent T cell
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response [103], and taking into account the role of CD8+ T cells in preventing ADE [104,105] it is now
becoming obvious that efficient vaccine candidates against DENV and ZIKV should be formulated to
include CD4 and CD8 T cell epitopes, either alone, or in combination with B cell epitopes.

Based on the recent identification of these T cell epitopes derived from ZIKV, work is currently
ongoing to define a minimal antigen, which includes the most immunodominant peptides recognized
by cross-reactive T cells, and which can induce a long lasting immune protection against DENV and
ZIKV infection and disease.

5. Conclusions

Our understanding of the immune response to ZIKV has dramatically increased in the last years
through in vitro studies with polyclonal and monoclonal antibodies from ZIKV-infected individuals,
and through the identification of the epitopes inducing a strong memory and cross-reactive T cell
response. While several animal models that could mimic the human situation have been developed
to clarify the beneficial or detrimental role of the different immune mediators in disease protection,
further phenotypic analyses of ZIKV-specific T cells, in asymptomatic or symptomatic donors will help
define correlates of protection in natural immunity and vaccination against ZIKV infection and disease.
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