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Upregulated MYCN gene expression is restricted to specialized cell populations such as
EpCAM+ cancer stem cells in liver cancer, regardless of DNA amplification and mutation.
Here, we reviewed the role of MYCN gene expression in liver homeostasis, regeneration,
and tumorigenesis, and discussed the potential non-genomic mechanisms involved in
controllingMYCN gene expression in liver cancer, with a focus on inflammation-mediated
signal transduction and microRNA-associated post-transcriptional regulation. We
concluded that dynamic MYCN gene expression is an integrated consequence of
multiple signals in the tumor microenvironment, including tumor growth-promoting
signals, lipid desaturation-mediated endoplasmic reticulum stress adaptation signals,
and tumor suppressive miRNAs, making it a potential predictive biomarker of tumor
stemness and plasticity. Therefore, understanding and tracing the dynamic changes and
functions of MYCN gene expression will shed light on the origin of liver tumorigenesis at
the cellular level and the development of novel therapeutic and diagnostic strategies for
liver cancer treatment.

Keywords: MYCN, liver cancer, microenvironment, inflammation, plasticity, lipid desaturation, endoplasmic
reticulum stress, miRNA
INTRODUCTION

Liver cancer, mostly hepatocellular carcinoma (HCC), is a highly lethal cancer (>600,000 deaths per
year worldwide) in which approximately 10% of patients survive the first 5 years after diagnosis (1).
Liver cancer is recognized as an inflammation-related cancer, since more than 90% of HCC cases
arise in the context of chronic liver injury and unresolved inflammatory microenvironment due to
viral infection, alcohol consumption, or high-fat diet (HFD) hypernutrition (2–4). Advances in
antiviral therapy have reduced the risk of developing hepatitis B virus- and hepatitis C virus-related
HCC (5, 6). In contrast, non-alcoholic steatohepatitis (NASH) which is characterized by obesity-
associated inflammation has attracted much attention, and is believed that it will soon be the leading
etiology of HCC (7). Notably, mice fed with HFD alone did not develop liver injury and
tumorigenesis. However, hyperresponsivity to lipopolysaccharide and endoplasmic reticulum
(ER) stress were observed in fatty liver that contributed to the progression of NASH and HCC
(8, 9). This suggested that a non-genomic mechanism was involved in the control of cellular
responses such as adaptation to inflammatory stresses during hepatic tumorigenesis. In this line,
whereas tumor initiation depends on somatic mutations, the mechanisms underlying tumor
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promotion are likely to involve epigenetic factors and
environmental factors extrinsic to the cancer cell (10).

MYCN is a canonical proto-oncogene basic helix-loop-helix
transcription factor that is mainly restricted to the migrating neural
crest (11) and governs cell growth and differentiation during
embryonic stages (12). Amplification of the MYCN locus was
first observed in human neuroblastoma (13).MYCN amplification
is observed in about 20% of neuroblastoma and represents one of
the strongest clinical predictors of poor prognosis (14). MYCN
amplicons are either organized as extrachromosomal double
minutes or as homogeneously stained regions in addition to the
single copy ofMYCN on the short arm of chromosome 2, retained
at 2p24, in neuroblastoma cells and other solid tumor cells (15).
Notably, the MYCN gene is located in a non-fragile region of 2.8
Mbp between two common fragile sites, FRA2Ctel and FRA2Ccen,
located at 2p24.3 and 2p24.4, respectively (16). A study by
Blumrich and colleagues suggested that MYCN amplicons might
arise from extra rounds of replication of unbroken DNA secondary
structures that accumulate at FRA2C (16). Recent clinical studies
have reported increased gene expression of MYCN in liver tumor
tissues (17, 18). However, according to The Cancer Genome Atlas
(TCGA) database, nine of the 371 HCC patients (2.4%) with
upregulated MYCN mRNA expression but not the seven patients
(1.9%) with MYCN amplification had a dramatically worse
prognosis (Figure S1A). Data mining using the Cancer Cell Line
Encyclopedia (CCLE) database identified a total of 65 MYCN
mutations, but none of them was detected in HCC cell lines
irrespective of their corresponding mRNA abundance (Table
S1). This highlights the existence of non-genomic mechanisms
potentially responsible for MYCN overexpression in liver cancer.
Notably, data mining in TCGA showed that the expression of
MYCN in human HCC was not correlated with that of c-MYC,
another MYC family membranes known to be crucial for liver
cancer maintenance (19) and oncogenic reprogramming of
terminally differentiated hepatocytes into liver cancer stem cells
(CSCs) (20) (Figure S1B). In addition,MYCN gene expression but
not c-MYC gene expression was significantly correlated with the
liver CSC marker EpCAM gene expression (Figure S1B). These
data highlight the possibility that MYCN gene expression is
restricted in CSC-like cells and serves as a more sensitive
biomarker than c-MYC gene expression for the detection of
tumor stemness during liver tumorigenesis. Here, we reviewed
the role of dynamic MYCN gene expression in liver homeostasis,
regeneration, and tumorigenesis, and discussed the potential non-
genomic mechanisms involved in controlling MYCN gene
expression in liver cancer, focusing on inflammation-mediated
signal transduction and microRNA-associated (miRNA)-post-
transcriptional regulation.
MYCN GENE EXPRESSION IN LIVER
HOMEOSTASIS, REGENERATION, AND
TUMORIGENESIS

Single-cell RNA sequencing provided a comprehensive view of
MYCN gene expression in both human and mouse livers (21, 22).
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Under steady-state conditions, the expression of MYCN gene is
low in hepatocytes (Figure S1C) (21).MYCN gene expression in
the liver is significantly zonated, which is predominantly induced
in the pericentral cells and progressively decreases along the liver
lobule towards periportal cells (Figure S1D) (22). Metabolic liver
zonation requires a Wnt/b-catenin signaling gradient (23). In the
uninjured liver, diffusible Wnt ligands produced by the
pericentral endothelial cells activate b-catenin signaling-
induced target genes such as Axin2 and maintain a population
of proliferating and self-renewing cells, surrounding the central
vein, that contribute to homeostatic hepatocyte renewal (24).
Wnt/b-catenin signaling is critical for organ development,
homeostasis, and regeneration through governing stem cell
pluripotency (25). During neocortical development, MYCN is a
direct downstream target of the Wnt/b-catenin pathway
and promotes neuronal fate commitment (26). Therefore, the
basal expression of MYCN gene in the liver is a likely
consequence of the activation of Wnt/b-catenin signaling
during liver homeostasis.

Cap Analys is of Gene Express ion(CAGE)-based
transcriptional profiling of isolated primary mouse hepatocytes
revealed that low level ofMYCN gene expression was detected at
2 h and peaked at 48 h after 70% partial hepatectomy (Figure
S1E) (27). Liver regeneration is a coordinated multistep process
that is largely dependent on the re-entry of differentiated adult
hepatocytes into the cell cycle and proliferation (28). In response
to loss of hepatic tissue, hepatocyte DNA synthesis peaks at
around 24 h, accompanied by the induction of gene expression of
growth-regulated and cell-cycle-regulated genes at around 48 h
(29). It is possible that the induction ofMYCN gene expression is
a mitogenic response of hepatocytes during liver regeneration.
Indeed, a major direct mitogen of hepatocytes, the epidermal
growth factor (EGF), stimulated MYCN gene expression in
neuroblastoma cells via the recruitment of the transcription
factor Sp1 to the MYCN promoter region (30).

Transcriptome profiling of frozen human liver tissues using
microarray showed that MYCN gene expression was low in
healthy livers, cirrhotic livers, and adjacent non-tumorous liver
tissue, while it was dramatically increased in tumor tissues (17).
Project HOPE (High-tech Omics-based Patient Evaluation), a
clinical study aiming to provide multi-omics data of cancer
patients, showed the upregulation of MYCN gene expression in
tumor tissues compared to normal tissues in 22% of recruited
HCC patients (18). Our previous cohort studies in Japan (n =
102) and Europe (n = 50) confirmed an increase in MYCN gene
expression in HCC tumor regions as compared to non-tumor
regions (17). Importantly, in a long-term (>10 years) follow-up
study, MYCN gene expression in HCC tumors was significantly
higher in patients with recurrence than in those without
recurrence and was positively correlated with the de novo
recurrence of HCC with a single tumor but not with multiple
tumors (17). HCC recurrence at approximately 1–2 years after
resection was considered to be mainly due to de novo
carcinogenesis of liver CSCs or tumor-initiating cells (31).
MYCN gene expression in HCC was positively correlated with
the expression of liver CSC markers and Wnt/b-catenin
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signaling markers, suggesting that MYCN expression is restricted
to CSC-like HCC (17). Consistently, MYCN expression marked
an EpCAM+ CSC-like subpopulation, which was selectively
dep le ted by acyc l i c re t ino id (ACR) , a promis ing
chemopreventive agent against the recurrence of HCC after
curative treatment (17, 32). EpCAM is a well-characterized
liver CSC marker and is a direct transcriptional target of Wnt/
b-catenin signaling (33). Similar to liver homeostasis, the
restricted MYCN expression in liver CSCs is probably related
to the activation of Wnt/b-catenin signaling. Furthermore, four
out of six liver biopsies of HCC patients (66.7%) who had
received 8 weeks of high-dose ACR treatment (600 mg/day),
but not low-dose ACR treatment (300 mg/day), after definitive
treatment showed decreasedMYCN gene expression (< 0.5-fold)
(17). In line with this, clinical studies showed that administration
of ACR at 600 mg/day, but not 300 mg/day, reduced HCC
recurrence after curative treatment (34). Collectively, MYCN
expression marked CSC-like subpopulations in heterogeneous
HCC and served as a potential therapeutic target and prognostic
marker for HCC.
REGULATION OF MYCN GENE
EXPRESSION BY TISSUE REPAIR
SIGNALS IN THE INFLAMMATORY
MICROENVIRONMENT OF LIVER CANCER

Activation of inflammatory signal transduction in the tumor
microenvironment is strongly linked to tumor initiation
and progression based on two mechanisms: tissue repair
and stress adaptation. Obesity-associated production of
inflammatory cytokines, such as interleukin-6 (IL-6) and
tumor necrosis factor-a (TNFa), induce repeated liver injury
and compensatory proliferation, which might lead to aberrant
stabilization and activation of “repair signals” such as signal
transducer and activator of transcription 3 (STAT3)-dependent
oncogenic signaling pathways and initiation and progression of
HCC (35–37). The involvement of hyperactivated IL-6-STAT3
signaling axis as a driver oncogenic mechanism in promoting cell
proliferation and suppressing antitumor immune response in the
background of tumor microenvironment has been reported in
several cancers (38). STAT3 directly mediates the initiation of
MYCN transcription in neuroblastoma cells (39). Inhibition of
STAT3 with antisense oligonucleotide or pharmacological
inhibitors reduced MYCN gene expression and decreased
neuroblastoma tumorigenicity in preclinical mouse models (39,
40). During early hepatocarcinogenesis, STAT3 activated by
paracrine IL-6 produced by inflammatory cells, might directly
bind to the promoter and upregulate the gene and protein
expression of CD133, a well-defined liver CSC marker
representing a specialized subpopulation of highly tumorigenic
cells with high MYCN expression (17, 41, 42). Inhibition of
STAT3 with sorafenib, the first-line recommended therapy for
patients with advanced HCC, decreased CD133 levels and
suppressed in vivo tumorigenicity by eradicating the liver
Frontiers in Oncology | www.frontiersin.org 3
tumor microenvironment (41). Of note, a recent proteomics-
based pathway analysis showed that sorafenib inactivated
downstream signaling of MYCN in HCC cells (43). In
addition, growth factors such as EGF induced by inflammatory
cytokines contribute to the upregulation of MYCN gene
expression in an inflammatory microenvironment (30). Nerve
growth factor (NGF) is expressed by hepatocytes during fibrotic
liver injury (44). In MYCN-amplified neuroblastoma cells, NGF
suppressed MYCN gene expression through mitogen-activated
protein kinase signaling pathways (45). In contrast, a global
transcriptome analysis showed reduced MYCN gene expression
in NGF-deprived sympathetic neurons (46). It is unclear whether
NGF directly regulates MYCN gene expression in normal livers
and HCC cells.
REGULATION OF MYCN GENE
EXPRESSION BY LIPID DESATURATION-
MEDIATED STRESS ADAPTATION
SIGNALS IN THE INFLAMMATORY
MICROENVIRONMENT OF LIVER CANCER

The cell membrane serves as the barrier between life and death for
individual cells and the first line of defense in response to
environmental stress. In addition to their function as energy
storage sources or as building blocks of membranes, membrane
lipids have attracted much attention as biologically active molecules.
They regulate the formation of membrane assembly of signal
complexes by either binding to cognate receptors or recruiting
proteins from the cytosol and coordinating signal transduction (47).
Membrane lipids are highly diverse in chemical structures, varying
in the desaturation and chain elongation of fatty acyl chains,
backbones (such as glycerol, sphingoid base, and cholesterol), and
head group substituents. Changes in membrane lipid composition
affect membrane physical properties, as observed in mammalian
cells in response to environmental stimuli (47). For example,
macrophages rapidly reprogram their lipid metabolism, especially
de novo cholesterol biosynthesis (48, 49) and desaturated fatty acid
biosynthesis (50), for appropriate inflammatory and host defense
functions in response to diverse inflammatory signals. Under
inflammatory conditions, the fatty acid synthetic enzyme fatty
acid synthase, reshapes macrophage lipid homeostasis for the
assembly of cholesterol-dependent inflammatory signals such as
Rho GTPase at the plasma membrane (51). In contrast, lipid
desaturases such as stearoyl-CoA desaturase (SCD1) and fatty
acid desaturase (FADS) were induced to inhibit the inflammatory
responses through the production of anti-inflammatory omega-3
polyunsaturated fatty acids or disruption of membrane signaling
complexes associated with lipid rafts, also known as membrane
microdomains, which are enriched with saturated sphingolipids and
cholesterol (52). Importantly, lipid reprograming, especially the
upregulation of unsaturated fatty acids, has recently been
recognized as a critical feature of stem cell maintenance under
both physiological and abnormal conditions (53, 54). Our previous
proteome andmetabolome analyses demonstrated that highMYCN
April 2021 | Volume 10 | Article 618515
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expression in liver CSCs was characterized by increased expression
of lipid desaturases such as SCD1 and FADS and elevated levels of
monounsaturated fatty acids such as palmitoleic acid and oleic acid
in comparison to non-CSC HCC cells (55, 56). In addition to the
upstream regulatory role of MYCN in lipid metabolism
reprograming of cancer cells [reviewed in (57)], inhibition of lipid
desaturation using both genetic and pharmacological approaches
against SCD1 reduced MYCN gene expression and selectively
suppressed the proliferation of high MYCN-expressing HCC cells,
suggesting a direct regulatory role of lipid desaturation on MYCN
transcription (56). Genome-wide transcriptome analysis using
RNA-seq showed that ER stress-related signaling pathways were
regulated upon siRNA knock-down of SCD1 but notMYCN in high
MYCN-expressing HCC cells (56). Further, mechanistic studies
showed that inhibition of lipid desaturation resulted in activation of
ER stress signaling pathways, such as the expression of the
transcription suppressor, cyclic AMP-dependent transcription
factor 3 (ATF3), which reversibly regulates MYCN gene
expression in high MYCN-expressing CSC-like HCC cells, CSC-
rich spheroids, and in clinical HCC tissues (56).

ER stress response, also known as unfolded protein response
(UPR), is activated as a cell-defensive mechanism triggered by
multiple stress factors and plays a critical role in the switch
between cell survival and cell death. Evading ER stress-induced
apoptosis and differentiation is critical for the maintenance of long-
living and self-renewing stem cells under both normal and
malignant conditions (58–60). Therefore, modulation of ER
stress-induced loss of stemness represents a potential therapeutic
strategy for cancers and chronic inflammatory diseases (61, 62). In
line with this, pharmacological targeting of SCD1 achieved
remarkable therapeutic outcomes in glioblastoma and liver cancer
by triggering ER stress-mediated apoptosis and differentiation of
CSCs (63, 64). Mechanistically, enhanced levels of unsaturated fatty
Frontiers in Oncology | www.frontiersin.org 4
acids in CSCs could suppress ER stress by preventing saturated fatty
acid-induced calcium accumulation, oxidative stress, or detrimental
stiffening of the ER and plasma membrane (65–68). Collectively,
under lipid-rich inflammatory conditions, both repair signals and
stress adaptation signals contribute to the upregulation of MYCN
gene expression (Figure 1). Inflammatory cytokine-induced
chronic injury leads to the activation of repair signals, which
triggers downstream MYCN gene expression and compensatory
proliferation. In contrast, lipid desaturation-mediated membrane
reprogramming reduces or counteracts the formation of membrane
assembly of stress signal complexes and enables CSCs to survive and
evade ER stress-induced apoptosis/differentiation. We propose that
the stress adaption mechanism in long-living CSC-like cells
contributes to tumorigenesis such as through accumulation of
mutations in the survived cells, which is accompanied by the
increase of MYCN gene expression.
POST-TRANSCRIPTIONAL CONTROL OF
MYCN GENE EXPRESSION BY MIRNAS IN
LIVER CANCER

miRNAs are evolutionarily conserved small non-coding RNAs of
approximately 22 nucleotides in length that modulate gene
expression by complementary base pairing with the 3’-
untranslated regions (3’-UTRs) of messenger RNAs [reviewed
in (69)]. An essential feature of miRNA-based gene regulation is
that a single miRNA can recognize numerous mRNAs and,
conversely, a target mRNA can be recognized by several
miRNAs. A large number of studies have reported the key role
of these posttranscriptional regulators in the control of various
cellular processes and human diseases (70). In cancer, aberrant
FIGURE 1 | Tissue repair and stress adaptation signal-based control of MYCN gene expression in the inflammatory microenvironment of liver cancer. Under lipid-
rich inflammatory conditions, inflammatory cytokines-induced chronic injury leads to the activation of repair signals such as mitogenic signals resulting in
compensatory proliferation, thereby triggering downstream MYCN gene expression. In contrast, lipid desaturation-mediated membrane reprogramming reduces or
counteracts the formation of membrane assembly of stress signal complexes and enables the CSCs to survive and evade ER stress-induced apoptosis/
differentiation, which leads to the rescue of MYCN gene expression and initiates tumorigenesis by accumulation of mutations in long-living CSCs.
April 2021 | Volume 10 | Article 618515
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expression of miRNAs has been well described and is associated
with the deregulation of critical genes involved in tumor
progression (71). Indeed, cancer-related miRNAs can act as
oncogenes (called oncomirs) or tumor-suppressors, depending
on their targets, and promote or negatively influence tumor
growth, invasion, and/or drug resistance, respectively (72).
Specific miRNA profiles have been identified in neuroblastoma,
which reflect different subtypes of tumors and correlate with the
advancement of the disease or its prognosis [reviewed in (73)]. In
this malignancy, numerousMYCN-targeting miRNAs have been
identified. Loss of miR-34a at chromosome band 1p36, a region
frequently deleted due to loss of heterozygosity in neuroblastoma
cells (74), is associated withMYCN amplification and promotion
of tumor aggressiveness (75). Thus far, several additional
Frontiers in Oncology | www.frontiersin.org 5
miRNA/MYCN regulatory axes have been characterized. In a
model of MYCN-amplified neuroblastoma cells, experimental
overexpression of miR-101 and let-7e induced a decrease in
MYCN protein levels and inhibited cell growth via the direct
regulation of MYCN (76, 77). In another interesting study by
Neviani and colleagues, the tumor-suppressor miR-186 was
detected in natural killer cell-derived exosomes, which
exhibited cytotoxicity against neuroblastoma cells with high
MYCN levels (78). The authors showed that MYCN expression
was directly inhibited by miR-186. In addition, the targeted
delivery of miR-186 to MYCN-amplified neuroblastoma cells
or natural killer cells resulted in significant tumor growth
inhibition. A recent study based on the modeling of miRNA-
mRNA interactions identified a regulatory loop between MYCN
FIGURE 2 | miRNA-based control of MYCN gene expression in liver cancer. miRNA biogenesis is a multistep process. Following transcription by RNA polymerase II,
primary precursor miRNAs (pri-miRNAs) are cleaved into precursor miRNAs (pre-miRNAs) by the RNase III enzyme Drosha and exported out of the nucleus to
produce mature miRNAs. Subsequently, mature miRNAs are loaded onto the RNA-induced silencing complex (RISC) and directed to the 3’-UTR of target mRNAs.
Here, we propose the miRNA/MYCN regulatory network model, in which the tumor-suppressor miR-493-5p and the ATRA-stimulated miRNAs modulate MYCN
expression and impede HCC progression.
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and miR-204 in neuroblastoma cells (79). The authors showed
that miR-204 directly targeted MYCN mRNA and decreased
its protein levels. In contrast, MYCN was able to bind to the
promoter of miR-204 and inhibit the expression of the miRNA.
Remarkably, the capability of MYCN to activate the expression
of critical oncomirs, such as miR-221, miR-9, or the miR-17-92
cluster, has also been observed in neuroblastoma cells and other
types of solid tumor cells (80).

A plethora of studies have described the functional
interconnection between miRNAs and MYCN in neuroblastoma.
However, little is known about the miRNAs involved in the
posttranscriptional regulation of MYCN in liver cancer. The
aberrant expression of miRNAs is a typical hallmark of
hepatocarcinogenesis and tumor progression (81). We previously
demonstrated that maternally expressed 3 (MEG3)-derived miR-
493-5p tumor-suppressor was epigenetically silenced by CpG
hypermethylation in HCC cells and tumor tissues from patients
(82). Experimental overexpression of miR-493-5p promoted an
anti-cancer response by inhibiting HCC cell growth and invasion,
in part, through the negative regulation of insulin-like growth factor
2 (IGF2) and the IGF2-derived intronic oncomir miR-483-3p. More
recently, our group highlighted MYCN as another major target of
miR-493-5p using global gene expression analysis of liver cancer
cells with restored expression of miR-493-5p (83). More precisely,
real-time qPCR data showed an inverse and significant correlation
between miR-493-5p andMYCN expression levels in the tumors of
patients with advanced HCC. A dual-luciferase reporter activity
assay validated miR-493-5p-mediated inhibition of MYCN via the
targeting of two distinct regions in the MYCN 3’-UTR (Figure 2).
To the best of our knowledge, no additional miRNA interacting
directly withMYCNmRNA has been described in liver cancer thus
far. However, in a study based on big data mining and connectivity
map analysis, Xiong et al. uncovered the existence of a potential
hsa_circRNA_104515/hsa-miR-142-5p/MYCN regulatory axis in
HCC (84). In agreement with this finding, we found that
TargetScanHuman predicted an exact consequential pairing of the
MYCN 3’-UTR with positions 2-8 (7mer-m8) of mature miR-142-
5p (Figure S1F). Interestingly, two reports described
downregulation of miR-142-5p in liver cancer cells and showed
that forced expression of miR-142-5p inhibited HCC cell growth
and invasion (85, 86). Taken together, these data strongly suggest
the tumor-suppressive role of miR-142-5p through post-
transcriptional control of MYCN and its therapeutic potential in
liver cancer. Finally, recent studies showed that all-trans retinoic
acid (ATRA), which is an isomer of retinoic acid, was able to
modulate the expression of more than 300 miRNAs and inhibit the
growth of various types of tumor cells (87). Among the miRNAs
upregulated after ATRA treatment, miR-34a-5p, miR-103a-3p,
miR-200b/c-3p, miR-302-3p, and members of the let-7 family
appeared appealing given their potential ability to target the
MYCN 3’-UTR as predicted by TargetScanHuman 7.2 (Figure
S1F). While the tumor-suppressor feature of the let-7 family
members has been well-documented, further investigations will be
required to evaluate the beneficial role of ATRA-stimulated
miRNAs in HCC, since some of these miRNAs may also exhibit
oncogenic activity.
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSIONS

Mature hepatocytes exhibit remarkable plasticity by direct
dedifferentiation into an undifferentiated state in the tumor
microenvironment, which are believed to represent the cells of
origin for liver cancer (88). Since any cell has the potential to
become a CSC, the stemness of liver CSCs could be considered as
a dynamic state that can be acquired rather than a cell intrinsic
property of specialized existing cells [reviewed in (89)].MYCN gene is
overexpressed in restricted cell populations such as EpCAM+CSCs in
liver cancer, regardless of DNA amplification andmutation. Dynamic
MYCN gene expression is an integrated consequence of multiple
signals in the tumor microenvironment, including tumor stemness/
growth-promoting signals such as Wnt/b-catenin and IL-6-STAT3
signaling, lipid desaturation-mediated ER stress adaptation signals,
and tumor suppressive miRNAs. We propose that MYCN gene
expression might represent a potential predictive biomarker of
tumor stemness and plasticity. Hence, understanding and tracing
the dynamic changes and functions ofMYCN gene expression during
hepatic tumorigenesis will shed light on the origin of liver
tumorigenesis at the cellular level and the development of novel
therapeutic and diagnostic strategies for HCC treatment.
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Supplementary Figure 1 | Supporting data of MYCN gene expression in the
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overexpression (left) or amplification (right) according to TCGA database (TCGA,
PanCancer Atlas). (B) Correlation between MYCN gene expression and c-MYC
gene expression (left), MYCN gene expression and EpCAM gene expression
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(middle), and c-MYC gene expression and EpCAM gene expression (right) in human
HCC according to TCGA database (TCGA, PanCancer Atlas). (C) MYCN gene
expression pattern in human liver visualized using a web interface (http://human-
liver-cell-atlas.ie-freiburg.mpg.de/), which is based on the single cell RNA-seq data
published in (21). (D) Mycn gene expression in mouse liver zonation according to
the single cell RNA-seq data (GSE84498) published in (22). (E) Mycn gene
Frontiers in Oncology | www.frontiersin.org 7
expression in mouse primary hepatocyte isolated at 2, 30, 48 h or 1 w after partial
hepatectomy and at 2 h from sham control during liver regeneration. The data was
obtained from the CAGE-based transcriptome data published in Table S1 in (27).
(F) Prediction of miR-142-5p, miR-34a-5p, miR-103a-3p, miR-200b/c-3p, miR-
302-3p, and members of the let-7 family targeting MYCN 3’-UTR according to
TargetScanHuman (http://www.targetscan.org, release 7.2).
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20. Holczbauer Á, Factor VM, Andersen JB, Marquardt JU, Kleiner DE, Raggi C,
et al. Modeling Pathogenesis of Primary Liver Cancer in Lineage-Specific
Mouse Cell Types. Gastroenterology (2013) 145:221–31. doi: 10.1053/
j.gastro.2013.03.013

21. Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, et al. A human
liver cell atlas reveals heterogeneity and epithelial progenitors. Nature (2019)
572:199–204. doi: 10.1038/s41586-019-1373-2

22. Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M,
et al. Single-cell spatial reconstruction reveals global division of labour in the
mammalian liver. Nature (2017) 542:352–6. doi: 10.1038/nature21065

23. Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, et al.
The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size.
Nat Cell Biol (2016) 18:467–79. doi: 10.1038/ncb3337

24. Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2+
cells fuel homeostatic renewal of the liver. Nature (2015) 524:180–5. doi:
10.1038/nature14863

25. Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis.
Development (2018) 145:dev146589. doi: 10.1242/dev.146589

26. Kuwahara A, Hirabayashi Y, Knoepfler PS, Taketo MM, Sakai J, Kodama T,
et al. Wnt signaling and its downstream target N-myc regulate basal
progenitors in the developing neocortex. Development (2010) 137:1035–44.
doi: 10.1242/dev.046417

27. Qin XY, Hara M, Arner E, Kawaguchi Y, Inoue I, Tatsukawa H, et al.
Transcriptome Analysis Uncovers a Growth-Promoting Activity of
Orosomucoid-1 on Hepatocytes. EBioMedicine (2017) 24:257–66. doi:
10.1016/j.ebiom.2017.09.008

28. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, et al. Adult
hepatocytes are generated by self-duplication rather than stem cell
differentiation. Cell Stem Cell (2014) 15:340–9. doi : 10.1016/
j.stem.2014.06.003

29. Michalopoulos GK, DeFrances MC. Liver regeneration. Science (1997)
276:60–6. doi: 10.1126/science.276.5309.60

30. Hossain S, Takatori A, Nakamura Y, Suenaga Y, Kamijo T, Nakagawara A.
NLRR1 enhances EGF-mediated MYCN induction in neuroblastoma and
accelerates tumor growth in vivo. Cancer Res (2012) 72:4587–96. doi: 10.1158/
0008-5472.CAN-12-0943

31. Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem
cells and hepatocellular carcinoma. Hepatology (2009) 49:318–29. doi:
10.1002/hep.22704

32. Muto Y, Moriwaki H, Ninomiya M, Adachi S, Saito A, Takasaki KT, et al.
Prevention of Second Primary Tumors by an Acyclic Retinoid, Polyprenoic
Acid, in Patients with Hepatocellular Carcinoma. New Engl J Med (1996)
334:1561–8. doi: 10.1056/NEJM199606133342402

33. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-
Positive Hepatocellular Carcinoma Cells Are Tumor-Initiating Cells With
Stem/Progenitor Cell Features. Gastroenterology (2009) 136:1012–1024.e4.
doi: 10.1053/j.gastro.2008.12.004

34. Okita K, Izumi N, Ikeda K, Osaki Y, Numata K, Ikeda M, et al. Survey of
survival among patients with hepatitis C virus-related hepatocellular
carcinoma treated with peretinoin, an acyclic retinoid, after the completion
April 2021 | Volume 10 | Article 618515

http://human-liver-cell-atlas.ie-freiburg.mpg.de/
http://human-liver-cell-atlas.ie-freiburg.mpg.de/
http://www.targetscan.org
https://doi.org/10.1038/nrclinonc.2015.103
https://doi.org/10.1007/978-3-0348-0837-8_16
https://doi.org/10.1016/j.jhep.2006.05.013
https://doi.org/10.1016/j.jhep.2006.05.013
https://doi.org/10.1053/j.gastro.2010.12.006
https://doi.org/10.1002/hep.26180
https://doi.org/10.1016/j.jhep.2017.08.030
https://doi.org/10.1002/hep.23594
https://doi.org/10.1016/j.cmet.2012.05.012
https://doi.org/10.1016/j.ccr.2014.07.001
https://doi.org/10.1016/j.ccr.2014.07.001
https://doi.org/10.1016/j.cell.2005.04.014
https://doi.org/10.1016/j.cell.2005.04.014
https://doi.org/10.1101/gad.1021202
https://doi.org/10.1038/308288a0
https://doi.org/10.1016/S0140-6736(07)60983-0
https://doi.org/10.1101/gr.106252.110
https://doi.org/10.1093/hmg/ddr027
https://doi.org/10.1093/hmg/ddr027
https://doi.org/10.1073/pnas.1802279115
https://doi.org/10.14309/00000434-201510001-02018
https://doi.org/10.1038/nature03043
https://doi.org/10.1053/j.gastro.2013.03.013
https://doi.org/10.1053/j.gastro.2013.03.013
https://doi.org/10.1038/s41586-019-1373-2
https://doi.org/10.1038/nature21065
https://doi.org/10.1038/ncb3337
https://doi.org/10.1038/nature14863
https://doi.org/10.1242/dev.146589
https://doi.org/10.1242/dev.046417
https://doi.org/10.1016/j.ebiom.2017.09.008
https://doi.org/10.1016/j.stem.2014.06.003
https://doi.org/10.1016/j.stem.2014.06.003
https://doi.org/10.1126/science.276.5309.60
https://doi.org/10.1158/0008-5472.CAN-12-0943
https://doi.org/10.1158/0008-5472.CAN-12-0943
https://doi.org/10.1002/hep.22704
https://doi.org/10.1056/NEJM199606133342402
https://doi.org/10.1053/j.gastro.2008.12.004
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qin and Gailhouste MYCN Gene Expression in HCC
of a randomized, placebo-controlled trial. J Gastroenterol (2014) 50:667–74.
doi: 10.1007/s00535-014-0996-1

35. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic
obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and
TNF expression. Cell (2010) 140:197–208. doi: 10.1016/j.cell.2009.12.052

36. Umemura A, Park EJ, Taniguchi K, Lee JH, Shalapour S, Valasek MA, et al.
Liver damage, inflammation, and enhanced tumorigenesis after persistent
mTORC1 inhibition. Cell Metab (2014) 20:133–44. doi: 10.1016/
j.cmet.2014.05.001

37. Grohmann M, Wiede F, Dodd GT, Gurzov EN, Ooi GJ, Butt T, et al. Obesity
Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell (2018)
175:1289–1306 e20. doi: 10.1016/j.cell.2018.09.053

38. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3
signalling axis in cancer. Nat Rev Clin Oncol (2018) 15:234–48. doi:
10.1038/nrclinonc.2018.8

39. Sattu K, Hochgrafe F, Wu J, Umapathy G, Schonherr C, Ruuth K, et al.
Phosphoproteomic analysis of anaplastic lymphoma kinase (ALK)
downstream signaling pathways identifies signal transducer and activator of
transcription 3 as a functional target of activated ALK in neuroblastoma cells.
FEBS J (2013) 280:5269–82. doi: 10.1111/febs.12453

40. Odate S, Veschi V, Yan S, Lam N,Woessner R, Thiele CJ. Inhibition of STAT3
with the Generation 2.5 Antisense Oligonucleotide, AZD9150, Decreases
Neuroblastoma Tumorigenicity and Increases Chemosensitivity. Clin
Cancer Res (2017) 23:1771–84. doi: 10.1158/1078-0432.CCR-16-1317

41. Won C, Kim BH, Yi EH, Choi KJ, Kim EK, Jeong JM, et al. Signal transducer
and activator of transcription 3-mediated CD133 up-regulation contributes to
promotion of hepatocellular carcinoma. Hepatology (2015) 62:1160–73. doi:
10.1002/hep.27968

42. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al.
Identification of Liver Cancer Progenitors Whose Malignant Progression
Depends on Autocrine IL-6 Signaling. Cell (2013) 155:384–96. doi: 10.1016/
j.cell.2013.09.031
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