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Abstract: The impact of calcium chloride (CaCl2) on the performance of N-(hydroxymethyl)acrylamide
(NHMA) polymer gel dosimeter is studied in this article. The dosimeter was exposed to doses of
up to 10 Gy with radiation beam-energy of 10 MV and dose-rates of 300 cGy/min. The relaxation
rate (R2) parameter was utilized to explore the performance of irradiated NHMAGAT gels. The
dose response in terms of R2 increased from 0.29 to 0.63 Gy−1·s−1 with increasing calcium chloride
concentration from 0 to 1000 mM. The results show no substantial impact of dose-rates as well as
radiation energies on NHMAGAT samples. For the steadiness of irradiated NHMAGAT dosimeters,
it was found that there is no apparent variation in R2 (less than ±3%; standard deviation) up to
3 days. The overall uncertainty of the gel dosimeter with calcium chloride is 4.96% (double standard
deviation, 95% confidence level).

Keywords: polymer gel; N-(hydroxymethyl)acrylamide; calcium chloride; nuclear magnetic
resonance; dosimetry

1. Introduction

New developments in radiotherapy have been concerned with the study of equivalent
gel dosimeters for tissues containing active chemical sensors to measure the absorbed
radiation dose [1–6]. Gel dosimeters such as polymer gels have a range of properties like
biological tissues, and are suitable alternatives compared with conventional dosimeters
due to their ability in resolving three-dimensional (3D) dose distributions [7–11].

Polymer gels have an electron density that is like tissue-equivalent material [12–14]. It
contains monomers that polymerize during ionizing radiation [15,16]. The first recipe was
fabricated from N, N’methyelene-bis-acrylamide and acrylamide [17,18].

The complex radiation dose response recorded in polymer gels (i.e., degree of poly-
merization) can be explored in 3D utilizing various modalities such as MRI and optical
techniques [18–20]. The interaction between monomers in the gel after irradiation leads to
drops in the mobility of H2O molecules and decreases in the relaxation time (T2) values in
the MRI technique [21–24]. These alterations of the transverse relaxation rate (R2 = 1/T2)
can be measured via NMR relaxometry [25,26].

Different types of monomers were incorporated in the preparation of various types of polymer
gels, such as N-isopropylacrylamide [27], methacrylic-acid [28,29], N-hydroxyethylacrylate [30],
N-vinylpyrrolidone [31–33], Itaconic-acid [34], 2-acrylamide-2-methylpropane-sulfonic-
acid sodium salt [35], N-(3-methoxypropyl)-acrylamide [10,36], and N-(hydroxymethyl)-
acrylamide [8,37–39].
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Many works have reported the influence of different salts on the performance of
gel dosimeters. The literature shows a significant effect of specific inorganic salts on the
dose response of irradiated gels [38–42]. The polymerization of polymer gels has been
dramatically increased and enhanced by the addition of inorganic salts that attract water
molecules and other elements via electrostatic interactions in the gel, leading to an increase
in the rate of polymerization [40]. Rabeah et al. (2017) [37] introduced the composition
of a polymer gel that contains N-(hydroxymethyl)acrylamide monomer (NHMA). The
evaluation of irradiating this polymer gel was carried out by NMR and spectrophotometry.
The data show a good response to ionizing radiation.

In this work, the major objective is to increase the dose sensitivity for formulations
of NHMA gel samples by adding an appropriate concentration of salt, calcium chloride
(CaCl2). The influence of temperature during scanning, dose-rates, radiation energies and
the stability of irradiated samples were also examined and reported.

2. Materials and Methods
2.1. Samples Preparation

NHMAGAT samples were fabricated in normal conditions as the previous gel of
normoxic polymer gel [12]. This polymer gel has five main components: NHMA (8 wt%)
and N, N-methylene-bis-acrylamide (3 wt%) as a co-monomers, gelatin-type A (4 wt%) as
a gel matrix, tetrakis (hydroxymethyl) phosphonium chloride-THPC (20 mM) as an oxygen
scavenger, and a wide concentration range of calcium chloride (0–1000 mM) as an additive.
The chemicals were purchased from Sigma-Aldrich chemical company (St. Louis, MO,
USA). NHMAGAT polymer gels were fabricated as follows: at room temperature, gelatin-
type A was added to the deionized-water and stirred for 5 min, Then, the temperature of
mixture was increased to 48 ◦C for one hour using a hot-plate magnetic stirrer. Then, the
NHMA, BIS, and CaCl2 were added and stirred until a homogenous solution had been
obtained. After that, THPC was added to the solution at 35 ◦C and the solution was stirred
for about 2 min. The prepared solutions were poured into air-tight NMR glass tubes (10
mL) and kept in a fridge for 24 h before X-ray irradiation.

2.2. Irradiation

The prepared gels were placed in a cubic water tank (30 × 30 × 30 cm3) and exposed
to various absorbed doses at standard parameters of (5 cm depth, 100 source to surface
distance and 20× 20 cm2 field size) using 10 MV Linac X-ray beam (Elekta, Laurent Leksell,
Stockholm, Sweden) with a 300 cGy/min dose-rate. The impact of dose-rates and radiation
energies were examined by irradiating the gel dosimeters at a fixed beam energy of 10 MV
with 150 and 600 cGy/min and at a fixed dose-rates of 300 cGy/min with 6 and 15 MV.
Three gels were exposed at certain absorbed doses, and the average values are shown in
the Results and Discussion section.

2.3. Nuclear Magnetic Resonance (NMR) Measurements

The prepared samples were placed into a water-bath system (Julabo, Seelbach, Germany),
which was connected to an NMR relaximeter to control the scanning temperature dur-
ing NMR measurement from 10 to 30 ◦C. The NMR samples were read out using the
0.5 T NMR technique (Bruker, Bremen, Germany) under a fixed scanning temperature of
20 ◦C. The relaxation rate (R2) values of the measured gels were calculated by a standard
Multi-Spin-Echo sequence (Carr Purcell Meiboom Gill (CPMG)) at 0.4 ms echo-time spac-
ing and 2000 echoes. Three gels were read out at certain absorbed doses, and the average
values as well as standard deviations are included in the Results and Discussion section.

3. Results and Discussion
3.1. Impact of Calcium Chloride (CaCl2) Concentration

Different compositions of NHMAGAT gel dosimeters, with different concentrations of
CaCl2, were prepared to evaluate the impact of salt on the dose response and dose sensitivity
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of NHMAGAT dosimeters. A set of three samples from different gel batches were used for
each formulation code in all absorbed dose points. Figure 1 shows the relationship between
the relaxation rate and the dose amount, which proves that CaCl2 did not increase the
background value of the unirradiated NHMAGAT dosimeter. Additionally, these curves
of NHMAGAT samples show a remarkable increase in R2 with an absorbed dose up to
10 Gy because of increasing the polymerization of the NHMAGAT gel. When the CaCl2
concentration changes from zero to 1000 mM, the relaxation rate increases proportionally.
This can be clarified by the hypothesis presented by Hayashi, which states that inorganic
salts such as CaCl2 increase the temperature of gels during irradiation, and as a result, the
exothermic polymerization rate increases, which improves the dose sensitivity [40]. To
override the effect of salt on the reduction in the melting point of the prepared gel [43],
a double amount of the antioxidant (20 mM) was used. Additionally, in Figure 1, the
intercept is related directly to the gel matrix [22]. In contrast, the sensitivity obtained from
the slope of linear fit was found from the slope of the linear part in the R2 dose graph,
which determines the dose resolution [44,45]. The R2 curves are approximated by linear-fit
in a dose-range of 0–4 Gy (see Figure 1b). Beyond 4 Gy, the response changes towards
the saturation region due to the increase in the consumption rate of co-monomers after
adding salt (Figure 1a). The sensitivity increases strongly when the CaCl2 concentration is
increased from 0 to 1000 mM (see Figure 2 and Table 1).
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Figure 1. R2 of gels with various concentrations of CaCl2 when irradiated at doses up to (a) 0–10 Gy,
and (b) 0−4 Gy. Error bars are the 2σ of R2 values.
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Figure 2. Dose sensitivity value for different CaCl2 concentrations.

Table 1. Linear equations and sensitivities of curves in Figure 1b.

Linear Equations Sensitivity (Gy−1·s−1) Recipe

R2 = 0.29D + 0.99 0.29 NHMAGAT (1)

R2 = 0.50D + 0.96 0.50 NHMAGAT (2)

R2 = 0.63D + 1.03 0.63 NHMAGAT (3)

3.2. Stability of NHMAGA Dosimeters

The NHMAGAT (2) gel dosimeter was irradiated at three different doses and kept in
a fridge for three days to study the effect of post-irradiation stability. Three gels for each
dose were used, and the average values are presented. The samples were read out daily
for 3 days, which is quite suitable for routine dose calibration. The results are shown in
Figure 3, from which it is evident that there is no significant change in R2 after up to 3 days.
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3.3. Influence of Dose-Rates

NHMAGAT with 500 mM CaCl2 was used to investigate the influence of dose-rates,
i.e., 150, 300 and 600 cGy/min, with a constant radiation energy of 10 MV. These gel samples
were exposed to various doses of 2, 4, and 6 Gy. To report the standard deviations, a set
of three gels were exposed to each selected dose. Figure 4 shows no significant effect of
dose-rates on this polymer gel dosimeter.
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3.4. Effect of Radiation-Energies

The impact of radiation energies on the performance of NHMAGAT with 500 mM
CaCl2 was studied by exposing the gel to three different values of radiation energy at
dose-rates of 300 cGy/min. These gels were exposed to different absorbed doses. The
results in Figure 5 show that there is little influence of radiation dose on this polymer gel.
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3.5. Effect of Scanning Temperature

Samples of formulation code NHMAGAT (2) were scanned at different temperatures.
Figure 6 illustrates that the response increases with the cooling of the samples during
the NMR scanning. This significant change in NMR readout is due to the alteration in
the magnetization values between the protons of the semi-solid and aqueous phase that
regulate the relaxation time of H2O in the gel, which is enhanced with declining scanning
temperature [46–48].
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3.6. Uncertainty Analysis

The overall uncertainty budget for the dosimeter was calculated based on different
parameters of uncertainty. These parameters are the calibration of the radiotherapy unit
with the ionization chamber (1.2%), batch uniformity (1.4%), reproducibility of measure-
ments (1.1%), MNR sensitivity variation (0.3%), calibration curve fit (1.2%), and temporal
stability (0.2%) [2,49].

The calculated total dose of uncertainty is defined as the combined uncertainty multi-
plied by two for a confidence level of 95% [49]. The square root of the sum of all uncertainty
components is equal to the combined uncertainty [49]. Therefore, the combined uncertainty
is 2.48% and the calculated overall uncertainty for R2 measurements is 4.96%. These values
are considered sufficient for the estimation of dose distributions in radiotherapy.

4. Conclusions

An improved composition of polymer gel dosimeter has been introduced as a normoxic
polymer gel N-(hydroxymethyl)acrylamide (NHMAGAT) for radiotherapy by the addition
of CaCl2 inorganic salt. The results of the NHMAGAT gel dosimeter in this study show that
the response to the dose increases strongly with increasing CaCl2 concentration from 0 to
1 M. The unirradiated and irradiated developed gel samples were almost stable after up to
3 days. No appreciable effect was observed on the performance of irradiated NHMAGAT
gel dosimeter when changing the dose-rates or radiation energies. The response increases
strongly upon cooling the gel during NMR measurement. Overall, the data suggest strongly
that CalCl2 acts as an excellent sensitizer to the polymerization of irradiated dosimeters.
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