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Abstract: Seaweeds represent a rich source of biologically active compounds with several applica-
tions, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds
on health have been increasingly explored, making them an excellent choice for the design of func-
tional foods. When studying marine compounds, several aspects must be considered: extraction,
identification and quantification methods, purification steps, and processes to increase their stability.
Advanced green techniques have been used to extract these valuable compounds, and chromato-
graphic methods have been developed to identify and quantify them. However, apart from the
beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can
also accumulate undesirable toxic elements with potential health risks. Applying purification tech-
niques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring
healthy and safer products for commercialization. Furthermore, limitations such as stability and
bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation
and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here
we summarize recent advances in all steps of marine products identification and purification and
highlight selected human applications, including food and feed applications, cosmetic, human health,
and fertilizers, among others.

Keywords: seaweeds; purification methods; biological activities; analytical methods

1. Introduction

Macroalgae or seaweeds are a diverse group of multicellular photosynthetic organisms
distributed worldwide in marine environments [1]. They are commonly classified into
three taxonomic groups according to their chemical structure and pigmentation, namely
brown algae (Ochrophyta), green algae (Chlorophyta) and red algae (Rhodophyta) [2].

Despite representing an abundant resource, the growing demand for these organisms
and the concern regarding the impact of climate change on seaweed abundance, distribu-
tion, and quality, create the need to invest in algae cultivation and production strategies [3].
For these reasons, the farming of seaweeds has expanded rapidly, and in 2015, the global
seaweed production totalled 30.4 million tons, with the naturally growing seaweed sector
responsible for 1.1. million tons and the farmed sector for 29.4 million tons [4]. The three
leading producers are China, Indonesia, and the Philippines, besides being the ones that
cultivate the widest variety of seaweed species [3,5].

The most valuable cultivated seaweeds are Saccharina japonica (J.E. Areschoug) C.E.
Lane, C. Mayes, Druehl & G.W. Saunders, Undaria pinnatifida (Harvey) Suringar, Sargas-
sum fusiforme (Harvey) Setchell, Porphyra sp., Euchema sp., Kappaphycus alvarezii (Doty)

Foods 2021, 10, 3100. https://doi.org/10.3390/foods10123100 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-0924-9681
https://orcid.org/0000-0002-1761-117X
https://orcid.org/0000-0002-3924-776X
https://doi.org/10.3390/foods10123100
https://doi.org/10.3390/foods10123100
https://doi.org/10.3390/foods10123100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10123100
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10123100?type=check_update&version=1


Foods 2021, 10, 3100 2 of 32

L.M.Liao, Gracilaria sp., Enteromorpha clathrata (Roth) Greville, Monostroma nitidum Wit-
trock, and Caulerpa sp. [4], differing in the purpose of its production to the diverse
intended applications.

Seaweed compounds have been used as gelling, thickening, and emulsifying agents in
a wide variety of food products. Nowadays, marine algae are also identified as a source of
biologically active compounds with beneficial effects on health, which amount is sensitive
to changes in growing conditions such as water temperature, salt content, nutrients, and
light [6].

Besides, seaweeds also contain a rich source of structurally diversified primary and
secondary metabolites such as peptides, lectins, carotenoids, polysaccharides, fatty acids,
flavonoids, and phytosterols, with great potential for application in both food, cosmetic and
pharmacological industries, distinguishing themselves notably from terrestrial plants [7].
These compounds are responsible for many bioactivities, from antioxidant, antiviral, anti-
fungal, antibacterial to antiproliferative, anti-inflammatory, adipogenesis, antidiabetic and
neuroprotective [8].

Therefore, this review aims to critically discuss the most applied purification processes
and analytical methodologies available to characterize seaweed bioactive compounds as
well as summarize the most promising human applications for seaweed raw materials and
extracts (Figure 1).
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2. Macroalgae as a Source of Biologically Active Compounds

Over the past decades, seaweeds’ nutritional value and health-promoting effects have
been intensively studied due to the anti-inflammatory and antioxidant functions in diverse
diseases, such as cancer, atherosclerosis, skin abnormalities, and neurodegeneration [7].

Besides their common use as gelling, thickening, emulsifying, and preserving ingredi-
ents in various food products [9]; nowadays, marine algae gained a tremendous interest as a
source of bioactive compounds beyond all the food applications and the widely recognized
good source of iodine [10].

It has been shown that seaweeds produce biologically active compounds against UV
radiation, stress, and herbivores [6]. These compounds such as polysaccharides, phenols,
carotenoids, phytosterols, proteins, bioactive peptides, omega-3 fatty acids, and tocopherols
exhibit nutritional and health-promoting effects. Table 1 presents the proximate composi-
tion and the average content of total phenolic, carotenoid, tocopherol and phytosterol in
green, red and brown seaweeds.
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Table 1. Proximate composition and total phenolic, total carotenoid, total tocopherol and total phytosterol contents
of Seaweeds.

Class of Compounds Green Seaweeds Red Seaweeds Brown Seaweeds References

Polysaccharides (%, dw) 29.8–65 18–74 12.2–68 [11–14]
Proteins (%, dw) 4–44 6–50 1–24 [11–15]
Total lipids (%, dw) 0.2–4.1 0.12–3.8 0.3–4.5 [11,14,15]
Saturated fatty acids (% of total
fatty acids) 23.5–77 25.5–85.7 15.8–50 [11,14]

Mono-unsaturated fatty acids (% of total
fatty acids) 12.2–38.8 1.0–35.7 10.1–36 [11,14]

Poly-unsaturated fatty acids (% of total
fatty acid) 6.6–39 9.1–68 17.8–70.9 [11,14]

Phenolic compounds (TPC, mg GAE/g
dried extract) 1.26–50.0 1.05–38.08 0.26–397.23 [16]

Carotenoids (µg/g dw) 1.41–298.87 0.29–202.91 3.40–7.51 [17,18]
Phytosterols (µg/g dw) 1700–2100 186–337 662–2443 [19–21]
Tocopherols (µg/g dw) 19.70–35 14.25–500 3.63–450 [14,15]

dw—dry weight.

2.1. Polysaccharides

Polysaccharide properties from the marine environment, such as anticoagulant, anti-
tumour, cancer preventive, antimicrobial, anti-inflammatory, and antioxidant, make them
prospective healthy compounds with an extensive scope of applications [22]. Besides
this, polysaccharides like agar, carrageenans and alginate produced by algae impart func-
tional value to food. Furthermore, these polysaccharides can provide physical stability to
emulsion systems due to their structure and physicochemical features dependent on the
organism that produces them [6].

Agar is a dried amorphous gelatinous substance composed of a mixture of agarose
and agaropectin [23], extracted distinctively from the genera Gelidium, Gracilaria, Gelidiella,
Pterocladia, Pterocladiella, and Ahnfeltiopsis [24–26].

Likewise, carrageenans are water-soluble linear sulfated polysaccharides synthesized
by species of red seaweeds [27]. It is a high-molecular-weight polysaccharide consisting of
repeating galactose structures and 3,6 anhydrogalactose units, joined by alternating α-1–3
and β-1–4 glycosidic linkages [28]. The sulfate groups define the carrageenans by their
number and position on repeating galactose units [26].

There are three major commercial classes of carrageenans, namely, iota, kappa, and
lambda, that differ structurally and in their gelling properties, and thus in their uses [5,28].
Both kappa and iota carrageenan form gel with K and Ca salts [5]. Kappa forms a more
robust, rigid, and elastic gel with K salts, while Ca produces a brittle and stiff gel form [28].
This type of carrageenan produces the strongest gels among all classes, although presenting
the liability of being most susceptible to synaeresis (bleeding of liquid). However, bleeding
can be reduced by blending iota and lambda carrageenans with the kappa type and adding
locust bean gum [5]. Iota forms elastic gels with Ca salts more strongly than with K
salts, being the first ones soft, resilient, virtually free of bleeding and with the peculiar
characteristic of thixotropic flow, meaning that stirring the gel makes it flow like a thick
liquid, but if left standing it will gradually return to its original state [5]. Lambda is
non-gelling, creating high viscosity solutions [5].

Alginates are anionic linear polysaccharides extracted from cell walls of brown sea-
weed, comprised of mannuronic and glucuronic acid units, responsible for the flexibility
of the seaweed [5,28]. Brown seaweeds genera primarily used to isolate alginates are
Ascophyllum, Ecklonia, Laminaria, Lessonia, Macrocystis, and Sargassum [27].

Alginate composition varies from seaweed to seaweed [5]. For this reason, there
are an extensive range of alginates with differing viscosities that can also be affected by
extraction conditions, lowering it if conditions are too severe [5]. Generally, stronger gels
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are produced with glucuronic acid-rich alginates [5]. The most stable type is Na alginate,
and the less stable is alginic acid [25].

Other major polysaccharides produced by seaweeds comprises fucoidan (sulfated
polysaccharides) (Figure 2) and laminarans (non-sulfated polysaccharide) in brown algae,
and ulvan in green algae [6,7,22]. Studies revealed that these compounds exhibit promising
in vitro antioxidant activity, radical scavenging, and metal-chelating abilities [22]. However,
the antioxidant activity of seaweeds polysaccharides is highly connected to their structural
characteristics like the degree of sulfating, relative molecular mass, type of the dominant
sugar, and glycosidic branching [9].
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Fucoidan, from the homo- and heteropolysaccharides families, shows evidence of neu-
roprotective, antitumor, antiviral, and anticoagulant activities [7]. In this context, this bioac-
tive compound has been shown to normalize the levels of some of the enzymes involved in
Alzheimer’s disease [7], suggesting a therapeutic potential of fucoidans. Also, investiga-
tions have revealed that fucoidan use has reduced behavioural deficits, increased striatal
dopamine and its metabolites levels, and reduced cell death, contributing to neuroprotec-
tion and enhancement of brain health, ameliorating neuron conditions often challenged by
various toxic materials [29].

Generally, polysaccharides like fucoidan, phorphyran, furcellaran, and laminarin are
extracted by applying acidic solvents or water and posteriorly precipitated to separate
alginates using calcium chloride [6].

2.2. Polyphenols

Polyphenols are a class of natural organic compounds composed of multiples aromatic
rings bonded directly to one or more hydroxyl groups. Polyphenols could be divided into
several classes like flavonoids and tannic acid [30].

Polyphenols in algae are phlorotannins, such as phloroglucinol (1,3,5-trihydroxy ben-
zene), bromophenols, phenolic acids, tannins, and flavonoids [6,7,29]. The high presence
of phenolic compounds in algae is closely associated with antioxidants, reactive oxygen
species (ROS) scavenging, and other biological activities [9]. These compounds play a
critical function in cell defence against abiotic and biotic stress in algae, while in mammals,
they act as free radical scavengers, reducing agents and metal chelators, and therefore
successfully inhibiting lipid oxidation [9,31].

Phloroglucinol, abundant in the brown alga Ecklonia cava Kjellman was found to
attenuate Aβ- induced ROS accumulation [7]. In addition, this natural compound revealed
its potential action as an antioxidant by reducing Aβ- induced dendritic spine reduction
and attenuating cognitive impairment [7].

There are phlorotannins associated with this compound, polymers of phloroglucinol
units, classified according to the linkage nature between the monomers [6,22]. Charac-
terized by diverse and abundant natural polyphenols, they are secondary metabolites
exclusive to seaweeds [22]. Generally, localized in the physodes, they predominate, espe-
cially in brown algae (Figure 3) [6]. Molecular weights of these bioactive compounds vary
from 0.126 to 650 kDa [22], and its content can go from 1 to 14% in different macroalgae [6].
Phlorotannins present several bioactivities such as antioxidant, antiproliferative, antibi-
otic, antidiabetic, anti-HIV, antiallergic, antineuroinflammatory and anti-inflammatory
properties [6,29].
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Le Jolis.

Another interesting class of bioactive phenols is bromophenols (BPs), commonly
present in red algae [29]. Vidalols A and B are BPs that exhibit anti-inflammatory prop-
erties, shown by the potential ability to inhibit bee venom-derived phospholipase A2
(PLA2) activity [29]. PLA2 modulates the release of arachidonic acid and the generation of
eicosanoids, potent inflammatory mediators [32]. Thus, strict regulation of PLA2 activity
in the brain is vital since an instability of this well-balanced system induces oxidative stress
and neuroinflammation, which may cause several neurological diseases [29]. Thus, these
compounds reveal potential use as inhibitors of neuroinflammation.

In addition, dieckol, also a phlorotannin, scavenges ROS production in murine mi-
croglia (BV-2) cells, acting against neuroinflammation as well as other phlorotannins such
as eckol, 7-phloroeckol, phlorofucofuroeckol A, and dioxinodehydroeckol [9,29].

As expected, the extraction methods profoundly affect seaweed extracts’ total phenolic
content and antioxidant activity [6]. Although there is no exclusive and defined protocol
for extracting phenolic compounds from algae, the most used method is solvent extraction,
using both high polar and non-polar solvents [33]. For example, for phlorotannins, the
traditional method uses ethanol or methanol as solvent, which requires further purification
by high-pressure liquid chromatography or silica gel chromatography and characterization
by nuclear magnetic resonance (NMR) techniques [6].

2.3. Carotenoids

Carotenoids are lipophilic pigments synthesized by photosynthetic bacteria, plants,
fungi, and algae [34]. They consist of eight isoprenoid units joined to form a conjugated
π system in the carotenoid skeleton, the conjugated polyene structure responsible for the
typical colour of each carotenoid [35].

β-carotene, lutein, violaxanthin, neoxanthin, and zeaxanthin are found mainly in
green algae, while red algae contain mainly α- and β-carotene, lutein, and zeaxanthin, and
finally brown algae exhibit β-carotene, violaxanthin, and fucoxanthin [6].

These pigments have been of great interest due to their protective role against photoox-
idation in the abovementioned algae classes [22]. Furthermore, they reveal their importance
in promoting human health and preventing chronic diseases due to their pro-vitamin A
activity and antioxidant properties [35].

The human body cannot produce most of these substances independently, so they
must be obtained through a diet rich in carotenoids, like fruit and vegetables [36]. In
addition, they are an important antioxidant in seaweeds, demonstrating strong radical
scavenging activity [9], which makes algae-derived carotenoids useful against oxidative
stress-induced diseases [29]. However, studies indicated that carotenoids’ antioxidant
activities depend on structure, location or site of action, and potential interaction with
another antioxidant, concentration, and partial oxygen pressure [9].

Among the carotenoids, β-carotene is considered one of the most important antioxi-
dants. However, fucoxanthin, majorly present in brown seaweeds, is particularly interested
due to its ability to modulate central nervous system-related processes [7]. Fucoxanthin,
represented in Figure 4, is a xanthophyll with an unusual allenic bond and 5,6-monoepoxide
in its molecule [22]. The ability to absorb light efficiently makes fucoxanthin an accessory
pigment in the photosynthetic process [22]. This marine carotenoid shows antioxidant,
anticancer, anti-obesity, antidiabetic, and antiphotoaging activity [6]. Besides the antiox-
idant activity, fucoxanthin reduces Aβ plaque formation and, together with β-carotene,
prevents ROS formation indicating a potential role for fucoxanthin in treating Alzheimer’s
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disease [7]. Moreover, anti-inflammatory properties have been found in carotenoids, such
as inhibiting the inflammatory response in macrophages [7].
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Commonly, pigments from plant sources are extracted via solvent extraction using
hexane as a non-polar solvent [6] and solid-phase extraction (SPE) using methanol [22].
Nevertheless, new and efficient technologies for extraction purposes have been applied,
such as extraction using vegetable oils, supercritical fluid extraction, and pressurized liquid
extraction [6].

2.4. Phytosterols

Phytosterols are naturally occurring steroid alcohols found in plants and seaweeds,
similar to cholesterol, but with extra ethyl or methyl group in the side chain [37]. Phytos-
terols comprise plant sterols and stanols, a saturated form of plant sterols (Figure 5) [38].

Foods 2021, 10, x FOR PEER REVIEW 6 of 33 
 

The human body cannot produce most of these substances independently, so they 

must be obtained through a diet rich in carotenoids, like fruit and vegetables [36]. In ad-

dition, they are an important antioxidant in seaweeds, demonstrating strong radical scav-

enging activity [9], which makes algae-derived carotenoids useful against oxidative stress-

induced diseases [29]. However, studies indicated that carotenoids’ antioxidant activities 

depend on structure, location or site of action, and potential interaction with another an-

tioxidant, concentration, and partial oxygen pressure [9]. 

Among the carotenoids, β-carotene is considered one of the most important antioxi-

dants. However, fucoxanthin, majorly present in brown seaweeds, is particularly inter-

ested due to its ability to modulate central nervous system-related processes [7]. Fucoxan-

thin, represented in Figure 4, is a xanthophyll with an unusual allenic bond and 5,6-mo-

noepoxide in its molecule [22]. The ability to absorb light efficiently makes fucoxanthin an 

accessory pigment in the photosynthetic process [22]. This marine carotenoid shows anti-

oxidant, anticancer, anti-obesity, antidiabetic, and antiphotoaging activity [6]. Besides the 

antioxidant activity, fucoxanthin reduces Aβ plaque formation and, together with β-caro-

tene, prevents ROS formation indicating a potential role for fucoxanthin in treating Alz-

heimer’s disease [7]. Moreover, anti-inflammatory properties have been found in carote-

noids, such as inhibiting the inflammatory response in macrophages [7]. 

 

Figure 4. Chemical structure of fucoxanthin. 

Commonly, pigments from plant sources are extracted via solvent extraction using 

hexane as a non-polar solvent [6] and solid-phase extraction (SPE) using methanol [22]. 

Nevertheless, new and efficient technologies for extraction purposes have been applied, 

such as extraction using vegetable oils, supercritical fluid extraction, and pressurized liq-

uid extraction [6]. 

2.4. Phytosterols 

Phytosterols are naturally occurring steroid alcohols found in plants and seaweeds, 

similar to cholesterol, but with extra ethyl or methyl group in the side chain [37]. Phytoster-

ols comprise plant sterols and stanols, a saturated form of plant sterols (Figure 5) [38]. 

 

Figure 5. Schematic structure of the steroid skeleton. 

Since the body does not synthesize sterols, they must be ingested daily [37]. They can 

be found in many vegetable-based food sources, mainly in vegetable oils, nuts and cereals, 

but commercial products enriched in these bioactive compounds include seed oils like 

Figure 5. Schematic structure of the steroid skeleton.

Since the body does not synthesize sterols, they must be ingested daily [37]. They can
be found in many vegetable-based food sources, mainly in vegetable oils, nuts and cereals,
but commercial products enriched in these bioactive compounds include seed oils like
corn, soybean, rapeseed oil and yogurts, milk, spreads, and margarine [38,39]. Phytosterol
application in food products as esters is primarily due to improving their solubility [37].

To date, phytosterols have been proven to reduce cholesterol absorption and lower
plasma low-density lipoprotein [38,40]. Although, according to the World Health Organiza-
tion, high cholesterol levels are considered as a risk factor for ischemic heart diseases [41],
phytosterols, in addition to promoting heart health, by reducing the risk of cardiovascular
diseases, also have strong anticancer [42] and antioxidant activities [40]. The most represen-
tatives are campesterol, stigmasterol, and β- sitosterol, the latter the most common plant
sterol [39].

Interestingly, mainly brown seaweeds are enriched in fucosterol and saringosterol [7].
These bioactive compounds could permeate the brain-blood barrier and accumulate in the
central nervous system, where they may, therefore, exert their neuroprotective effects [7].

The seaweed-derived sitosterol possesses neuroprotective potential through an anti-
inflammatory effect and reducing Aβ plaque formation [7].

The phytosterol saringosterol also showed antineuroinflammatory functions reducing
Aβ plaque formation, increasing Aβ clearance, and counteracting memory deficits, which
can potentially overcome neurodegeneration [7].

The most common marine macroalgae sterol, fucosterol, possesses several biological
properties, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, anti-obesity,
and regulating cholesterol levels [43]. Relatively to antioxidant activity, it increased the
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activities of some crucial antioxidant enzymes while decreasing the serum transaminase
activities [44].

Moreover, fucosterol also inhibits cholinesterases, prevents the formation of Aβ pep-
tides, among other effects suggesting that fucosterol can attenuate aging-associated cogni-
tive decline [7,44].

These non-polar compounds are extracted, preferably using Soxhlet Extraction, among
the conventional techniques from natural matrices. Various non-conventional techniques
have been extensively used, and preferentially SFE. However, Soxhlet extraction is still
considered a reference to newly developed methods [45].

2.5. Amino Acids, Bioactive Peptides and Proteins

Amino acids like histidine, leucine, isoleucine, valine, taurine and mycosporine are
present in various seaweeds, exhibiting potential biological activity as antioxidants [6].
The most abundant amino acids were glutamic and aspartic acids in most species, while
methionine content was lower in most of the species [46]. Bioactive peptides are low molec-
ular weight protein fragments of 2 to 30 amino acid residues that display health-promoting
effects after being released from their original protein during gastrointestinal digestion
and through fermentation, enzymatic hydrolysis, and food processing [47,48]. These in-
clude antidiabetic [49], antihypertensive, antioxidant, antithrombotic, antimicrobial, and
immunomodulatory properties [46].

The marine bioactive peptides biological activity depends on their chemical struc-
ture [46], composition, and amino acid sequence [49]. These differences could also be
attributed to biotic and abiotic factors that affect the seaweed composition and structural
modifications of the molecules during extraction and purification processes [46]. Products
commercially available in Japan, containing seaweed-derived bioactive peptides such as a
U. pinnatifida-derived peptide (YNKL), and a Porphyra yezoensis Ueda (=Neopyropia yezoensis
(Ueda) L.-E.Yang & J.Brodie) derived peptide (AKYSL), claim to have antihypertensive
properties [50]. Seaweed-derived bioactive peptides usually are obtained after protein ex-
traction, fractionation, isolation, and concentration [50]. The obtained fractions can be used
as substrates to prepare the bioactive peptides. Seaweeds phycobiliproteins and lectins
are reported to be the most important proteins to supply peptides with various bioactive
properties [50]. Enzymatic hydrolysis of Porphyra dioica J.Brodie & L.M.Irvine originated a
protein hydrolysate with antioxidant, DPPIV and ACE inhibitory activities [51], while an
Ulva lactuca L. hydrolysate presented ACE and renin inhibitory activities [52]. The bioactive
properties of seaweeds derived-peptides and protein hydrolysates such as in vitro antioxi-
dant, anti-inflammatory, anti-acetylcholinesterase, cardioprotective (renin inhibition, ACE
inhibition), immunosuppressive, dipeptidyl peptidaseIV (DPP-IV) inhibitory, α-amylase
inhibitory, tyrosinase inhibitory, in vitro antiproliferative, DNA damage protective effects,
and antihypertensive effects have been recently reviewed in the literature [46,50,53,54].

Seaweed protein content differs from species to species, being generally lower in
brown seaweeds than green or red seaweeds [6,46].

Moreover, different classes of proteins are considered good choices for generating
biologically active peptides, emphasising lectins [46]. Lectins are carbohydrate-binding
proteins that mediate bacteria, viruses, fungi, tumour cells, and erythrocytes attachment
and binding [46]. In addition, they are known to play important roles in immunological ap-
plications and agricultural and therapeutic areas due to their antitumor, antiviral, and dele-
terious effect on microorganisms [55]. Lectins obtained from the green seaweed Caulerpa cu-
pressoides (Vahl) C.Agardh, the red seaweeds Pterocladiella capillacea (S.G.Gmelin) Santelices
& Hommersand, Hypnea cervicornis J.Agardh or Solieria filiformis (Kützing) Gabrielson [56]
were reported to present anti-inflammatory effects in the paw edema model in mice. Lectins
from the red seaweed Bryothamnion triquetrum have shown biological activities such as
antinociceptive, vasorelaxant effects and anti-inflammatory activity [56]. Lectins from
red seaweeds have also been recently connected with potential antiviral activity against
influenza and herpes virus, HIV-1 in vitro, SARS-CoV-2 and other coronaviruses [57–59].
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Besides, the antioxidant peptides usually present in animal muscle, carnosine and
glutathione, have been found in some seaweed species [43], reinforcing the possibility of
using seaweed-derived proteins to generate antioxidant hydrolysates and peptides.

Traditionally, aqueous and alkaline extraction, in addition to polysaccharide-aided
extraction, are the usual methods used to extract macroalga proteins [6].

2.6. Omega-3 Fatty Acids

Omega-3 fatty acids are long-chain polyunsaturated fatty acids (PUFAs), also known
as omega-3 or n-3 fatty acids, characterized by a double bond at the third carbon atom from
the methyl end in their chemical structure [43]. They are essential constituents of animal
lipid metabolism, playing an essential role in the human diet and physiology.

PUFAs are essential nutrients, which cannot, or only to a limited extent, be synthesized
by mammals. Therefore, they must be obtained through diet [60]. The two main PUFA
classes are omega-3 (n-3) and omega-6 (n-6), provided by fish or plant sources and vegetable
oils, respectively [60].

Omega 3-fatty acids, mainly eicosapentaenoic and docosahexaenoic acids, present
beneficial effects on dyslipidemia [43] and perform a role in diminishing cardiovascular
risks [6]. Eicosapentaenoic and docosahexaenoic acids are mainly found in fish oil, which
composition is mainly related to the fish diet consisting of marine algae and phytoplank-
ton [60]. Fatty acids content in seaweeds is dependent on the harvest season, habitat and
genetics [61]. Brown and red seaweeds usually contain higher amounts of PUFAs when
compared with green macroalgae. This is because they present more beneficial omega-
6/omega-3 and PUFA/saturated fatty acid ratios for human health [43]. Van Ginneken
et al. [60] determined the PUFA content of several seaweeds (U. lactuca, Chondrus crispus
Stackhouse, Laminaria hyperborea (Gunnerus) Foslie, Fucus serratus L., U. pinnatifida, Palmaria
palmata (L.) F.Weber & D.Mohr, A. nodosum, Caulerpa taxifolia (M.Vahl) C.Agardh, Sargassum
natans (L.) Gaillon). Palmitic acid (C16:0) was present in all species at relatively high
amount. The lowest absolute value was measured in C. crispus (2.7 mg/g dw, 19% of total
FA) and the highest absolute value in F. serratus (7.3 mg/g dw, 19% of total FA). The n-9
FAs were between 3% (P. palmata) and 56% (A. nodosum). The n-3 PUFA α-linolenic acid
(C18:3) had the highest concentration in U. lactuca (4.5 mg/g dw, 20% of total FA) and
the n-3 PUFA eicosapentaenoic acid (EPA, C20:5) was the most abundant FA in P. palmata
(8.3 mg/g dw, 59% of total FA). Concerning the n6:n3 PUFA ratio, while P. palmata and C.
taxifolia showed the lowest values (0.05 and 0.11), A. nodosum and F. serratus recorded the
highest ones (2.75 and 2.44). Nonetheless, all the reported values are below 10, which is the
threshold recommended by WHO for n-6:n-3 ratio to prevent inflammatory, cardiovascular
and nervous system disorders [60,62].

Omega-3 fatty acids exhibit positive effects on the central nervous system for devel-
oping the brain, retinal, and neural tissues in fetuses and young children [6] and anti-
inflammatory potential [43]. Therefore, it is of utmost importance to maintain the balance
of n-3 and n-6 in the diet, given the beneficial effects on human health [60]. Omega-3 fatty
acids exhibit anti-inflammatory and antioxidant activity, which may contribute to their
beneficial cardiac effects and the prevention of breast cancer [43,60]. Conversely, primarily
n-6 fatty acids are pro-inflammatory and tumour growth promotors [60].

Currently, it has become clear that eicosapentaenoic and docosahexaenoic acids are
major components of brain cells and crucial for proper development and functioning
of the brain and the nervous system, besides their action in preventing cardiovascular
diseases [60].

Conventional extraction of fatty acids includes chloroform solvent extraction, but
recently extraction technologies such as supercritical fluid extraction and ultrasound have
been employed to extract these bioactive compounds [6].
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2.7. Tocopherols

Tocopherols are fat-soluble compounds consisting of 8 different homologs with a
chromanol ring with a phytol chain [63]. This group of fat-soluble compounds with activity
similar to vitamin E, is widely known for its antioxidant activity [64].

Tocopherols have four isomers, α-, β-, γ-, and δ-tocopherol (Figure 6), that differ in
the degrees of methylation on the chromanol ring, with α being trimethylated, β and γ

being dimethylated in different positions and δ being monomethylated [63].
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Tocopherol is synthesized only in photosynthetic organisms, which means animals
obtained this antioxidant through diet [63]. Vegetable oils, including soybean, sunflower,
almond oil, and peanuts, asparagus, tomatoes, and carrots, are rich in tocopherol [64].
Some animal fats also contain lower amounts of tocopherol [64], because as mentioned
before, they ingest it from primary sources, like plants. This group of organic chemical com-
pounds is frequently used by the food industry, owing to their efficient radical scavenging
activity [22].

Brown algae present high contents of α-, β-, γ- and δ-tocopherol, while red and green
algae contained only low levels of α-tocopherol. In general, brown algae were shown to
contain higher levels of tocopherols than green and red algae [1].

The in vivo effect of different isomers of tocopherol and tocotrienol is debatable. Ac-
cording to Azzi [65] only RRR-α-tocopherol demonstrated beneficial effects in patients
with inherited vitamin E deficiency, the so-called ataxia with vitamin E deficiency (AVED).
In addition, some clinical trials have shown a significant reducing effect of α-tocopherol
supplementation on serum concentrations of C-reactive protein and interleukin-6, high-
lighting its anti-inflammatory activity. In contrast, others did not find any significant effect,
being the effect observed related to the vitamin E concentration tested [66]. On the other
hand, Miyazawa et al. [67] referred that all vitamin E isomers exert in vivo effects, although
to a different extent. All isomers are preferentially released into the bloodstream due to the
presence of α-tocopherol transfer protein (α-TTP) in the liver, with the following relative
affinities of 100% for α-tocopherol, 38% for β-tocopherol, 12% for α-tocotrienol, 11% for
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SRR-α-tocopherol, 9% for γ-tocopherol, 2% for δ-tocopherol, 2% for α-tocopherol acetate
and 2% for α-tocopherol quinone. The vitamin E isomers unbound to α-TTP are then
metabolized by phase I metabolism (catabolism and side-chain shortening), and phase II
metabolism (sulfation and glucuronidation) and the resulting metabolites are then excreted
from the body via feces and urine. The low affinity of some isomers for α-TTP is reflected
in their different distribution patterns, with α-tocopherol being found in different organs
while the other isomers, for example, α-tocotrienol, are tissue-specific. Indeed, it is thought
that because of its poor affinity with α-TTP, tocotrienol is unlikely to be liberated from
the liver into the bloodstream, but instead of via the lymphatic system reaching only
some tissues. Taken together, and because of the extensive distribution of α-tocopherol
compared with the other tocopherols and tocotrienols, current data seems to indicate
that the antioxidant and anti-inflammatory effects of vitamin E are mainly attributed to
α-tocopherol [67].

The extraction of these lipidic compounds is efficiently carried out using chloro-
form:methanol as a solvent mixture [22].

3. Seaweed Extracts: Purification Techniques

The consumption of algae is beneficial for health, but unprocessed marine algae can
present potential health risks due to toxic elements [7]. Seaweeds may be contaminated
by high iodine content and potentially toxic elements (Cd, Hg, and Pb), restraining the
market expansion [1,4]. In addition, the regular consumption of wild seaweeds may lead
to the risk of toxicity in humans, and high iodine status can impair thyroid function [68].
Consequently, the extraction of bioactive compounds instead of the direct use of algae is a
way that may prevent excessive ingestion of heavy metals, which can be mutagenic and
carcinogenic to humans [69].

The purification of the extracts isolating the bioactive or nutritional components from
seaweeds may mitigate ingestion of excessive toxic components, ensuring healthy and safe
products for commercialization [69,70].

Purification techniques enhance and enrich the extracts with a mixture of compounds
of interest with selective and desirable amounts [71]. The most frequent applied purification
methods are membrane filtration and chromatographic techniques like ion-exchange, size
exclusion, and affinity chromatography (Figure 7) [72].
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3.1. Membrane Filtration

The membrane filtration principle is to purify molecular compounds based on the
molecular weight of the target compounds [73]. This technique is based on the membrane’s
selective permeability in allowing the substances of interest to pass through the membrane,
while the unwanted compounds are generally retained in it [74]. Dialysis of the sample
mixture placed in a membrane with ranging molecular weight cut off is a step described to
effectively remove salts and contaminants from the extracts [71].

The use of membranes with ranging molecular weight cut off has been reported for
purifying fucoidan and laminarin from brown seaweeds [71,73].

This technique presents several advantages that contribute to its extensive application
in several fields: high efficiency, simple equipment, easy operation and low energy con-
sumption [74], as well as the fact that it is suitable for scale industrial purification processes
due to automated setup and ability to separate large volumes of solutions [73].
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Membrane-based techniques’ greatest problem is membrane fouling, which leads
to low performance and resolution, high energy inputs, and frequent replacement of
membranes [71,73]. Zhu et al. [75] extracted pigments such as chlorophyls and carotenoids
from U. pinnatifida using ultrasound-assisted extraction and recovered the pigments from
the extract using 5 kDa and 10 kDa ultra-filtration membranes. One of the objectives was
to study the membrane fouling mechanism and the threshold flux during filtration. These
authors reported that the 10 kDa membrane was permeable to most pigments, while in the
5 kDa some pigments were partially retained. They also concluded that the cake layer was
the most responsible for the fouling resistance during filtration [75].

Despite being an inevitable disadvantage of these techniques, fouling can potentially
be overcome with tangential flow filtration, a combination of sequential ultrafiltration and
diafiltration with decreased membranes with ranging molecular weight cut off [71].

3.2. Ion-Exchange Chromatography

Ion-exchange chromatography (IEC) is a broadly applied form of column chromatogra-
phy used to separate charged molecules in a wideness of research, analysis, and industrial-
scale purification processes [76].

The separating principle consists of the adsorption of charged molecules onto immobi-
lized ion exchange groups of opposite charge and later elution of the sample by changing
the pH or concentration of the running buffer [71,73].

Conjugating the high efficiency and resolution to the large sample handling capacity,
cheap maintenance, and automation, IEC is the most frequently used chromatographic-
liquid technique for purification purposes [71,73].

Polysaccharides, proteins, amino acids, and nucleotides are commonly purified using
this technique [71]. For polysaccharide purification, anion-exchange chromatography is the
most suitable method since fucoidan, the most available brown seaweed polysaccharide,
exhibits high anionic charges due to sulfate ester groups linked into the carbohydrate
backbone [73]. Ermakova et al. [77] isolated fucoidans from brown seaweeds E. cava, Sar-
gassum horneri (Turner) C.Agardh, and Costaria costata (C.Agardh) De A.Saunders using
ion-exchange chromatography. Anion exchange chromatography is commonly used to
separate alginates and sulphated polysaccharides such as fucoidan and carrageenan [46].
On the other hand, because proteins have the particularity of possessing both negative and
positive charges that varies according to the pH, the two ion-exchange chromatography
types can be applied [76]. Phycoerythrins were isolated from aqueous extracts using a
diethylaminoethyl column chromatography from Ceramium isogonum Harvey and Polysipho-
nia urceolata (Lightfoot ex Dillwyn) Greville, while a Q-Sepharose column chromatography
was used to purity Portieria hornemannii extracts [78].

3.3. Affinity Chromatography

Affinity chromatography is based on the reversible interaction between the molecules
and a specific ligand coupled to a chromatography matrix that presents specific affinity [73].
This interaction can occur between enzyme and substrate, antigen and antibody, receptors,
and proteins due to ionic, hydrophobic, hydrogen and disulfide bond linkage, enabling the
purification of these biological compounds [71].

In protein purification, immobilized dyes are used (dye-affinity chromatography)
to specifically bind different proteins [73]. When applying this purification technique to
polysaccharides like fucoidan, the process is based on the binding ability of fucose to lectin,
resulting in a specific interaction that effectively purifies fucoidan from crude extracts [71].
This technique was used to isolate fucoidan from Fucus vesiculosus L. extracts [79]. However,
the sulfate content of the polysaccharide can interrupt the binding of fucose subunits by
interacting with lectin, affecting the efficiency of the purification process [73]. Fucoidan
from brown seaweeds has been highly purified using a new dye-affinity chromatography
method based on modified amino-derived sepabeads with toluidine blue [80].
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3.4. Size Exclusion Chromatography

Size exclusion chromatography (SEC) is a partition chromatography that separates
molecules according to their size, influenced by molecular weight and structure [81].

This method uses a physically, chemically stable, and inert porous matrix without
interactions with the injected sample components [82]. Thus, as the sample travels through
the column, molecules smaller than the pores can go through the pore of the matrix and
be immobilized in the resin, while larger compounds cannot fit into the beads and are
excluded from entering the pores [83]. For this reason, solutes varying in size will gradually
become separated while travelling through the column, being the smaller ones eluted last
from the column, and larger solutes will emerge first since they can only pass through the
spaces between resin beads travelling a shorter distance overall [82,83].

SEC is a quick, reproducible, economical, and simple separation mechanism that
preserves the desired compounds’ molecular structure and biological activity. Therefore,
it is commonly applied to purify large macromolecular compounds like polysaccharides,
proteins, and others [71]. For example, according to their molecular weight, SEC can be
employed to purify laminarins and fucoidans of brown seaweed polysaccharides [73].
Furthermore, this technique helps to purify and desalt compounds with higher salt concen-
trations [71].

4. Identification, Characterization, and Quantification of the Bioactive Compounds
from Seaweeds Extracts

The wide range of bioactive compounds present in the algae extracts creates the need
for purification techniques to facilitate the target compounds’ identification, characteriza-
tion, and quantification. However, the biochemical analysis of algae extracts is, in practice,
more challenging compared to materials from terrestrial plants due to the lack of reliable,
standardized analytical protocols for the analysis of algae molecules [84].

In this context, several chromatographic techniques coupled with different suit-
able detectors such as UV-vis detector, photodiode array, mass spectrometer and nu-
clear magnetic resonance (NMR) spectrometer as well as non-chromatographic Fourier-
transform infrared spectroscopy (FTIR) [84,85] have been studied to determine and identify
bioactive compounds.

Chromatographic techniques have been widely employed to identify several com-
pounds from seaweeds. The most used and available in the research laboratories are HPLC
with UV and DAD detectors, while MS detection might not be as widely available due
to its highest cost. Although most HPLC separations are carried out using UV detection,
due to its poor limit of detection (LOD), the resulting HPLC method can be unsuitable for
determining the analytes present in small amounts in the sample [86]. With UV and DAD
detectors, besides having a lower detection limit than MS detectors, the identification of
the compounds in a sample is based on the comparison of retention time and spectra of
the available standards [87]. More recently, HPLC coupled with MS or MS/MS detection
allows for identifying and elucidating the compounds detected. The MS detector measures
ions’ mass-to-charge ratio, allowing the ions to be sorted based on their mass. When using
two mass spectrometers in MS/MS, molecules with a particular mass-to-charge ratio can
be chosen to undergo further analysis by fragmenting the ion. The mass spectrum of the
sample can be used to assess the concentration of compounds, find the mass of impurities
and give insight into chemical structures. The highest limitation to this technique is the
lack of standards (for phlorotannins, for instance) and reliable libraries for comparison [87].
When coupled to MS, HPLC is used to study high and low molecular weight compounds
and their distributions in an extract. However, specialised equipment such as MALDI-ToF
and HRMS is usually required to detect larger molecules such as proteins and phlorotan-
nins. However, these types of equipment are usually not readily available and are very
expensive [87].
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HPLC coupled to NMR spectroscopy has also been used to identify structures of
unknown complex molecules, with the advantage of being a non-destructive technique [84].
NMR is the most uniform detection method and allows for the unambiguous identification
of compounds, although it presents relatively low sensitivity compared with MS [84].
However, NMR spectroscopy is the most effective method to elucidate the linkage position
and isomeric forms of a compound. The ratio of linkages present in a complex matrix such
as seaweed can be assessed using 13C-NMR spectral data, and besides, when using this
technique, it is not necessary to perform a purification step [87]. In the future, linking the
structures of compounds obtained by NMR spectroscopy to HPLC retention times and UV
spectral data would be extremely useful for researchers.

4.1. Thin-Layer Chromatography

Thin-layer chromatography (TLC) is a relatively rapid, inexpensive, and straight-
forward process that allows the identification of the presence of a specific compound in
a mixture when the Rf of an unknown compound is compared with the Rf of a known
compound [85].

Identical molecules will invariably travel the equivalent distance under similar con-
ditions. However, molecules that travel the same distance are not necessarily the same
compound [88].

TLC is a highly sensitive method for analysing phytoconstituents compounds, whose
application is limited due to the ease with which microorganisms grow on the surfaces
of the TLC plate [85]. In addition, the complete removal of residual low volatile solvents
and the transfer of the active compounds from the stationary phase into the agar layer
by diffusion are problems that affect the efficiency of the method [85]. TLC coupled with
appropriate detectors is an efficient analytical methodology that identifies and isolates
phenolic compounds like phlorotannins [89] and sulfated polysaccharides [90]. TLC silica
gel coated plates and the developing solvent (n-hexane: acetone) in a ratio of 7:3 were used
for screening the presence of fucoxanthin in the extracts of five brown seaweeds: Sargassum
wightii Greville in J.Agardh, Sargassum ilicifolium (Turner) C.Agardh, Sargassum longifolium
(Turner) C.Agardh, Padina sp. and Turbinaria sp. [91].

4.2. High-Performance Liquid Chromatography

High-performance liquid chromatography (HPLC) is a modern, robust, and popu-
larly used separation method, which is also used for identification, quantification and
fingerprinting of compounds from a crude mixture [92].

LC-MS is an exact and robust method usually used to characterise peptide sequences,
although it is time-consuming and high cost [93]. Therefore, these combinations allow rapid
and accurate identification of chemical compounds, especially when a pure standard is
unavailable [85]. LC-MS is used to quantify compounds such as flavonoids and tannins [94]
and non-volatile molecules like betaines [95] in seaweeds.

HPLC-DAD was employed for the identification and estimation of β-carotene, fu-
coidan, dieckol [84], polyphenols [96,97], including phlorotannins [87], other carotenoids,
tocopherols [94] and fucoxantin [98,99].

4.3. Gas Chromatography—Mass Spectrometry (GC-MS)

Gas chromatography coupled with mass spectrometry (GC-MS) is another hyphen-
ated technique that allows the identification and quantification of a variety of volatile
compounds and semi-volatile [100].

This technique combines the greatest separation power from chromatography with
the specificity and sensitivity of a mass spectrometer, which can provide detailed structural
information on most compounds, being a good approach for characterization and quantifi-
cation of an organic analyte [101]. GC-MS separates different compounds in the sample
based on their volatility by flowing an inert gaseous mobile phase, moving the sample
through a stationary phase placed in the column [100]. Then, posteriorly, the compounds
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are identified and quantified by the mass spectrometer according to their mass-to-charge
ratio (m/z) [100].

The major limitation of this technique is that the compounds must be sufficiently
volatile to be transferred from the liquid phase to the mobile gas, thereby eluting from the
analytical column to the detector [102]. For this reason, in some cases, volatile forms of
the analytes must be produced by chemical derivatization [102]. However, unlike LC-MS,
GC-MS allows an easy match with compounds in the National Institute of Standards and
Technology database due to the stronger ionization energy that leads to many fragment
ions [84]. GC-MS is used for the identification of sugars and lipophilic compounds like
fatty acids and sterols [84], tocopherols, flavonoids and anthocyanins [94] and volatile
organic compounds [103] from seaweeds.

4.4. Tandem Mass Spectrometry

Tandem mass spectrometry (MS/MS) is a technique for structural characterization and
compound identification that uses two or more different types of mass analyzers arranged
sequentially in tandem to enhance analysis through collision-induced dissociation [104].
MS-MS is a two-step method where firstly, the separation of a predetermined set of m/z
ions from the ion source and consequent fragmentation by chemical reaction and secondly,
mass spectra are produced for the fragments and used for structural characterization of the
selected ion [101,105].

This technique is characterized by its high selectivity and specificity, low consumable
cost, ability to measure very low concentrations of analytes, and ability to measure multiple
analytes in a single method [102].

MS-MS is the leading technique for the determination of peptides and other biomolecules [106],
is used to quantitatively and qualitatively study arsenosugars [84,107] and phlorotannins
from seaweeds [84].

4.5. Fourier Transform Infrared Spectroscopy

Fourier-transform infrared spectroscopy (FTIR) is a powerful technique for identifying
and characterising compounds in detecting functional groups present in a mixture of plant
extracts [85]. This technique is based on the vibrations of atoms in a molecule [108], and
it can be used for a wide range of materials as a qualitative or quantitative analysis [109].
The peaks in the infrared spectrum represent the excitation of vibrational modes of the
molecules and thus are associated with the chemical bonds and functional groups. In
contrast, the absorbance of a molecular vibration represents the amount of infrared energy
absorbed by a compound, and it is proportional to its concentration [110]. FTIR device has
largely replaced the old dual beam unit due to their better spectral resolution, faster data
collection and improved signal-to-noise ratio [111].

This method is a well-established tool for protein structural characterization [112], is
also used to characterize polysaccharides from marine algae-like fucoidan, carrageenan
and alginic acid [113] and phenolic compounds [114].

5. Applications of Seaweeds and Their Extracts for Human Use

For the applications of seaweeds and their extract for human use, first is necessary to
assess potential contamination and toxicity problems. Despite that, working with natural
compounds presents some other problems, such as stability and bioavailability problems,
chemical degradation reactions during storage, and sensitivity to oxidation and photo-
oxidation, that need to be overcome, for example, with nanoencapsulation techniques [115].
Encapsulation can be achieved by encasing bioactive compounds in solid, liquid, or gaseous
states in matrices, released under a controlled rate [116]. Nanocarrier systems can be
valuable ways to improve the delivery of biologically active compounds [115]. Many
of these compounds are poorly soluble in aqueous systems, which is another problem
that can be solved using nanoencapsulation [116]. The mixture of the extract itself or
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the nanoencapsulated ones, with different matrices, facilitates its application in several
industries [116].

Fucoxanthin is a major carotenoid pigment that occurs in the chloroplasts of brown
seaweeds. Although the exact benefits in human health of this natural molecule, when used
as a food constituent, is not determined, fucoxanthin has been studied clinically for its an-
tioxidant properties, anticancer, antidiabetic, antiobesity, anticholesterol, anti-inflammatory,
antiangiogenic, antimalarial, and antihypertensive activities [117]. However, the charac-
teristic insolubility, pH instability, sensitivity to oxidation, and impaired bioavailability of
fucoxanthin limit its potential beneficial actions when incorporated in food products [117].
This obstacle can be overcome with several approaches that include microemulsions and
nanoencapsulation. The use of microemulsions composed of a water phase, lipid phase,
and an amphiphilic compound to encapsulate fucoxanthin appears to increase its suitabil-
ity when incorporated into the hydrophilic matrix for food and pharmaceutical applica-
tions [118]. In addition, studies demonstrated an oil-in-water microemulsion’s efficiency
for the hydrophobic fucoxanthin delivery to aqueous food systems [117].

In another study, an increase in β-carotene bioaccessibility was related to decreasing
droplet size from small to large in an emulsion-based delivery system using corn oil-in-
water emulsions with different initial droplet diameters: large [119]. Polysaccharides can
be used in food emulsions to deliver oil-soluble flavor substances, functional oils, bioactive
peptides, polyphenols, carotenoids and probiotics, delaying lipid digestion, prolonging
satiety and improving target delivery [120]. Polysaccharides show better resistance to the
enzymatic and gastric acid environment. The environmental conditions (heat, pH, light,
oxygen) and physiological digestive conditions (pH, enzymes, intestinal barrier) are respon-
sible for the low absorption and bioavailability of bioactive components from foods [120].
The emulsion effectiveness as a delivery system is that it protects the encapsulated com-
ponents until the targeted location is reached. It was reported that polysaccharides, such
as chitosan, pectin, carrageenan, starch, alginate, and methylcellulose, have a potential
effect on the gastrointestinal fate of food emulsions [120]. In an in vitro study simulating
the human digestion, oil in water emulsions stabilized with polysaccharides from Ulva
fasciata Delile loaded with β-carotene, the oil droplet size increased after mouth-stomach
digestion stage. After the intestinal digestion stage, the size decreased attributed to the
catalysis by cholate and pancreatic enzymes [120]. Polysaccharides as emulsifiers have
the advantage that the produced oil droplets are relatively stable to changes in ionic
strength, pH, or temperature because they can act as thickeners to stabilize the emul-
sion and potentially influence the gastrointestinal fate of the encapsulated bioactive food
components. Polysaccharides alone can exhibit emulsification ability, but they usually
interact with other emulsifiers to synergistically improve the stability of emulsions [120].
Polysaccharide–polysaccharide, polysaccharide–surfactant or polysaccharide–protein in-
teraction can produce stable oil in water emulsions improving nutrient absorption being
this a potential advantage to the use of seaweeds as food, due to its richness in complex
polysaccharides and other components.

Additionally, encapsulation with nanogels was reported to significantly improve
fucoxanthin’s biological availability and stability [121]. Besides protecting the molecule
from degradation, encapsulation can also prevent reaction with other ingredients and
seaweed flavour or brown colour from immersing in food [122]. Still, when present under
the different conditions found in the human body, the instability of carotenoids makes it
difficult for these bioactive molecules to maintain their health benefits [123]. For this reason,
nanoencapsulation technology, besides protecting these molecules from severe conditions
and potential hydrolysis and oxidation, also increases the efficiency and bioavailability of
the bioactive nutraceutical ingredients because of their small size, easy penetration into the
cells and cell organelles, large surface area, and long-term stability [124,125]. Furthermore,
apart from carotenoids, carbohydrate content in seaweed is considerably high, especially as
polysaccharide fibres [126]. Therefore, these compounds present potential activities against
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cancer and virus, although their efficiency is low since the human body cannot take them
due to their large size and irregular shape [126].

5.1. Seaweeds as Human Food

For centuries, seaweeds have been traditionally used as a food source in many Asian
countries [5,127]. In contrast to this continent, their exploitation in Europe has been minimal
and mainly focused on the industrial production of gelling agents [1].

Nowadays, the consumption of seaweeds increased considerably in many more coun-
tries outside Asia [5,26]. As a result, these marine functional foods have been produced
and marketed, offering health benefits and the potential to reduce the risk of diseases [26].

Seaweeds have excellent dietary content, revealing relatively high protein levels, es-
sential amino acids, carbohydrates, lipids, polyphenols, pigments, and vitamins [1,127].
Among these properties, ranges in shape, colour, texture, and taste make seaweeds ap-
pealing as food [1]. They are also one of the richest sources of natural antioxidants and
antimicrobials [26], making macroalgae and their bioactive compounds food products more
functional as health-improving against different diseases and nutritionally appealing.

Marine algae can be served in its dried form, powered, or extracts added to different
food products such as meat, dairy, fish, or vegetable-based products, and it may play a
significant role in health status if consumed throughout life as part of the daily diet [26,127].
Some typical food applications of seaweeds are presented in Table 2. However, it should
be considered that the consumption of algae, especially in their whole form, can represent
harm to consumers by cause of possible toxicity from high iodine levels in seaweeds,
accumulation of arsenic and toxic elements, secondary metabolites as well as the presence
of pathogens and radioisotopes [128].

Table 2. Food applications of seaweeds compounds.

Seaweed Species Compounds Applications References

Gelidium sp, Gracilaria sp.,
Pterocladia sp., Gelidelia sp. Agar

Thickening and gelling properties (icing and
bakery glazes, liquid and soft-texture food
products, and edible films)

[23,24,26]

Turbinaria sp., Ascophyllum sp.,
Durvillaea sp., Ecklonia sp.,
Laminaria sp., Lessonia sp.,
Mucrocystis sp., Sargassum sp.

Alginate Restructured meat and vegetable products,
baked products, ice creams, frozen desserts [23,24,26]

C. crispus Carragenans
Gelling, emulsifying, thickening and stabilizing
properties (ice cream, yogurt, cheese, milk-based
products, bread, coating films)

[26]

L. digitata Laminarin and Fucoidan Increase lipid stability in pork meat products [129]

U. pinnatifida Fucoxanthin
Increase lipid stability in chicken products and
enhance redness and yellowness in ground
chicken breast meat

[130]

P. palmata Protein hydrolisate Functional (renin inhibition) bread with
potential positive heart effects [131]

H. elongata, U. pinnatifida,
P. umbilicalis PUFA

Seaweed addition increased n-3 PUFA but
decreased n-6/n-3 PUFA ratio in pork products.
Moreover, seaweeds conferred antioxidant
activity and increased amino acid levels.

[132]

F. vesiculosus Phlorotannins Increased antioxidant activity in fish products [133]

PUFA—polyunsaturated fatty acid.

The use of seaweeds extracts in the food industry is one of the most interesting
applications to improve nutritional properties [117].

A. nodosum and F. vesiculosus Linnaeus extracts have been incorporated as components
of yoghurts and milk, evidencing antioxidant functionality without compromising their
shelf-life characteristics and quality parameters [26,134].
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Likewise, fucoidan and laminarin polysaccharides isolated from a brown seaweed ap-
plied directly to minced pork, promoting preservation against food spoilage and pathogenic
microorganisms, and decreased lipid oxidation in the cooked patties a viable alternative to
reduce the use of chemical preservatives [134].

Additionally, dietary fibre composed of polysaccharides such as alginates, cellulose,
fucans, fucoidan and laminarins extracted from F. vesiculosus was added to horse mince,
promoting a potential antioxidant effect. This activity is due to the polysaccharides men-
tioned above and the presence of phenolic compounds (phloroglucinol and phlorotannins),
vitamin E, and carotenoids [117,134]. The phlorotannins present in F. vesiculosus were also
used to increase the antioxidant activity of fish products [133].

Macroalgae are also a source of extractable lipids, including PUFAs that may reveal
future applications as dietary products for their anti-inflammatory properties on obesity
and, consequently, in obesity-associated disorders [69].

The addition of seaweed extracts has been evaluated in addition to its application in
meat products (chicken and pork), in seafood, bakery, and dough products like bread, as an
opportunity to improve their nutritional and dietary goals as well textural and organoleptic
properties [26].

Despite their advantages, a considerable difficulty of incorporating seaweed extracts
in food products is the strong sensory impact on these functional products, which makes
their commercialization challenging [134]. However, added to their potential applications
as functional ingredients to increase the nutritional properties of food products, they can
be used to improve the textural and consistency properties of food products [26].

Algae are characterized by their high content of phycocolloids that varies among
different algal species from various taxonomic groups [25]. For instance, brown seaweeds
contain many alginates, while red algae contain agar and carrageenan [25,127]. These
polysaccharides are specially used as solidifying agents and gel-forming dietary supple-
ments [5,25].

About 90% of the extracted agar is applied in food products due to its ability to form
a gel with unique properties [24,25]. In this context, agar is used in the food production
process of various products like ice cream, meringue, fruit puddings, jams, juice, candies,
chocolates, and coffee [5,25,127]. In meat and fish products, it is used as a gelling agent, in
dairy products as a texture improver, in baked products such as cakes and bread, it is used
as a stabilizer and thickener [24]. Still, it can be used as a laxative, an appetite suppressant,
as fat replacers, cryoprotectants that preserve food during the freezing/thawing process,
and as edible films [23,26].

Many of these food applications take advantage of some properties of this polysaccha-
ride, such as the temperature at which it melts that is unusually high (85 ◦C) and unique to
agar when compared to gelatin gels (37 ◦C), which means in food applications, there is no
need to keep them refrigerated in hot climates [5]. In addition, the mouthfeel is different
from gelatin since they do not melt or dissolve in the mouth [5]. At the same time, agar has
no taste and smell, so it does not interfere with the sensory characteristics of food [25].

Carrageenans are the most produced gelling hydrocolloids derived from classes
of red algae like Rhodophyceae, Gigartinaceae, Hypneaceae, Solieriaceae, and Phyl-
lophoraceae [23,25]. Since carrageenans are non-toxic, biodegradable, and biocompatible,
increased interest in their abilities as gelling agents, stabilizers, emulsifiers, and thickeners
in the field of the food industry has been verified [25–27]. Furthermore, this polysaccha-
ride can bind water and improve palatability and appearance through interaction with
other substances in the food [23]. For this reason, they are commonly applied as a dietary
supplement in dairy products such as ice cream, yogurt, cheese, salad dressings, foams,
and milk-based products to improve texture, thickness, and solubility, acting also as a
stabilizer [23,26]. Likewise, carrageenans are successfully used to control discolouration,
maintain texture, increase shelf-life, and preserve products such as sliced lychee, bananas,
mangoes, and fresh meat and fish, by providing antibacterial protection coating [23,25,26].
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Although, it should be noted that, contrary to agar, it cannot be digested in the human
gastrointestinal tract [25].

Alginates are another class of algal polysaccharide commonly used in the food in-
dustry as thickeners, stabilizers, and emulsifiers [23,25]. Due to presenting properties like
high biocompatibility, non-toxicity, ability to retain water to form gels when mixed with
Ca ions, ability to increase the viscosity of aqueous solutions and ability to form films of
Na or Ca alginate and fibres of Ca alginates, about 30% of produced alginates every year
are intended for use in the food industry [25,27]. Another particularity of alginates is that,
contrary to agar, they do not melt at high temperatures and form cross-linked gels and the
fact they can maintain their properties for a long time at room temperature [25,26].

Alginate is mainly used as a potential ingredient and stabilizer in frozen foods and ice
creams and in reduced-fat products, where it stabilizes the mixtures and provides higher
viscosity, longer melting time, and better organoleptic properties [26,127]. In addition, it
acts as an emulsifier for many food products, being comprehensively used as additives
in instant drinks to keep food particles liquid in the mixture [27,127]. Alginate gels are
also used in several restructured food products, such as meats for human consumption
(chicken nuggets, roasts, meatloaves, and even steaks) and vegetable products and baked
products [5,26].

Calcium alginate films and coatings have been used to help preserve frozen fish
products by retarding the decay and improving shelf-life, improving the heat distribution
and thus shortening the cooking time of chicken nuggets, protecting the meat from bacterial
contamination and improving the sensory quality and reducing water-loss in a variety
of foods [5,26]. Besides, alginate can also be applied as a carrier for antibrowning agents
like citric and ascorbic acids, which preserve the colour of fresh fruits, with the added
advantage of improving their antioxidant potential [26]. Furthermore, it has been reported
that alginate can regulate appetite and, therefore, could be used as a supplement [26].

5.2. Seaweeds as Animal Feed

Seaweeds have been used as a part of the livestock diets since ancestral times and
can potentially improve animal production performance and health [135,136]. In addition,
they can build resistance to disease by guaranteeing a balanced micronutrients intake [127].
For instance, mastitis and cow fever may be decreased by the consumption of algae [127].
Some applications of seaweeds as animal feed are presented in Table 3.

Table 3. Feed applications of seaweeds.

Seaweed Species Compounds Applications References

Sargassum sp.,
Gracilaria sp.,
Gelidelia sp.,
Hypnea sp.

Minerals, amino acids,
carbohydrates Feed for fish and prawn culture [127]

A. nodosum (Tasco®)

Low protein content, high
mineral content and large
concentration of
phlorotannins

Feed for ruminants. Increase resistance to
stressors like mixing, livestock transportation,
exposure to food-borne toxins, excessive heat or
temperature; improvement of the immune
system; increased productivity and/or quality of
the animal (milk, meat, carcass grade, etc.); and
reduction of risk of pathogen infection

[135–138]

E. prolifera Mineral, polysaccharide and
carotenoid contents

Improved egg production and quality; improved
immune functions and intestinal microflora [139]

S. dentifolium UFA, PUFA,
carotenoid contents

Decreased yolk cholesterol, triglycerides and n-6
fatty acids and increased carotenoid content [140]

A. nodosum has been the primary raw material for seaweed meals for decades. It
contains essential amounts of elements (K, Na, and Cl), sulfated polysaccharides (fucoidan),
and vitamins [136,141] that are the main contribution to the nutritional value of seaweed
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in the diet of animals. They also improve the fat level, iodine content, yield milk, and
enhance animals’ fertility and birth rate and improve yolk colour in eggs [127]. The use
of Sargassum dentifolium (Turner) C.Agardh to feed laying hens, shows to decrease the
cholesterol content in the yolk, and to increase fatty acids, triglycerides and carotenoid
content in eggs and in the plasma [140]. Furthermore, studies demonstrate that A. nodosum
meal and its extracts can enhance immunity and antioxidative status in cattle, sheep,
and goats by increasing superoxide dismutase activity [142]. Also, these algae extracts
contain significant concentrations of phlorotannins that play a role in reducing ruminant
fermentation. The introduction of A. nodosum extracts in the feeding of steers promoted
a decrease in body temperature associated with fever caused by fescue toxicosis [143].
Furthermore, the presence of sodium chloride and potassium gluconate in A. nodosum
extracts is revealed to reinforce immunity, improve health status, and protect against
prolonged heat or transport-induced oxidative stress of the animals [141].

Tasco is an animal feed product manufactured with A. nodosum and its extracts, which
presents the particularity of retaining all the bioactive and small molecules of this macroalga
that play a predominant role in its efficiency when applied in animal rations [135]. It
contains representative amounts of diverse, complex carbohydrates and polysaccharides
such as alginic acid, fucoidans, mannitol, and laminarin [135]. Beneficial effects include
resistance to stressors [142], increased competency of the immune system [144], increased
productivity and/or quality of the animal [137], and a marketed reduction of pathogenic
microorganisms that may cause foodborne diseases [138].

Some algae like Gracilaria sp., Gelidiella sp., Hypnea sp., and Sargassum sp. are also
used to feed fish cultures [127]. Because of that, the enriched feed with minerals, amino
acids, and carbohydrates promotes the maintenance of water quality in aquaculture [127].
Besides, seaweeds can be used as a water disinfectant in aquaculture [127]. There is also
a market for fresh seaweed rich in protein as a feed for abalone, showing that growth is
greatly improved [5].

Besides the nutritional feeding properties, seaweeds derived compounds like alginate
is used as a binder that holds together food, preventing it from disintegrating or dissolving
in the water [5].

5.3. Other Human Applications of Seaweeds
5.3.1. Seaweeds as Pharmaceutics and Medicinal Products

Macroalgal constituents are about 35% in newly discovered chemicals for pharmaco-
logical and medicinal uses [145]. For centuries, seaweeds have been widely used as the
origin of effective nutritional supplements [127]. Apart from this support, they are also
used in therapeutics as antimicrobial, anti-viral, anti-fungal, antiallergic, anticoagulant,
anticancer, anti-fouling, antioxidant and neuroprotective activities [7,127,145,146]. Table 4
presents the main bioactivities of some seaweed species with potential and interesting
applications for the pharmaceutical and cosmetic industries.

The most notable algae species that showed anti-viral activities towards human infec-
tious diseases such as HIV, HSV type 1 and 2 and RSV, are Aghardhiella tenera (J.Agardh)
F.Schmitz and Nothogenia fastigiata (Bory) P.G.Parkinson, mainly due to the presence of sul-
fated polysaccharides [127,145,147–149]. In addition, other compounds like carrageenans,
fucoidans, and sulfated rhamnogalactans have been reported to present anti-viral prop-
erties by inhibiting the binding of the viral particle to the host cell. However, other
algal fractions have virucidal and inhibitory enzyme effects or slow down syncytium
formation [127,145,147–149]. Therefore, an anti-viral polysaccharide must have very low
cytotoxic activities towards mammalian cells, particularly polysaccharides of A. tenera and
N. fastigiata, which have this characteristic [145].

Macroalgae contain several compounds responsible for their antibiotic properties [145].
These interesting substances include fatty acids, bromophenols, tannins, phloroglucinol,
terpenoids, halogenated compounds such as haloforms, halogenated alkanes, alkenes,
alcohols, aldehydes, hydroquinones, and ketones [127,145].
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Table 4. Bioactivies of seaweeds with pharmaceutical and cosmetic applications.

Seaweed Species Biological Activities References

A. tenera and N. fastigiata Antiviral activity [147–149]

C. socialis, S. latifolium, U. flexuosa, P. antillarum, P.
boergeseni, U. reticulata, D. membranacea, U.
flexuosa, C. vagabunda, U. lactuca, G. multipartita,
C. glomerata, H. valentiae, Stigeoclonium sp.,
Ulothrix sp., Nitzschia sp., E. prolifera, U. rigida

Antibacterial effects [150–162]

Fucus sp., Stypopodium sp., S. muticum, U. fasciata,
Laminaria sp., Laurencia sp., I. okamurae,
Lithothamnion sp., P. dentata, C. barbata,
Lophocladia sp., A. nodosum, G. termistipitata, U.
intestinalis, U. pinnatifida

Anticancer activity [163]

U. fasciata, E. stolonifera, E. cava, E. maxima, E.
bicyclis, I. okamurae, A. nodosum, S. hystrix, S.
polycystum, P. boergesenii, P. tetrastromatica, F.
vesiculosus, T. conoides, S. japonica, U. pinnatifida,
P. pavonica

Antidiabetic effect [164,165]

H. valentiae, U. reticulata, E. stolonifera, I. okamurae,
B. bifurcata, E. cava, E. bicyclis Neuroprotective effects [9,166–169]

U. lactuca, D. salina, C. tomentosum, U. rigida, A.
nodosum, B. bifurcata, E. bicyclis, E. cava, E.
stolonifera, F. vesiculosus, C. crispus, Gelidium sp.,
Gracilaria sp.

Cosmetic applications
(including anti-moisture,
anti-ageing,
anti-inflammatory, whitening
effect, hair growth)

[170]

As seaweeds are very important reservoirs of new therapeutic compounds, some
extracts have also proved to be potential protective agents against cancer [127,163]. The
mechanisms in which cancer could be reduced or retarded include reducing cholesterol,
binding of biliary steroids, antioxygenic and toxic materials activity, induction of apopto-
sis, inhibition of cell adhesion, and addition of important trace minerals to the diet [127].
Several sulfated macroalgal polysaccharides like fucoidans are known to have anti-tumour,
anti-cancer, antimetastatic, and fibrinolytic properties, along with their capacity to reduce
cell proliferation [145]. The brown algae Fucus sp. is active against both colorectal and
breast cancers [127]. Also, chondriamide A shows cytotoxicity against human nasopharyn-
geal and colorectal cancer cells [145].

Moreover, algae are an excellent source of iodine that helps overcome Goitre disease,
a consequence of low iodine intake [127,170]. Vitamin deficits can also be prevented using
seaweed supplements in the diet [127].

Further, agar has been used for many years as a laxative, and alginic acid helps relieve
heartburn and acid indigestion [5].

Apart from bioactive activities, these compounds derived from macroalgae are applied
in the pharmaceutical industry and have functional ingredients. For example, sodium
alginate solutions are used in wound dressings due to their excellent wound healing and
hemostatic properties and the fact they can be absorbed by body fluids because the Ca in
the fibre is exchanged for Na from the body fluid, which also makes these dressings not
adhere to the wound [5]. Alginate is also used to deliver various drugs in a more controlled
and slowly way [5].

5.3.2. Seaweeds as Cosmetics

The cosmetic industry is persistently searching for new active compounds from
natural sources, which are more environmentally friendly, present fewer side effects, and
have a safer use [171]. For this reason, seaweeds are widely used on cosmetic products,
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particularly in the face, hand and body creams or lotions, but usually because of the
properties mentioned above of alginate or carrageenan (gel, thickener, and emulsifier) [5].

However, macroalgae can be attractive to the cosmetics industry for the hydrocolloids
and other reasons, namely the presence of bioactive compounds (phenolic compounds,
terpenoids and sulfur, and nitrogen derivatives), minerals, polysaccharides, proteins, and
lipids they can produce [172]. Some of these bioactivities important for the cosmetic
industry are presented in Table 4.

Many formulations use algae extracts, mainly from Fucus sp. or Laminaria sp., with
applications of interest for slimming and cellulite reduction purposes [170,172]. Their
exceptionally high iodine content justifies their presence in these products since iodine is
involved in thyroid metabolism. It is known that thyroid hormones promote lipolysis by
increasing the penetration of fatty acids in the mitochondria due to the increased synthesis
of carnitine palmitoyltransferase [172]. Even though the iodine amount depends on the
alga species and the harvest location, it should be noted that algae have the property of
concentrating the iodine from seawater. Since it is prohibited to use iodine in cosmetics, its
replacement by seaweeds is an advantage [172].

Some tested formulations containing aqueous extracts from different macroalgae
evidenced the ability to eliminate fats, synthesize pro-collagen I, and improve lipolysis-
related mechanisms, culminating in the final gold of reducing cellulite [170,172]. For
cellulite cases, compounds extracted from algae can stimulate tissue metabolism and blood
circulation in the application area, thereby helping to mobilize the fat accumulated in the
subcutaneous tissue [170]. Additionally, the body weight gain through the gene regulation
and protein expression involved in lipolysis and lipogenesis is significantly reduced,
highlighting the capacity of active ingredients from seaweeds to promote a weight-loss
effect [170].

Ageing is a normal process associated with oxidation causing changes in the skin,
like dryness, irregular texture, wrinkles, reduced elasticity, and volume, due to multiple
intrinsic, genetically programmed, and extrinsic factors, such as UV radiation and tox-
ins [170]. Some seaweeds attracted attention in the cosmetics industry because of their
ability to nourish and rehydrate the skin, being the algae frequently used in cosmetics
Laminaria sp., Fucus sp. (brown algae), and C. crispus (red alga) [170]. Several compounds
extracted from seaweeds like vitamins B, C, D, and E are considered valuable in various
skincare applications [171]. Algae are also rich in amino acids, especially serine, which are
of particular interest here, as are those extracts rich in PUFA [172]. Fatty acids enable the
reconstruction of the intercellular cement and thus reinforce the skin barrier, being linoleic
acid particularly effective in this field among all fatty acids [172]. This fatty acid has also
acted as an emollient that protects the skin from drying [171]. Products like seaweed paste
mixtures are used in massage creams, with the potential to restore elasticity and suppleness
to the skin [5].

Besides, some secondary metabolites of seaweeds have been demonstrated to be
skin protectors by exhibiting activity to reduce ROS caused by UV radiation, prevent-
ing wrinkles, and delaying skin ageing [170,171]. Moreover, the topical application of
fucoidan has been reported to possess anti-ageing properties by increasing cells hydration
and elasticity [170]. Furthermore, molecules like eckol and dieckol have already proven
to be metalloproteinase inhibitors [172]. Metalloproteinases are responsible for wrinkle
formation in the skin [172], the reason why its inhibition is of extreme interest. Also,
some carotenoids from seaweeds, such as astaxanthin with exceptional antioxidant prop-
erties much more significant than α-tocopherol, can be applied in the field of anti-ageing
cosmetics [172].

Hair loss is a frequent problem with an increasing impact nowadays, related to
different causes, including ageing, induced pathologies, or chemically promoted [170].
In this sense, many studies have focused on finding compounds capable of preventing
or delaying hair loss and stimulating its growth [170]. For example, extracts of E. cava
were reported to enhance the proliferation activity of hair follicles cells and to promote
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hair-shaft growth [173]. The hair-growth-promoting activity is likely derived from the
dioxinodehydroeckol, a phlorotannin identified in E. cava [173]. Moreover, dieckol and
7-phloroeckol, also isolated from E. cava, were proven to cause capillary growth-inducing
dermal papilla cell proliferation and inhibit 5 α-reductase enzyme activity [170].

Skin lightening products [172] are usually formulated using tyrosine inhibitors such
as kojic acid or arbutin, being the first one suspected of possessing mutagenic activity
and the second one to cause toxicological problems [172]. For this reason, the search for
natural, non-toxic, and active skin whitening ingredients as tyrosinase inhibitors from
seaweeds is of great interest [171]. Melanin, the pigment responsible for skin colour, is
synthesized by tyrosinase. Sun exposure induces abnormal melanin synthesis, resulting in
skin pigmentation [171]. Seaweed extracts of Endarachne binghamiae J. Agardh, Schizymenia
dubyi (Chauvin ex Duby) J. Agardh, E. cava, Sargassum siliquastrum (Mertens ex Turner)
C.Agardh and Ecklonia stolonifera Okamura have already shown potential for tyrosinase
inhibition activity [171,172]. The carotenoid fucoxanthin exhibits tyrosinase inhibition
activity when the subject is treated orally or topically, being this effect related to its an-
tioxidant activity [171,172]. Likewise, the phlorotannin dieckol and the polysaccharide
fucoidan demonstrated a promising tyrosinase inhibitor effect [171]. To summarize, the
whitening properties of the derived algae cosmetics are based on their capability to inhibit
melanin synthesis, decrease tyrosinase activity, control melanogenesis, and protect the
dermal matrix against proteases, free radicals, and UVA/UVB radiations [172].

Wound healing is a regeneration process of the damaged tissues to fill the wound
gap followed by dermal and epidermal cells proliferation and migration and matrix syn-
thesis [174]. However, wound healing drugs are mostly unavailable, pricey, and present
several adverse effects [175]. In this context, the search for potential wound healing com-
pounds from diverse natural sources like seaweeds has been widely explored, not only
because they are safe, medically effective, low cost, and good tolerance by patients, but
mainly because of all bioactive substances compounds they produce [176]. Evidence sug-
gests that bioactive compounds extracted from S. ilicifolium stimulate accelerated wound
healing by promoting cellular proliferation and migration of fibroblasts [174]. Several other
reports affirm the ability of phlorotannins like dieckol and eckol to repair skin damages
from various allergens by attenuating the expression of MMP-1 (interstitial collagenase
behind the degradation of dermal collagen in skin ageing process) in human dermal
fibroblasts [170]. Fucoidans also present interesting potential effects in the growth of
fibroblasts and epithelial cells, accelerating wound healing and modulating the growth
factor-dependent pathways in tissue repair [170]. Therefore, fucoidan is employed in
hydrogel cosmetics to enhance skin burns lesions effectively [177]. Along with this polysac-
charide, carrageenans were also reported to improve significantly wound healing and hair
growth [178].

5.3.3. Other Applications of Seaweeds

Seaweeds have a broad range of applications, including crop fertilization, fuel pro-
duction and wastewater treatment [127]. Table 5 shows some of these applications and the
seaweeds used for these porpuses.

Table 5. Other applications of seaweeds.

Seaweed Species Application References

Laminaria sp., Ascophyllum sp., Sargassum sp. Fertilizer [127]
M. pyrifera, Laminaria sp., Gracilaria sp. and
Sargassums sp.

Biomass for fuel (methane
production) [5,127]

Sargassum sp., Laminaria sp. and Ecklonia sp.,
Ulva sp. and Enteromorpha sp.

Wastewater treatment
(accumulation of toxic metals) [127]



Foods 2021, 10, 3100 23 of 32

Seaweeds as Fertilizers

Seaweeds are used as general manure by coastal people throughout the world, espe-
cially the large brown seaweeds [5].

In this context, seaweed and seaweed extracts are rich in compounds that may be ben-
eficial to plant growth and development, such as macro and micronutrients, trace elements
(Fe, Cu, Zn, Co, Mo, Mn, Ni), vitamins, amino acids, and phytohormones (auxin, cytokinin,
gibberellins, phenylacetic acid), that makes macroalgae an excellent fertilizer [127,179,180].
Furthermore, benefic effects after using these natural extracts on the growth and yield of
plants, seed germination, tolerance to environmental stress, resistance to fungal disease
and insect pests, enhanced antioxidant properties, and increased nutrient uptake from soil
have been reported [181,182].

A notable advantage of using seaweeds like species of Laminaria, Ascophyllum, and
Sargassum genera as manure is their biodegradability, non-toxicity, non-polluting, and
non-hazardous nature to living beings [127]. In addition, alginic acid can be an interesting
soil conditioner, and like laminarin, could reduce the severity of soil-borne fungal diseases
considerably [181].

Whapham et al. [183] applied an alkaline extract from A. nodosum to the soil or the
foliage of tomato plants, leading to the production of leaves with higher chlorophyll levels
than control plants. The chlorophyll content was increased probably because of a reduction
in chlorophyll degradation, which might be caused partly by betaines in the seaweed
extract [183]. Moreover, during storage conditions, glycine betaine delays the loss of
photosynthesis activity by inhibiting chlorophyll degradation in isolated chloroplasts [184].

In general, the presence of Mg and Fe in seaweed extracts revealed a potential in-
fluence in chlorophyll synthesis in plant metabolism by enhancing this photosynthetic
pigment [184].

Seaweeds as Biomass for Fuel

The use of the unexploited biomass of macroalgae to produce biogas is a practice in
most developed countries [127]. The most common algae for this purpose is Macrocystis
pyrifera (Linnaeus) C.Agardh, because of its high growth rate and facility of mechanical
harvesting [5]. Although other species of the genera Laminaria, Gracilaria, and Sargassum are
also being investigated to determine their ability to be converted to methane by anaerobic
fermentation [5]. Thus, it was verified that Sargassum sp. gave a small gas yield, especially
when compared to M. pyrifera that presents good gas yields. However, dependent on the
mannitol and alginate contents [5]. The relationship between these compounds and the
methane yields is that the greater the content of mannitol more gas is produced [5]. On the
opposite hand, for Gracilaria sp., the methane yield is closely related to the carbohydrate
content and sometimes the protein content likewise [5].

Seaweeds as Wastewater Treatment

Seaweeds are explored mainly for their potential use to remove toxic elements from
industrial wastewater and reduce nitrogen, phosphorus-containing compounds, sewage
and some agricultural wastes before releasing these treated waters into rivers or oceans [5].

Seaweeds can take up high nitrogen concentrations and store more phosphorus than
they require for maximum growth in their tissue, acting as a biofilter between wastewater
and the pollutants [5,185]. Intertidal and estuarine species are the most tolerant, especially
green seaweeds from Enteromorpha and Monostroma genera [127].

Concerning heavy metals, seaweeds can also reduce or remove their content from
wastewaters [185]. However, heavy metals pose a danger to both the environment and liv-
ing organisms, as they are toxic and carcinogenic, even at residual concentrations, with the
particularity of being non-biodegradable and quickly accumulate in living organisms [185].

Cu, Ni, Pb, Zn, Cd, Cr, As, and Hg are the main alarming potentially toxic elements
derived from industrial wastewater [127]. The absorption process as a treatment method
for toxic elements decontamination appears to be more economical, practical, simple, and
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versatile when compared with others [185]. In this perspective, seaweed meets these criteria
as it can absorb these toxic compounds to varying extents depending on the seaweed type
and metal ion concentration [5]. The different cell wall composition between the red,
green, and brown algae is the main reason for the variance in their affinity for metal
biosorption [185]. Brown seaweeds such as Sargassum sp., Laminaria sp. and Ecklonia sp.,
and the green Ulva sp. and Enteromorpha sp. have been more efficient in accumulating toxic
metals [127].

New approaches using algae extracts, instead of the commonly used whole seaweed
or seaweed powders as adsorbents, were tested for the treatment of wastewater [186].
In general, the extracts effectively and drastically reduced compounds, including total
dissolved solids, hardness, chloride, sulfate, and chromium from the effluent. Thus, this
method for treating effluent appears to be an effective and economical treatment that
may reduce harmful compounds present in polluted waters, with a potential application
comparable to other techniques in the market [186].

6. Conclusions and Future Trends

Seaweeds are a valuable unexplored source of bioactive compounds that include
vitamins, phenols, polysaccharides, proteins, carotenoids, and lipids, with a broad range
of biological activities, ranging from anti-tumour, antimicrobial, and anti-ageing to anti-
inflammatory, antioxidant and neuroprotective activity.

The incorporation of seaweeds or isolates of seaweeds, especially in the food, cosmetic,
and pharmaceutical industries, reveals a promising potential for developing functional
products, which can have a beneficial influence on human health. Although we have
discussed the potential application of the main classes of compounds present in seaweeds,
we cannot forget that, when the raw seaweed or a seaweed extract is incorporated in a
food, pharmaceutical, or cosmetic product, the observed beneficial effect may be due to the
synergistic interaction of different compounds.

Regarding the field of the food industry, the incorporation of algae extracts into the
food systems demonstrates not only to improve the textural characteristics due to the
action, especially of the hydrocolloids characteristic of these marine species, but also the
organoleptic, nutritional and health characteristics of the final products. However, the
sensorial impact these can bring to the final product is one of the most challenging problems
for the commercialization of algae-based food products. It should also be noted that the
effects of these products depend on the species of algae used since their constitution in
bioactive compounds varies from species to species and the concentration used in the
formulation of these products.

Nevertheless, seaweed consumption must be associated with an awareness of its
potential risks to human health due to the possible presence of toxic contaminants such as
heavy metals and their excessive iodine content. For this reason, the application of green
extraction and purification processes of compounds from the complex seaweed matrix is a
valid and logical strategy to avoid these health-related issues and to create added-value
functional products due to the presence of a large variety of novel bioactive components
with potential activities against several human diseases.
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