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ABSTRACT

Background The combination of monalizumab (anti-
NKG2A/CD94) and durvalumab (anti-programmed death
ligand-1) may promote antitumor immunity by targeting
innate and adaptive immunity. This phase 1/2 study of
monalizumab and durvalumab evaluated safety, antitumor
activity, and pharmacodynamics in patients with advanced
solid tumors.

Main body Immunotherapy-naive patients aged >18
years with advanced disease, Eastern Cooperative
Oncology Group performance status of 0-1, and 1-3

prior lines of systemic therapy in the recurrent/metastatic
setting were enrolled. In part 1 (dose escalation), patients
received durvalumab 1500 mg every 4 weeks (Q4W) with
increasing doses of monalizumab Q2W/Q4W (n=15). Dose
expansion in part 1 included patients with cervical cancer
(n=15; durvalumab 1500 mg Q4W and monalizumab

750 mg Q2W) or metastatic microsatellite stable (MSS)-
colorectal cancer (CRC) (n=15; durvalumab 1500 mg

Q4W and monalizumab 750 mg Q4W). In part 2 (dose
expansion), patients with MSS-CRC (n=40), non-small

cell lung cancer (NSCLC; n=20), MSS-endometrial cancer
(n=40), or ovarian cancer (n=40) received durvalumab
1500 mg Q4W and monalizumab 750 mg Q2W. The primary
endpoint was safety. Secondary endpoints included
antitumor activity per Response Evaluation Criteria In Solid
Tumors version 1.1 (RECIST v1.1). Exploratory analyses
included assessment of T-cell and natural killer (NK) cell
activation and proliferation in peripheral blood and the
tumor microenvironment (TME). The study enrolled 185
patients (part 1, 45; part 2, 140). No dose-limiting toxicities
were observed and the maximum tolerated dose was not
reached. In part 2, the most common treatment-related
adverse events were fatigue (12.1%), asthenia (9.3%),
diarrhea (9.3%), pruritus (7.9%), and pyrexia (7.1%). In
the expansion cohorts, response rates were 0% (cervical),
7.7% (MSS-CRC), 10% (NSCLC), 5.4% (ovarian), and 0%
(MSS-endometrial). Sustained NK cell activation, CD8" T-
cell proliferation, increased serum levels of CXCL10 (C-X-C
motif chemokine ligand 10) and CXCL11, and increased
tumor infiltration of CD8* and granzyme B* cells were
observed.

Conclusions Although efficacy was modest, monalizumab
plus durvalumab was well tolerated and encouraging
immune activation was observed in the peripheral blood
and TME.

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Blockade of immune checkpoint pathways using
monoclonal antibodies has substantially improved
treatment outcomes for a range of malignancies.

= In addition to T cells, natural killer (NK) cells are
effector lymphocytes of innate immunity that can
exert antitumor effector functions.

WHAT THIS STUDY ADDS

= Highlights the potential clinical utility of combining
therapies that block the non-redundant NK group-2
member-A/human leukocyte antigen E and pro-
grammed cell death protein 1/programmed death li-
gand-1 pathways to enhance the immune response
of NK and CD8" T cells in the tumor microenviron-
ment (TME).

= Provides evidence for immune activation following
combination treatment in the peripheral blood and
the TME.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= The results of this study support the exploration of
combinatorial treatment approaches that enhance
both the innate and adaptive immune responses.

Trial registration number NCT02671435.

INTRODUCTION

Multiple signaling molecules that regulate
innate and adaptive immunity play critical
roles in maintaining an immunosuppressive
state in the tumor microenvironment (TME).!
A major mechanism for promoting the immu-
nosuppressive state involves the upregulation
of immune checkpoint pathways, such as cyto-
toxic Tlymphocyte-antigen 4 (CTLA-4) and
programmed cell death (ligand)-1 (PD-(L)1).2
A blockade of these pathways using mono-
clonal antibodies enables the release of effector
T cells and has substantially improved treat-
ment outcomes for a range of malignancies.” *
Treatment combinations with other modalities,
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such as chemotherapy and targeted therapies, have further
broadened the clinical benefit for many patients.* Progress
has also been made in identifying predictive biomarkers to
characterize patient subsets most likely to respond to specific
therapies, allowing a more individualized and targeted
approach to treatment.” > However, only a small proportion
of patients treated with checkpoint inhibitors develop long-
term remission and disease control, highlighting the under-
lying complexity of the host immune response and TME.

Inaddition to T cells, natural killer (NK) cellsare effector
lymphocytes of innate immunity that also exert antitumor
effector functions but do not require immune priming.’
A subset of NK cells expresses programmed cell death
protein 1 (PD-1) and CTLA-4, as well as other immune
checkpoint molecules such as NK group-2 member-A
(NKG2A), killer cell immunoglobulin-like receptors,
and leukocyte immunoglobulin-like receptors.' ®? These
molecular features of NK cells allow the opportunity for
dual checkpoint pathway inhibition and the simultaneous
targeting of innate and adaptive immunity via T cells and
NK cells. Combinations of checkpoint blockades could be
further augmented by modulating NK-specific immune
checkpoints and enhancing antibody-dependent cellular
cytotoxicity.' ' ' Preclinical studies have shown that
NKG2A is often coexpressed with PD-1 on CD8" T cells."?
In murine lymphoma models, the combined blockade
of PD-1/PD-L1 and NKG2A/HLA class I histocompati-
bility antigen, alpha-chain E (HLA-E) pathways resulted
in durable antitumor CD8' Twcell responses.”> There-
fore, combining inhibition of the NKG2A/HLA-E and
PD-1/PD-L1 pathways may improve antitumor efficacy by
enhancing activation of both NK and cytotoxic T lympho-
cytes (CTLs) in the TME via non-redundant comple-
mentary mechanisms (online supplemental figure 1). To
test this hypothesis in a clinical setting, we evaluated the
combination treatment with durvalumab, an approved
anti-PD-L1 antibody, and monalizumab, an antibody that
inhibits NKG2A.

Monalizumab is a humanized IgG4 antibody with a
high affinity and specificity for the inhibitory checkpoint
receptor NKG2A/CD94." This receptor is expressed on
cytotoxic lymphocytes present in the peripheral blood
and the TME (NK cells, NK-T cells, and CTLs)." Elevated
expression of NKG2A/CD94 by tumor-infiltrating NK cells
is associated with decreased cytotoxic potential."*'® This
decrease in cytotoxic potential is mediated by the binding
of the NKG2A/CDY94 ligand HLA-E, which is overex-
pressed in a variety of solid tumors, including colorectal
cancer (CRC), non-small cell lung cancer (NSCLC),
ovarian, cervical, endometrial, and prostate cancers.!?!
Disruption of NKG2A/CD94 binding by monalizumab
suppresses inhibitory signaling by tumors on both NK cells
and T cells."”” There are several ongoing clinical trials of
monalizumab in combination with durvalumab (online
supplemental table 1).

The study presented here is a first combination in
human, phase 1/2 dose-escalation and dose-expansion
study of monalizumab plus durvalumab in patients with

advanced solid tumors. The study consisted of three
parts: dose escalation and expansion in patients with
advanced solid tumors (part 1); dose expansion in select
advanced solid tumors (part 2); and dose exploration in
combination with standard-of-care therapies in patients
with microsatellite stable (MSS) CRC (part 3). This
manuscript reports the safety and efficacy results of the
dose-escalation and dose-expansion cohorts (part 1) and
expansion cohorts (part 2) in patients with MSS-CRC,
NSCLC, MSS-endometrial cancer, cervical cancer, and
ovarian cancer. Patients with these malignancies were
selected based on the high unmet clinical need and
elevated HLA-E expression in these tumor types. The
exploratory analysis of pharmacodynamic biomarker
assessments in the peripheral blood and tumor tissue are
also presented.

METHODS

Study design and treatment

This was a multicenter, open label, phase 1/2 study of
monalizumab in combination with durvalumab that
enrolled patients with advanced solid tumors between
February 22, 2016 and April 26, 2019. Patients were
enrolled across 60 study sites globally.

For part 1 (dose escalation), sequential cohorts of three
patients received durvalumab (1500mg every 4 weeks
(Q4W)) in combination with monalizumab at one of four
planned dose levels, via intravenous infusion over approx-
imately 60 min (22.5mg, 75mg, 225mg, 750mg every 2
weeks (Q2W)) or an alternative treatment schedule of
750mg Q4W. Additionally, for part 1 (dose expansion),
15 patients with cervical cancer received durvalumab
1500mg Q4W and monalizumab 750mg Q2W and 15
patients with  MSS-CRC received durvalumab 1500 mg
Q4W and monalizumab 750mg Q4W (online supple-
mental figure 2). A modified toxicity probability interval
algorithm using a simple beta-binomial Bayesian model**
determined a target dose-limiting toxicity (DLT) rate of
>33% and an equivalence interval of 25%-35% for dose-
escalation/de-escalation decisions, as well as maximum
tolerated dose (MTD) determination. A dose level was
considered unsafe, with no additional patients enrolled,
if it had an estimated 95% or greater probability of
exceeding the target DLT rate of 233% with at least three
patients treated at that dose level. The combination of
monalizumab 750mg Q2W and durvalumab 1500 mg
Q4W was considered safe by the dose-escalation
committee (comprising the sponsor medical monitor and
all participating investigators who enrolled patients) and
was used in the dose expansion.

For part 2 dose expansion, 40 patients were enrolled
in each of the MSS-CRC, ovarian cancer, and MSS-
endometrial cancer cohorts. Twenty patients were
enrolled in the NSCLC cohort. On dosing days when
both monalizumab and durvalumab were adminis-
tered, durvalumab was administered first followed by
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monalizumab starting 15-30 min after the completion of
the durvalumab infusion.

Study treatment continued until unacceptable toxicity,
documentation of confirmed progressive disease, or
documentation of patient withdrawal for up to 3 years.

Patient and public involvement

Although patients made important contributions to this
research as study participants, patients and members
of the public were not involved with the research study
design, recruitment, or conduct of the study presented
in this manuscript. Further, they are not involved in the
dissemination of study results.

Patients

Patients were eligible if they were aged >18 years and had
histological documentation of advanced, recurrent, or
metastatic MSS-CRC, NSCLC, MSS-endometrial cancer,
high-grade serous epithelial ovarian cancer (including
fallopian tubal carcinoma and peritoneal carcinoma),
cervical cancer (adenocarcinoma or squamous cell carci-
nomay, castration-resistant prostate cancer, or pancreatic
adenocarcinoma.

Patients with MSS-CRC were screened to confirm that
their cancers did not have defective DNA mismatch
repair/microsatellite instability, defined by changes in
>2 panels of microsatellite markers (ie, BAT-25, BAT-26,
NR-21, NR-24, or MONO-27) or immunohistochemistry
demonstrating the absence of protein expression of any
one or more of the following proteins: MLHI, MSH2,
MSH6, or PMS2. Patients had received 1-2 prior lines
(NSCLC, MSS-endometrial cancer, cervical cancer, castra-
tion resistant prostate cancer, or pancreatic adenocarci-
noma) or 1-3 prior lines (ovarian cancer or MSS-CRC)
of standard systemic therapy in the recurrent/metastatic
setting. All patients were immunotherapy naive. For all
tumor types, there was to be no evidence of partial small
bowel obstruction or small bowel obstruction within 4
weeks before the first scheduled dose of study treatment.

Patients were included if they had at least one measur-
able lesion by Response Evaluation Criteria In Solid
Tumors (RECIST) version 1.1,* and an Eastern Coop-
erative Oncology Group performance status of 0 or 1.
Patients were excluded from the dose expansion if they
were previously treated with anti-PD-1, anti-PD-L1, or
anti-CTLA-4 immunotherapy. However, patients who
received prior anti-PD-1, anti-PD-L1, or anti-CTLA-4
immunotherapy could be enrolled for dose escalation
if they met the following criteria: they did not experi-
ence toxicity that led to discontinuation of checkpoint
inhibitors; all adverse events (AEs) while receiving prior
immunotherapy were completely resolved; they did not
experience a >grade 3 immune-related AE or an any-
grade immune-related neurological or ocular AE during
prior immunotherapy; they did not require additional
immunosuppression other than corticosteroids for the
management of an AE; they did not experience recur-
rence of an AE if rechallenged; and they did not require

maintenance doses of >10mg prednisone or equiva-
lent per day. Although patients who had received prior
immunotherapy were allowed to be enrolled in the dose-
escalation part of the study (if they satisfied additional
eligibility criteria), all of the enrolled patients in part 1
and part 2 of this study were immunotherapy-naive. Addi-
tional inclusion and exclusion criteria are included in
online supplemental methods.

Study endpoints

The primary endpoint was safety. Secondary endpoints
included antitumor activity (best overall response (BOR)
per RECIST vl.1 by investigator), duration of response
(DoR), progression-free survival (PFS), overall survival
(OS), and the assessment of response according to
biomarkers (including PD-L1 and HLA-expression)
in pretreatment tumor biopsies. Exploratory analysis
included the assessment of T-cell and NK-cell activation
and proliferation in the peripheral blood and TME, the
number and activity of CD8" effector T cells and NK cells,
expression of immunomodulatory proteins (PD-1) within
tumor biopsies, and soluble immune mediators in serum
and plasma (ie, CXCL9 (C-X-C motif chemokine ligand
9), CXCL10, CXCL11, and interferon-y).

Assessments

Safety was assessed by the presence of AEs, serious
adverse events (SAEs), DLTs, abnormal laboratory
parameters, vital signs, and ECG results. AEs and DLTs
were graded according to the National Cancer Insti-
tute Common Terminology Criteria for Adverse Events
v4.03.

The period for DLT evaluation was defined as the
time from the start of the first dose of monalizumab
and durvalumab until the planned administration of
the second dose of durvalumab and the third dose of
monalizumab (28 days after the first dose of durvalumab
and monalizumab or 14 days after the second dose of
monalizumab). A DLT was defined during dose escala-
tion as any treatmentrelated grade 3 or higher toxicity
that occurred during the DLI-evaluation period. Addi-
tional details regarding DLT classification can be found
in online supplemental methods.

Objective response rate (ORR) was defined as the BOR
of confirmed complete response (CR) or confirmed
partial response (PR) according to RECIST vl.1. Disease
control rate (DCR) was defined as CR, PR, or stable
disease (SD; for =8 weeks (+3days)) based on RECIST
vl.1. DoR was defined as the duration from the first docu-
mentation of objective response to the first documented
disease progression or death due to any cause, which-
ever occurred first. PFS and OS were measured from the
start of treatment or randomization with investigational
product until the first documentation of disease progres-
sion or death due to any cause. Translational and phar-
macokinetic analyses methods are presented in online
supplemental methods.
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Statistical analyses

Tabular summaries are presented by treatment group,
categorical data are summarized by the number and
percentage of patients in each category, and continuous
variables are summarized by descriptive statistics.

For dose escalation (part 1), the number of patients
enrolled was dependent on the observed toxicities. For
the dose expansion (part 2), enrollment of approximately
40 patients was planned in each of the MSS-CRC, ovarian,
NSCLC, and MSS-endometrial cohorts, with a poten-
tial futility stop after the first 20 patients at the discre-
tion of the sponsor. The futility criteria for MSS-CRC,
ovarian, and the MSS-endometrial expansion cohorts was
0 objective responses out of the initial 20 patients. The
observed 0/20 response provided an upper limit of a one-
sided 80% CI of approximately 8%, which means that a
response rate >8% can be ruled out with 80% confidence,
and enrollment would be stopped for lack of desirable
response rate. The futility criteria for NSCLC expansion
cohort was <1 objective response out of the initial 20
patients. Observing 1/20 response gives an upper limit of
a one-sided 80% CI of approximately 14%, which means
that a response rate >14% can be ruled out with 80%
confidence and hence enrollment may be stopped for
lack of desirable response rate.

ORR and DCR were estimated by the proportion of
objective response and disease control (with 80% and
95% Cls), respectively, using exact binomial distribution.
DoR was evaluated for the subgroup of patients with an
OR using the Kaplan-Meier method. PFS (censored at last
tumor assessment date) and OS (censored on last known
date of survival) were estimated using the Kaplan-Meier
method.

The as-treated population included patients who
received any investigational products and was used to
evaluate baseline characteristics and all safety/efficacy
endpoints. The DLT-evaluable population included all
patients enrolled in dose-escalation who received at least
one dose of investigational products and completed the
safety follow-up through the DLI-evaluation period or
experienced any DLT during the DLT-evaluation period.
The response-evaluable population included patients
in the as-treated population who had at least one post-
baseline disease assessment, who died from any cause, or
who discontinued because of clinical progressive disease
before any postbaseline tumor assessment. Statistical anal-
yses were performed using SAS System V.9.4 or higher
(SAS Institute, Cary, NC).

RESULTS

Patients

Between February 22, 2016 and April 26, 2019,
185 patients were enrolled. For the dose escalation
(part 1), 15 patients were initially enrolled and treated
with 1500 mg of durvalumab Q4W with increasing doses
of monalizumab: 22.5mg Q2W (n=3); 75 mg Q2W (n=3);
225mg Q2W (n=3); 750mg Q2W (n=3); and 750mg

Q4W (n=3). Part 1 (dose expansion) also included an
additional 15 patients with cervical cancer treated with
monalizumab (750mg Q2W) and durvalumab (1500 mg
Q4W), and an additional 15 patients with MSS-
CRC treated with monalizumab (750mg Q4W) and
durvalumab (1500mg Q4W). Therefore, 16 patients
with cervical cancer (1 patient from dose escalation and
15 patients from dose expansion who received the same
dose and treatment frequency) were evaluated as a sepa-
rate expansion cohort in part 1. The tumor histologies
in the cervical cancer cohort included squamous cell
carcinoma (n=9), adenocarcinoma (n=5), and mucinous
carcinoma (n=2). Two patients with cervical cancer had
mixed histology tumors (two histological subtypes); each
instance was counted once for each histological type. The
histological subtype was unknown for one patient.

In part 1 (dose escalation and expansion), a total of
45 patients were enrolled (MSS-CRC, n=19; cervical
cancer, n=17; MSS-endometrial cancer, n=3; pancreatic
cancer, n=3; ovarian cancer, n=3). During part 2 (dose
expansion), 140 patients were enrolled (MSS-CRC, n=40;
ovarian cancer, n=40; MSS-endometrial cancer, n=40;
NSCLC, n=20). All patients in part 2 were treated with
durvalumab 1500mg Q4W and monalizumab 750 mg
Q2W. Dose selection for the dose-expansion part was
based on the highest dose administered following a
method described in the protocol in the absence of any
observed DLTs and not reaching the MTD. Patient demo-
graphics and baseline disease characteristics are summa-
rized in table 1.

All patients in both part 1 and part 2 of the study
received at least one prior line of therapy (table 1). Base-
line PD-L1 data were available for 36/45 (80%) patients
in part 1 (dose escalation and expansion), 11/16 (68.8%)
patients in part 1 (cervical expansion), and 125/140
(89.3%) patients in part 2 (table 1). In part 1 (dose esca-
lation and expansion), three (6.6%) patients had a PD-L1
tumor proportion score (TPS) >25%. In part 1 (cervical
expansion), two (12.5%) patients had a TPS of 225%. In
part 2 (dose expansion), 14 (10%) patients had a TPS of
225%. PD-L1 expression data were missing or unknown
for 9 (20%) patients in part 1 (dose escalation and expan-
sion), 5 (31.3%) patients in part 1 (cervical expansion),
and 31 (22%) patients in part 2 (table 1).

Overall, 157/185 (84.9%) patients discontinued treat-
ment due to progressive disease, 5/185 (2.7%) patients
discontinued because of AEs, 3/185 (1.6%) patients were
lost to follow-up, and 4/185 (2.2%) died. As of the data
cut-off date of October 30, 2020, the median (minimum,
maximum) duration of follow-up was 36.5 months
(0.30-53.9).

Safety

The median duration of treatment was 2.3 (range, 0.46—
41.7) months for monalizumab and 2.8 (range, 0.62—
41.7) months for durvalumab. There were no observed
DLTs, and the MTD was not reached. The combina-
tion of monalizumab 750mg Q2W and durvalumab
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1500 mg Q4W was considered safe by the dose-escalation
committee, and was selected for treatment in the dose
expansion. Overall safety data are summarized in online
supplemental table 3.

During part 1 (dose escalation and expansion, n=45),
the most common treatment-related AEs were constipa-
tion (12/45; 26.7%), decreased appetite (11/45; 24.4%),
diarrhea (11/45; 24.4%), nausea (11/45; 24.4%), and
fatigue (9/45;20.0%). In part 1 (cervical dose expansion,
n=16), the most common treatment-related AEs were
asthenia (3/16; 18.8%), arthralgia, decreased appetite,
diarrhea, myalgia, and vomiting (each 2/16;12.5%). Addi-
tionally, there was one patient with treatment-related AEs
thatled to discontinuation (myocarditis and pericarditis).
There were 14 grade 3/4 AEs reported in 10/16 (62.5%)
patients (hydronephrosis, n=2; anemia, blood creatine
increased, constipation, dyspnea, hematuria, myocar-
ditis, nausea, pulmonary embolism, pyelonephritis,
subcapsular renal hematoma, urinary tract infection, and
vomiting, n=1 each). In part 1 cervical expansion cohort,
1/16 (6.3%) patients had a grade 3/4 treatmentrelated
AE of myocarditis, and 2/16 (12.5%) patients had at least
one treatmentrelated SAE (myocarditis, pericarditis, and
vomiting; all n=1). In part 1 MSS-CRC expansion cohort,

1/18 (5.6%) patients had a grade 3/4 treatmentrelated
AE of asthenia.

In part2 (dose expansion), the most common treatment-
related AEs were fatigue (17/140; 12.1%), asthenia
(13/140; 9.3%), diarrhea (13/140; 9.3%), pruritus
(11/140;7.9%), and pyrexia (10/140; 7.1%). Two patients
in part 2 had treatmentrelated AEs that led to discon-
tinuation (infusion-related reaction, MSS-endometrial
cancer cohort, n=1; pneumonitis, NSCLC cohort, n=1). In
part 2, 74/140 (52.9%) patients had grade 3/4 AEs, with
the most frequent being anemia (11/140; 7.9%), abdom-
inal pain (8/140; 5.7%), ascites (6/140; 4.3%), dyspnea
(6/140; 4.3%), and hyponatremia (6/140; 4.3%). In
total, 20 (14.3%) patients in part 2 experienced grade
3/4 treatmentrelated AEs, with the most common being
alanine aminotransferase increased, anemia, colitis,
and hypokalemia (each n=2; table 2). Of 140 patients,
9 (6.4%) had at least one treatmentrelated SAE: colitis
(2/140; 1.4%), acute kidney injury, anaphylactic shock,
diarrhea, encephalitis autoimmune, encephalomyelitis,
hypocalcemia, hypomagnesemia, infusion-related reac-
tion, nephritis, and pneumonitis (each 1,/140; 1.4%).

During part 1 (dose escalation and expansion), there
was one death—a patient with cervical cancer due to an

Table 2 Treatment-related grade 3/4 adverse events, dose expansion* (part 2), as-treated population

MSS-CRC Ovarian MSS-endometrial NSCLC Total
Preferred term n=40 n=40 n=40 n=20 N=140
Alanine aminotransferase increased 0 1(2.5) 1(2.5) 0 2(1.4)
Aspartate aminotransferase increased 1(2.5) 0 0 1(0.7)
Anemia 0 0 2 (5.0 0 2(1.4)
Colitis 0 2 (5.0) 0 0 2(1.4)
Hypokalemia 0 1(2.5) 1(2.5) 0 2(1.4)
Anaphylactic shock 0 0 0 1(5.0) 1(0.7)
Arthralgia 0 1(2.5) 0 0 1(0.7)
Asthenia 0 1(2.5) 0 0 1(0.7)
Blood creatinine increased 0 0 1(2.5) 0 1(0.7)
Dyspnea 0 0 0 1(5.0) 1(0.7)
Encephalitis autoimmune 0 0 1(2.5) 0 1(0.7)
Encephalomyelitis 0 1(2.5) 0 0 1(0.7)
Hyperlipasemia/lipase increased 1(2.5) 0 0 1(5.0) 1(0.7)
Hypermagnesemia 0 0 1(2.5) 0 1(0.7)
Hyperuricemia 0 0 1(2.5) 0 1(0.7)
Hypocalcemia 0 0 1(2.5) 0 1(0.7)
Hypomagnesemia 0 0 1(2.5) 0 1(0.7)
Hyponatremia 0 0 1(2.5) 0 1(0.7)
Infusion-related reaction 0 0 1(2.5) 0 1(0.7)
Pneumonitis 0 0 0 1(5.0) 1(0.7)
Myocarditis 0 0 0 0 1(0.7)

Patients are counted once for each system organ class and preferred term, regardless of the number of events.
*Monalizumab was administered at 750 mg Q2W and durvalumab was administered at 1500 mg Q4W for all cohorts.
MSS, microsatellite stable; MSS-CRC, microsatellite-stable colorectal cancer; NSCLC, non-small cell lung cancer; Q#W, every # weeks.
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AE that was unrelated to treatment (pneumonia; cervical
expansion cohort). There were two deaths due to AEs in
part 2 (MSS-endometrial cancer cohort, bipolar disorder,
n=1; NSCLC cohort, lower respiratory tract infection,
n=1). Both deaths were considered unrelated to study
treatment.

Efficacy

Among all patients evaluable for response, one patient in
the MSS-CRC cohort had a confirmed CR and six patients
had confirmed PRs (MSS-CRC, n=2; NSCLC, n=2; and
ovarian cancer, n=2). There were no responses observed
in part 1 (online supplemental table 4). In part 2 expan-
sion cohorts, the ORRs were: 10.0% in the NSCLC
cohort; 7.7% in the MSS-CRC cohort; 5.4% in the ovarian
cohort. There were no responses observed in the MSS-
endometrial cohort (table 3). The median DoR ranged
from 16.1 to 22.9 weeks (table 3). There were two patients
with durable responses: MSS-CRC (CR; DoR >104 weeks)
and ovarian cancer (PR; DoR >88 weeks) (table 3). The
patient with MSS-CRC was in their 40s and had one prior
line of therapy for metastatic disease with a BOR of PR.
This patient had no history of bone marrow or stem cell

transplantation or radiation treatment. The patient with
ovarian cancer was in their 60s and had four prior lines
of therapy and a BOR of CR to the most recent treatment
prior to enrollment. One patient with ovarian cancer
remained on treatment for 233 months. In part 1 cervical
expansion cohort, median PFS was 2.0 (range, 1.7-3.4)
months and median OS was 8.6 (range, 3.5-16.7) months.
Median PFS ranged from 1.8 to 2.0 months, and median
OS ranged from 8.6 to 16.7 months in part 2 expansion
cohorts (table 3).

Overall change in tumor size from baseline for each
patientin the MSS-CRC, ovarian cancer, MSS-endometrial
cancer, NSCLC, and cervical cancer disease-specific
expansion cohorts are shown in figure 1. Several patients
reported >30% reduction in sum of target lesions; but
did not meet RECIST vl.1 criteria for tumor response.
The change in tumor size from baseline in all expansion
cohorts is shown in online supplemental figure 3.

Exploratory translational analyses

In the peripheral blood, full and sustained NKG2A receptor
occupancy was observed at the highest dose level of
monalizumab (750 mg Q2W; online supplemental figure 4).

Table 3 Clinical activity in part 2 expansion cohorts, response-evaluable population*T

Parameter MSS-CRC n=39 Ovarian n=37 Endometrial MSS n=39 NSCLC n=20
Best overall response, n (%)

Complete response 0 0 0

Partial response 2(5.1) 2 (5.4) 0 2(10.0)

Stable disease 12 (30.8) 10 (27.0) 15 (38.5) 6 (30.0)

Unconfirmed partial response 12.7) 0 1(5.0)

Progressive disease 20 (51.3) 24 (64.9) 20 (51.3) 11 (565.0)

NE/NA% 4(10.3) 12.7) 4(10.3) 1(5.0)
Objective response rate§, n (%) 3(7.7) 2 (5.4) 0 2(10.0

95% Cl (1.7-21.4) (0.7-18.7) (0.0-9.5) (1.2-31.7)
Median duration of response, weeks 16.1 NR NA 22.9

(minimum, maximum) (15.9-104.4) (24.0-88.3)1| (NA-NA) (10.1-35.6)
Disease control rate at 16 weeks, n (%) 12 (30.8) 12 (32.4) 10 (25.6) 8 (40.0)

95% Cl (17.0-47.6) (18.0-49.8) (13.0-42.1) (19.1-63.9)
Disease control rate at 24 weeks, n (%) 7(17.9) 6(16.2) 5(12.8) 5(25.0)

95% Cl (7.5-33.5) (6.2-32.0) (4.3-27.4) (8.7-49.1)
Median OS**, months (95% Cl) 10.6 (6.0-20.1) 16.7 (9.7-20.1) 10.7 (6.7-17.3) 8.8 (5.8-15.6)
Median PFS**, months (95% ClI) 1.9 (1.8-3.6) 1.8 (1.7-1.9) 1.8 (1.7-3.3) 1.9 (1.7-3.7)

ORR=CR+PR; DCR16=CR+PR+SD >16 weeks; DCR24=CR+PR+SD >24 weeks.

*Response-evaluable population includes patients in the as-treated population who have at least one postbaseline disease assessment or
discontinued due to death or disease progression before the first postbaseline disease assessment.

TMonalizumab was administered at 750 mg Q2W and durvalumab was administered at 1500 mg Q4W.

FNot evaluable is defined as either when no or only a subset of lesion measurements are made at an assessment.

§Confirmed responses only.
fIResponse was ongoing at last assessment.

**As-treated population (MM-CRC, n=40; ovarian cancer, n=40; MSS-endometrial, n=40; NSCLC, n=20; cervical cancer, n=16).

CR, complete response; DCR, disease control rate; MSS, microsatellite stable; MSS-CRC, microsatellite-stable colorectal cancer; NA, not
available; NE, not evaluable; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD, progressive disease;
PFS, progression-free survival; PR, partial response; Q#W, every # weeks; SD, stable disease.
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Change in tumor size from baseline for (A) MSS-CRC, (B) ovarian cancer, (C) MSS-endometrial cancer, (D) NSCLC,

and (E) cervical cancer (part 1 and part 2 dose-expansion cohorts; response-evaluable population). (A) In the MSS-CRC cohort,
there were 4 out of 37 patients with >30% reduction in sum of target lesions; however, 3 had disease response per RECIST
v1.1. (B) In the ovarian cancer cohort, there were 2 out of 35 patients with >30% reduction in sum of target lesions and these

2 patients also had disease response per RECIST v1.1. (C) In the MSS-endometrial cancer cohort, there was 1 out of 35
patients with >30% reduction in sum of target lesions; however, there were no tumor responses per RECIST v1.1. (D) In the
NSCLC cohort, there were 3 out of 18 patients with >30% reduction in sum of target lesions; however, 1 patient had disease
response per RECIST v1.1. (E) In the cervical cancer cohort, there was 1 out of 15 patients with >30% reduction in sum of target
lesions; however, there were no tumor responses per RECIST v1.1. MSS, microsatellite stable; MSS-CRC, microsatellite-stable
colorectal cancer; NSCLC, non-small cell lung cancer; RECIST v1.1, Response Evaluation Criteria In Solid Tumors version 1.1.

Treatment with monalizumab and durvalumab reduced the
number of CD56” " NK cell subsets (CD3~ CD16 CD56")
in the periphery, which are typically NKG2A" (figure 24).**
The CD56"™ CDI16+ population was also monitored;
however, subpopulations did not pass assay validation.
Monalizumab and durvalumab induced peripheral activa-
tion of NK cells, indicated by increased expression levels
of the NK activation marker CD38 on CD56"™ NK cells

(figure 9B).% Peak increases in proliferating (Ki67") CD4
and CD8 T cells in the peripheral blood at levels 50% or
greater versus baseline were observed in patients treated
with the combination of monalizumab and durvalumab
on day 8 post-treatment (figure 2C), consistent with levels
observed for durvalumab monotherapy.* 7 These pharma-
codynamic effects were observed to varying degrees across
all cohorts (online supplemental figure 5).
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Figure 2 Change in lymphocyte subpopulations in the circulation before and after treatment with monalizumab and
durvalumab (A) Lin3~ CD16~ CD56" NK, (B) CD38 relative expression on Lin3~ CD16~ CD56* CD38" NK, and (C) CD3* CD4*
Ki67* or CD3" CD8* Ki67* T cells. Samples were from patients in the NSCLC, MSS-CRC, MSS-endometrial cancer, and ovarian
cancer expansion cohorts. Error bars represent SE of the mean. Lin3~, negative for expression of lineage markers for T and B
cells and monocytes (CD3, CD14, CD19, and CD20). *P<0.01 versus change from baseline value on study day -5 using pair-
wise comparison by Wilcoxon method. MSS, microsatellite stable; MSS-CRC, microsatellite-stable colorectal cancer; NK,
natural killer; NSCLC, non-small cell lung cancer.

Levels of immune activating cytokines CXCL10 and  of CD3'Ki67" cells, granzyme B" (GZMB") cells, and CD8"
CXCLI1 increased in the periphery 5 weeks after combi-  cells significantly increased at week 9 after combination
nation treatment (figure 3A,B). Intratumoral proliferation treatment (p=0.02, p=0.002, and p=0.01, respectively;
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Figure 3 Immune activation in the periphery and tumor microenvironment. Levels of immune activating cytokines (A) CXCL10
and (B) CXCL11 at baseline and after monalizumab and durvalumab treatment. Intratumoral levels of (C) CD3*Ki67*, (D) GZMB,
(E) NKp46, and (F) CD8 cells at baseline and after monalizumab and durvalumab treatment. Samples were obtained from
patients treated with monalizumab and durvalumab in the NSCLC, CRC, MSS-endometrial cancer, and ovarian cancer
expansion cohorts. CXCL-10, C-X-C motif chemokine ligand 10; CXCL11, C-X-C motif chemokine ligand 11; D, day; GZMB,
Granzyme B; MSS, microsatellite stable; MSS-CRC, microsatellite-stable colorectal cancer; NSCLC, non-small cell lung cancer;
W, week.
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figure 3C,D,F). No significant increase in intratumoral
NKp46° cells was observed (figure 3E).

Tumor-expression levels of PD-L1, HLA-E, NKp46, and
CD8" cells before treatment were not associated with effi-
cacy in the dose-escalation phase, and only minimal posi-
tive correlations between intratumoral HLA-E and PD-L1
expression levels were observed (R=0.17, p=0.13; online
supplemental figure 6). A positive association between
intratumoral quantities of NKp46" and CD8" T cells was
observed at baseline (online supplemental figure 6A).
An in vitro co-culture assay system was used to evaluate
the contributions of durvalumab or monalizumab to
the observed changes in circulating cell populations. An
increase in the proliferation of NK cells and the expres-
sion of CD38 on CD56™8" NK cells was observed in the
presence of monalizumab, but not durvalumab (online
supplemental figure 7).

DISCUSSION

In this first combination study evaluating durvalumab
plus monalizumab in patients with advanced recurrent
or metastatic solid tumors, the dose escalation showed a
manageable safety profile with no DLTs. Overall, ORRs
were <10% among the five expansion cohorts of part 1
and part 2, with six PRs (MSS-CRC, n=2; ovarian, n=2;
and NSCLC, n=2) and one CR (MSS-CRC). Notably, two
patients (MSS-CRC and ovarian cancer) had durable
responses (=104 weeks and >88 weeks, respectively).
Although only modest clinical activity was reported,
responses were observed in patients with tumor types that
previously had demonstrated limited activity with immu-
notherapy, such as MSS-CRC.*

Pharmacodynamic effects in the peripheral blood were
consistent with the proposed mechanisms of action of
monalizumab and durvalumab. Following treatment
with monalizumab and durvalumab, immune activation
was observed in the periphery, as indicated by increased
expression of CD38 on CD56"8" NK cells. While CD38
is constitutively expressed on NK cells, increased expres-
sion has been reported in patients following vaccination
or recent viral infection, suggesting that surface expres-
sion increases with cell activation.” * The increase
occurred predominantly in the CD56"¢" NK cell subset,
which expresses NKG2A.** This suggests that the effect
was mediated by monalizumab treatment, particu-
larly since complete receptor saturation was observed
with the 750mg dose Q2W. The results demonstrated
increases in circulating quantities of CD8'Ki67" T cells,
consistent with the magnitudes observed in patients
receiving durvalumab monotherapy, suggesting that
monalizumab elicits a minimal effect on CD8 T
cells. Based on these observations, it is likely that
monalizumab and durvalumab exert non-overlapping
activities on NK and T cells, respectively. Immune acti-
vation observed in the TME at week 9, as evidenced by
increased proliferating total T cells, CD8" T cells, and gran-
zyme B-expressing cells, suggests that the combination of

monalizumab and durvalumab potentiates the immune
response.

Though the safety profile of monalizumab combina-
tion therapy is clinically favorable and the translational
data support immune activation, the overall efficacy
signal in this relatively small cohort of patients with
advanced disease was modest. Owing to the low number
of responders and variability observed in the exploratory
analyses of immunological profiles, potential correla-
tions between clinical outcome and immune activation
could not be identified. Possible reasons for a lack of
robust activity may include host and tumor characteris-
tics or suboptimal immune activation unable to over-
come immune suppression. Notably, most patients had a
high tumor volume and may have had complex molec-
ular aberrations, as suggested by the advanced stage of
disease. It is also currently recognized that most of the
tumor types enrolled in this study are not responsive to
checkpoint inhibitor monotherapy, except in specific
patient populations, such as those with high PD-L1
expression or microsatellite instability status. Addition-
ally, the general lack of efficacy of immune checkpoint
inhibitors in heavily pretreated populations has been
observed in several clinical trials.”’ ** In the context of
advanced disease after multiple lines of prior therapy, this
may be compounded by a lack of immune fitness and a
downregulation of effector CD8" T cells. Despite the large
sample size, subgroup analysis to evaluate host immune
response was difficult due to the heterogeneous nature
of the patient population (ie, multiple tumor types and
differences in prior lines of therapies).

The therapeutic potential of targeting NK cell acti-
vation in solid tumors is evolving with a better under-
standing of positive and negative regulators of NK cell
effector function.' Similar to CD8' T cells, the TME plays
an important role in modulating the activity of NK cells.
For instance, TME inhibitory signals reduce NK cell local-
ization and lead to phenotypic modifications of NK cells
in the peritumoral area.® However, the clinical impact of
NKG2A inhibition has not been completely elucidated,'
and combination strategies targeting other NK cell check-
point molecules and immune activation pathways might
be necessary to drive clinically meaningful therapeutic
responses. Monalizumab could be combined with stan-
dard chemotherapy, targeted therapies that activate the
immune system, or novel agents that promote antitumor
immunity. Studying the effects in a homogeneous patient
population within a limited stage disease setting known to
be responsive to immune checkpoint inhibition therapy
may provide additional insight. Based on the preliminary
clinical activity observed in parts 1 and 2 of the current
study, a dose-exploration part evaluated the combination
of monalizumab and durvalumab with standard-of-care
chemotherapy, with or without biological agents (bevaci-
zumab or cetuximab), in patients with MSS-CRC who are
receiving first-line or second-line treatment.

Monalizumab is being evaluated in clinical trials in
combination with other therapies in several cancer types
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including squamous cell carcinoma of the head and neck
(HNSCC) and NSCLC (online supplemental table 1).
In an ongoing phase 2 trial (NCT02643550) in patients
with recurrent or metastatic HNSCC, the combination of
monalizumab, cetuximab, and durvalumab was well-tolerated
and demonstrated preliminary antitumor activity with
confirmed PRs in 13/40 patients (ORR, 32.5%), including
three CRs.*® A randomized phase 3 trial, INTERLINK-1, eval-
uated the efficacy and safety of monalizumab and cetuximab
in patients with recurrent or metastatic HNSCC with prior
PD-(L)1 inhibitor treatment (NCT04590963); however, the
study did not meet a predefined threshold for efficacy as
per a planned futility interim analysis.** The combination of
monalizumab and durvalumab is also being clinically evalu-
ated. Interimresultsfrom the phase 2 COAST (NCT03822351)
study demonstrated improved ORR and PFS with the combi-
nation, compared with durvalumab monotherapy in patients
with unresectable, locally advanced, stage 3 NSCLC.” A
phase 3 study (PACIFIC9) of monalizumab and durvalumab
following concurrent chemoradiation in patients with locally
advanced, stage 3, unresectable NSCLC is recruiting patients
(NCT05221840). Additional phase 2 studies are ongoing
in patients with earlystage, resectable NSCLC to deter-
mine whether monalizumab and durvalumab can improve
outcomes when combined with chemotherapy and followed
by surgical resection. The neo-COAST study is evaluating
monalizumab with durvalumab followed by surgical resection
(NCT03794544). A major pathological response occurred in
30% of patients treated with durvalumab in combination with
monalizumab.” Targeting NK cells in the field of immune
oncotherapy continues to remain an important and prom-
ising therapeutic approach. In addition to the findings from
the current study, results from ongoing clinical trials in this
area will provide important data in guiding this developing
area of clinical research.

The current study highlights the potential clinical utility of
combining therapies that block the non-redundant NKG2A/
HLA-E and PD-1/PD-L1 pathways to enhance the immune
response of NK and CD8" T cells in the TME. The results
of this study support the exploration of combinatorial treat-
ment approaches that enhance both innate and adaptive
immune responses.
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