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ABSTRACT Phage Sonora is a siphophage that was isolated against the opportunistic
human pathogen Stenotrophomonas maltophilia. The genome of phage Sonora is
63,825 bp long and is not related to that of any phage at the nucleotide level. Sonora
shares 46 of 97 total proteins with the Bordetella phages CN2, MW2, and FP1.

S tenotrophomonas maltophilia is an opportunistic human pathogen that is naturally
found in water and soil environments (1). Some infections caused by S. maltophilia

are difficult to treat due to the multidrug resistance of the causative strains. Because an-
tibiotic resistance remains a significant public health issue, alternative treatments, such as
phage therapy, to combat these infections are of interest. Bacteriophage Sonora’s isolation
and genome characteristics are described in this report.

Sonora was isolated in 2019 from a topsoil sample (collected ;3 in. from the sur-
face) collected in Caldwell, Texas (coordinates: 30.612660, 296.551836). The phage
was isolated and purified following the soft agar overlay method (2) using S. malto-
philia (ATCC 51331) as the host, cultured aerobically at 30°C in tryptone nutrient (0.5%
tryptone, 0.25% yeast extract, 0.1% glucose, 0.85% NaCl [wt/vol]) broth or agar.
Sonora’s genomic DNA was extracted using a modified Wizard DNA cleanup kit proto-
col as described (3). DNA libraries were prepared as 300-bp inserts using a Swift 2S
Turbo kit and sequenced on an Illumina MiSeq sequencer with paired-end 150-bp
reads using 300-cycle v2 chemistry to produce 242,366 raw reads. These reads were
quality controlled using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc),
trimmed with FASTX-Toolkit v0.11.6 (http://hannonlab.cshl.edu/fastx_toolkit/download
.html), and assembled with SPAdes v3.5.0 (4) into a raw contig with 140-fold coverage.
Since the raw contig assembled by SPAdes is usually opened at a random spot in the
middle of the genome and the contig ends often have redundant or missing bases,
PCR amplification of the genomic DNA using primers designed off the contig ends, fol-
lowed by Sanger sequencing of the PCR product, allows verification of sequences in
that region. Sonora’s genome was completed by PCR and Sanger sequencing using
the primers 59-ACTACCACGGTCACGCATAC-39 and 59-CAGATCATCGAACATGCCGC-39.
Genome termini were predicted by PhageTerm (5). The genome was annotated with
the Center for Phage Technology (CPT) Galaxy-Apollo platform (https://cpt.tamu.edu/
galaxy-pub) (6–9); structural annotation was performed using GLIMMER v3 (10) and
MetaGeneAnnotator v1.0 (11) to predict protein-coding genes, with manual adjustments
as needed. Rho-independent termination sites were identified using TransTerm (http://
transterm.cbcb.umd.edu). The functional annotation of Sonora utilized InterProScan v5.48
(12), BLAST v2.9.0 (13), TMHMM v2.0 (14), HHpred (15), LipoP v1.0 (16), SignalP v5.0 (17),
and SwissProt (18) databases. Sonora’s genome DNA sequence similarity to other phages
was calculated by progressiveMauve v2.4 (19). All software was used with default settings.

Phage Sonora was determined to be a siphophage via negative staining with 2%
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(wt/vol) uranyl acetate and imaging by transmission electron microscopy (TEM) at the
Texas A&M Microscopy and Imaging Center (Fig. 1). Phage Sonora has a genome of
63,825 bp, with a coding density of 93.8% and a G1C content of 63.0%. PhageTerm
predicted a cos sequence at position 46430, which is within a gene encoding a pre-
dicted membrane protein. However, this location is separated by ;18 kb from the
gene encoding the terminase small subunit, suggesting that the packaging signal is
significantly separated from the gene encoding the protein that recognizes it for pack-
aging. A lysis cassette containing a transglycosylase endolysin with a signal arrest release
(SAR) domain, a class I holin, and an inner and outer membrane spanin complex, with the o-
spanin gene completely embedded within the i-spanin gene, was identified. Sonora is not
closely related to any phages in the NCBI database, sharing at most only 33 to 34% genome-
wide nucleotide sequence identity with several phages, such as Pseudomonas phage YuA
(GenBank accession number AM749441) and Bordetella phage CN1 (GenBank accession
number NC_047876), as determined by progressiveMauve (19). At the protein level (BLASTp,
with E values of ,0.001), Sonora shares 46 of 97 total proteins with each of the three
Bordetella phages, namely, CN2 (GenBank accession number NC_047877.1), MW2 (GenBank
accession number NC_047879.1), and FP1 (GenBank accession number NC_047878.1).

Data availability. Sonora’s genome was deposited in GenBank with accession
number MZ326860. The associated BioProject, SRA, and BioSample accession numbers
are PRJNA222858, SRR14095252, and SAMN18509468, respectively.
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