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Abstract Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry

in living cells, but our ability to predict the optimal abundances from basic properties remains

underdeveloped. Here, we report a biophysical, first-principles model of growth optimization for

core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved

stoichiometry spanning two orders of magnitude. We show that predictions from maximization of

ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the

conserved ratios of translation factors. The analytical solutions, without free parameters, provide an

interpretable framework for the observed hierarchy of expression levels based on simple

biophysical properties, such as diffusion constants and protein sizes. Our results provide an

intuitive and quantitative understanding for the construction of a central process of life, as well as a

path toward rational design of pathway-specific enzyme expression stoichiometry.

Introduction
A universal challenge faced by both evolution and synthetic pathway creation is to optimize the cel-

lular abundance of proteins. This abundance optimization problem is not only multidimensional –

often involving several proteins participating in the same pathway – but also under systems-wide

constraints, such as limited physical space (Klumpp et al., 2013) and finite nutrient inputs

(You et al., 2013). The complexity of this problem has prevented rational design of protein expres-

sion for pathway engineering (Jeschek et al., 2017). Fundamentally, being able to predict the opti-

mal and observed cellular protein abundances from their individual properties would reflect an

ultimate understanding of molecular and systems biology.

Evolutionary comparison of gene expression across microorganisms suggests that basic principles

governing the optimization problem may exist. We recently reported broad conservation of relative

protein synthesis rates within individual pathways, even under circumstances in which the relative

transcription and translation rates for the homologous enzymes have dramatically diverged across

species (Lalanne et al., 2018). Moreover, distinct proteins that evolved convergently toward the

same biological function also displayed the same stoichiometry of protein synthesis in their respec-

tive species. These results suggest that the determinants of optimal in-pathway protein stoichiome-

try are likely modular and independent of detailed biochemical or physiological properties that

differ across clades. However, the precise nature of such determinants remains unknown.

Translation of mRNA into proteins is a central pathway required for cell growth and therefore

serves as an entry point for establishing a quantitative model of growth-optimized in-pathway stoi-

chiometry. As a group, the total amount of translation-related proteins per cell mass linearly

increases with growth rate in most conditions (Scott et al., 2010; Dai et al., 2016;

Schaechter et al., 1958), a relationship considered a bacterial ‘growth law’. In addition to ribosomes

which have well-coordinated synthesis of subunits (Nomura et al., 1984), the translation pathway is

comprised of nearly 100 protein factors involved in facilitating ribosome assembly, translation
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initiation, elongation, and termination (Marintchev and Wagner, 2004; Dever and Green, 2012;

Rodnina, 2018). The intracellular abundances of these factors vary over 100-fold (Pedersen et al.,

1978; Li et al., 2014), and their ratios are often maintained in different growth conditions and across

different species (Lalanne et al., 2018). What dictates the observed stoichiometry among translation

factors is less understood. Early studies predicted expression of the highly expressed elongation fac-

tor Tu (EF-Tu) relative to the ribosome (Klumpp et al., 2013; Ehrenberg and Kurland, 1984) by

maximizing translational flux per unit proteome. More recently, expression of several other compo-

nents involved in the elongation step (ribosomes, tRNA, mRNA, EF-Tu, and EF-Ts) was predicted by

minimizing the total mass of the components at a fixed translational flux (Hu et al., 2020). The selec-

tive pressure on expression levels remains to be determined for most members of the translation

machinery, including initiation and termination factors that are much more lowly expressed and often

assumed to be non-limiting.

Here, we sought to derive an intuitive model to understand the quantitative abundance hierarchy

(Figure 1B) among the core translation factors (tlFs), which have well-characterized functions

(Table 1, schematic in Figure 1A). Our goal is not to exhaustively model the heterogeneous move-

ment of ribosomes on the transcriptome (Shaw et al., 2003; Reuveni et al., 2011;

Figure 1. The hierarchy of mRNA translation factor expression stoichiometry. (A) Multiscale model relating translation factor expression to growth rate.

The growth rate l is directly proportional to the active ribosome content (fact
ribo) in the cell and inversely proportional to the average time to complete

the translation cycle t tl, consisting of the sum of the initiation (t ini), elongation (t el), and termination (t ter ) times. Each of these reaction times are

determined by the translation factor abundances. On average, the elongation step is repeated around h‘i» 200� to complete a full protein, compared

to 1 � for initiation and termination. Our framework of flux optimization under proteome allocation constraint addresses what ribosome and translation

factor abundances maximize growth rate. (B) Measured expression hierarchy of bacterial mRNA translation factors, conserved across evolution.

Horizontal bars mark the proteome synthesis fractions as measured by ribosome profiling (Lalanne et al., 2018) (equal to the proteome fraction by

weight for a stable proteome) for key mRNA translation factors in B. subtilis (Bsub), E. coli (Ecol), and V. natriegens (Vnat) and are color-coded

according to the protein (or group of proteins) specified. Triangles (J) on the right indicate the mean synthesis fraction of the protein in the three

species. See Table 1 for a short description of the translation factors considered. Synthesis fractions in (B) can be found in Supplementary file 1.
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Subramaniam et al., 2014; Dykeman, 2020) or to include as many details of the underlying molecu-

lar steps as possible (Hu et al., 2020; Vieira et al., 2016). Instead, we coarse-grained global transla-

tion into a cycle that consists of sequential steps with interconnected fluxes that depend on core tlFs

concentrations. At steady-state cell growth, all individual fluxes are matched and the overall rate of

ribosomes completing the full translation cycle is proportional to cell growth. By solving for the max-

imum flux under proteome allocation constraints, we obtained analytical solutions for the optimal

factor concentrations, which agree well with the observed values. The ratios of optimal concentra-

tions depend only on simple biophysical parameters that are broadly conserved across species. For

instance, elongation factor EF-G is predicted to be more abundant than initiation and termination

tlFs by a multiplicative factor of »

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
average number of codons per protein

p
» 14, whereas EF-Tu is pre-

dicted to be more abundant than EF-G by a factor of »

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

number of different amino acids
p

» 4. These

results, arising from the optimization procedure and generic properties of the translation cycle, pro-

vide rationales for the order-of-magnitude expression of these important enzymes.

Results

Problem statement and model formulation
Our overall goal is to determine the growth-optimizing proteome allocation for the core translation

factors. Conceptually, varying tlF concentrations has two opposing effects on cell proliferation. At

the biochemical level, high tlF expression can facilitate growth by allowing more efficient usage of

ribosomes. At the systems level, increased tlF expression can nonetheless limit growth by reducing

the number of ribosomes and other proteins that can be produced. The tradeoffs between various

tlFs and ribosomes create a multidimensional optimization problem.

We solve this multidimensional problem by treating translation as a dynamical system, in which

ribosomes cycle through initiation, elongation, and termination. The resulting flux drives cell growth.

During steady-state growth, every interlocked step of the translation cycle must have the same ribo-

some flux that is specified by the growth rate. We show that at the growth optimum, concentrations

for distinct tlFs can be solved independently. The resulting analytical solutions can be expressed in

terms of the growth rate and simple biophysical parameters.

Cell growth driven by tlF-dependent ribosome flux
To describe the biochemical effects of tlF concentrations on cell growth, we first introduce a coarse-

grained translation cycle time t tl, or the time it takes for a ribosome to complete a typical cycle of

protein synthesis (Figure 1A), which consists of three sequential steps: initiation (’ini’), elongation

Table 1. Brief description of the function of core translation factors considered.

For reviews of mRNA translation, see Rodnina, 2018; Chen et al., 2016.

Step Factor Function

Initiation IF1 Initiation factor 1: binds to 30S ribosome subunits to facilitate initiator tRNA binding (Laursen et al., 2005; Gualerzi and Pon,
2015).

Initiation IF2 Initiation factor 2: ribosome-dependent GTPase interacting with 30 ribosome subunits, ensures correct binding of initiator tRNAs
(Laursen et al., 2005; Gualerzi and Pon, 2015).

Initiation IF3 Initiation factor 3: prevents premature docking of 50S ribosomal subunits (Laursen et al., 2005; Gualerzi and Pon, 2015).

Elongation EF-Tu Elongation factor Tu: binds to charged tRNAs to form ternary complexes, brings charged tRNAs to empty ribosome A sites.
(Weijland et al., 1992; Agirrezabala and Frank, 2009; Andersen et al., 2003)

Elongation aaRS tRNA synthetases: charge tRNAs with cognate amino acids (Ibba and Soll, 2000; Pang et al., 2014).

Elongation EF-G Elongation factor G: catalyzes translocation steps of the ribosome after peptide bond formation (Andersen et al., 2003;
Agirrezabala and Frank, 2009).

Elongation EF-Ts Elongation factor Ts: nucleotide exchange factor for EF-Tu (Agirrezabala and Frank, 2009; Andersen et al., 2003).

Termination RF1/
RF2

Peptide chain release factors 1 and 2: recognize stop codon and hydrolyze the completed protein. RF1 recognizes UAA, UAG, and
RF2 UAA, UGA (Bertram et al., 2001).

Termination RF4 Ribosome recycling factor: catalyzes the dissociation of ribosome subunits following peptide chain release in translation termination
(Bertram et al., 2001).
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(’el’), and termination (’ter’). Each of these steps is catalyzed by multiple tlFs. The full translation cycle

time is then sum of ribosome transit times at the three steps (t tl ¼ t ini þ t el þ t ter), whose depen-

dence on individual tlF concentrations can be quantitatively described through mass action kinetic

schemes (schematically depicted in Figure 1A, see Appendices 2, 3, and 4 for details and examples

below). We express tlF concentrations in units of proteome fractions (dry mass fraction of a specified

protein to the full proteome), denoted by f (Scott et al., 2010) (Materials and methods, section

Conversion between concentration and proteome fraction). Using this notation, the translation cycle

time t tl is a decreasing function of various tlFs concentrations ( ftlF;i

� 	
).

In addition to its dependency on tlF concentrations, the translation cycle time provides a bridge

between the cell growth rate and ribosome concentration. In steady-state growth (Monod, 1949;

Scott et al., 2010; Dai et al., 2016), the growth rates of cells and of their protein content (total

number of proteins) must be identical, denoted here as l, as a result of the constant average cellular

composition. The protein content grows at a rate determined by the flux of active ribosomes com-

pleting the translation cycle, that is Nact
ribo=t tl, where Nact

ribo is the number of active ribosomes per cell,

divided by the total number of proteins NP per cell: l ¼ Nact
ribo=t tlNP. Active ribosomes are defined as

those functionally engaged in, and cycling through, the initiation, elongation, and termination reac-

tions of peptide synthesis. Rescaling to the total mass fraction (Materials and methods, section Con-

version between concentration and proteome fraction) of proteome for active ribosomes (fact
ribo)

yields

l¼fact
ribo

t tl

h‘i
‘ribo

; (1)

where ‘ribo is the number of amino acids in ribosomal proteins and h‘i is the average number of

codons per protein, weighted by expression levels (Materials and methods, section Average number

of codons per protein: h‘i). The rescaling factor (‘ribo=h‘i»7300=200¼ 36:5) is approximately constant

across growth conditions (Matrials and methods, section Average number of codons per protein:

h‘i). This equation establishes how tlF concentrations affect the growth rate biochemically via t tl.

We note that Equation 1 is a generalized form of the bacterial growth law that relates the mass

fraction of elongating ribosomes to growth rate (l ¼ fel
ribo

t el

h‘i
‘ribo

¼ gfel
ribo, where g is a rescaled translation

elongation rate and fel
ribo is the proteome fraction of actively translating ribosomes [Scott et al.,

2010; Dai et al., 2016; Scott et al., 2014]). This classic growth law was derived by considering the

steady-state flux of peptide bond formation by elongating ribosomes, whereas our model focuses

on the flux of ribosomes that traverse the entire translation cycle, thereby allowing us to consider

the effects of translation factors and ribosomes engaged in additional steps (initiation, elongation,

and termination). For each step, Equation 1 can be extended to show that the growth rate is simi-

larly proportional to the mass fraction of the corresponding ribosomes divided by the transit time at

that step (Materials and methods, section Equality of ribosome flux in steady-state).

Steady-state growth thus imposes the requirement that the growth rate be inversely proportional

to the translation cycle time and proportional to the number of active ribosomes engaged in the

translation cycle (Equation 1). Inactive ribosomes, comprised of assembly intermediates, hibernating

ribosomes, or otherwise non-functional ribosomes, have been found to constitute a small fraction

( »5%) of the total ribosome pool for fast growth (Lindahl, 1975; Dai et al., 2016). Based on Equa-

tion 1, both increasing ribosome concentration and increasing tlF concentrations (which decreases

t tl) can accelerate growth. However, production of ribosomes and tlFs is subject to competition

under a limited proteomic space, which we consider next.

Optimization under proteome allocation constraint
To model the production cost tradeoff between tlFs and ribosomes, we integrate the flux-based for-

mulation above with a proteomic constraint. Assuming that components of the translation machinery

together accounts for a fixed fraction of proteome, that is, the ‘translation sector’ ftl (denoted fR in

the context of growth laws [Scott et al., 2010]), the proteome fraction for active ribosomes is

related to the proteome fraction for translation factors via

fact
ribo ¼ftl�finact

ribo �
X

i

ftlF;i: (2)
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Equations 1 and 2, together with to the kinetic schemes for each step of the translation cycle,

constitute the core of our model. Combining the biochemical effects (Equation 1) and the systems-

level constraints (Equation 2) on tlFs, we arrive at a self-contained relationship between growth and

tlF concentrations:

l¼ftl �finact
ribo �PiftlF;i

t tlð ftlF;i

� 	
Þ

h‘i
‘ribo

; (3)

where we explicitly express t tl as a function of ftlF;i to reflect the dependence of ribosome transit

times on translation factor abundances. The above relationship (Equation 3) allows us to ask: what is

the stoichiometry of tlFs, or partitioning of the translation sector, that maximizes the growth rate

(Figure 1A)?

The condition for the optimal TF abundances, that is, the set of ftlF;i that satisfies ql=qftlF;i

� ��¼ 0,

can be obtained by considering the ftlF;i as independent variables and taking the derivative of Equa-

tion 3 with respect to a specified tlF abundance. Under the assumptions that the translation sector

(ftl) and the proteome fraction for inactive ribosomes (finact
ribo ) are both fixed in a given external nutri-

ent condition, this yields

qt tl

qftlF;i

 !�

¼� h‘i
‘ribo

1

l�
; (4)

where the asterisk refers to the growth optimum within our model, that is, ql=qftlF;i

� ��¼ 0. Hence,

under this framework, the tlF abundances are growth-optimized when the sensitivity of the transla-

tion cycle time to changing the considered tlF abundance (qt tl=qftlF;i) reaches a value determined

solely by the growth rate and protein size factors. We emphasize that the derivative above corre-

sponds to a perturbation scenario in which the tlF abundance is changed while maintaining fixed the

total proteomic resources to the translation sector, as prescribed by our optimization procedure. As

such, it does not correspond an actual perturbation easily realizable experimentally.

Although Equation 3 and the resulting optimization conditions (Equation 4, one for every tlF)

corresponds to a coupled nonlinear system of multiple ftlF;i, substantial decoupling occurs at the

optimal growth rate. In this situation, most ftlF;i are only connected through the resulting growth

rate. The optimization problem is then further simplified by the fact that the translation cycle consists

of sequential and largely independent steps. The translation cycle time t tl corresponds to the sum

of the coarse-grained initiation, elongation, and termination times, that is, t tl ¼ t ini þ t el þ t ter.

Given that each tlF is involved in a specific molecular step, the sensitivity matrix of these times to tlF

concentration is sparse: qt j=qftlF;i

� ��¼ 0 for most combinations of t j and ftlF;i. This lack of ‘cross-

reactivity’ expresses that, for example, the initiation time t ini is unaffected by the tRNA synthetase

concentration. This sparsity only occurs at the optimal expression levels, as the transit times typically

depend on the growth rate (see an example in section Non binding-limited regime [one stop codon])

and ql=qftlF;i 6¼ 0 away from the optimum. The optimum condition for factor i then simplifies to:

qt j

qftlF;i

 !�

¼� h‘i
‘ribo

1

l�
; (5)

where j above denotes the translation step(s) that tlFi participates in. This leads to simplifications

that allow the system to be solved analytically in most cases: instead of solving the full system at

once, individual reactions within the translation cycle can be considered in isolation. The resulting

optimal concentrations are connected via the growth rate l�. Interestingly, the optimal stoichiometry

among most tlFs is independent of l� if the reactions are in the binding-limited regime, as we show

below.

Case study: Translation termination
We first illustrate the process of solving for the optimal tlF concentration for the relatively simple

case of translation termination. The principles used here and the form of solutions provide concep-

tual guideposts for solving other steps of the translation cycle.
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In bacteria, translation termination (Bertram et al., 2001) consists of two distinct, sequential

steps: (1) stop codon recognition and peptidyl-tRNA hydrolysis catalyzed by class I peptide chain

release factors RF1 and RF2, followed by (2) dissociation of ribosomal subunits from the mRNA,

that is, ribosome recycling, catalyzed by RF4. We do not explicitly consider the additional factors

(e.g. RF3 and EF-G) due to their lack of conservation or because they are non-limiting for this specific

step (Appendix 2, section Omitted molecular details). RF1 and RF2 have the same molecular func-

tions but recognize different stop codons (Scolnick et al., 1968): RF1 recognizes stops UAA and

UAG, whereas RF2 recognizes UAA and UGA. For simplicity, we describe here a scenario where RF1

and RF2 have no specificity towards the three stop codons, which allows us to combine them in a

single factor (denoted RFI). The model is readily generalized, with similar results, to the case of the

two RFs with their specificity towards the three stop codons (Appendix 2, section Full three stop

codons model).

Under a coarse-grained description, the total ribosome transit time at termination t ter can be

decomposed into a sum of peptide release time and ribosome recycling time. In the treatment

below, we consider a regime of binding-limited reactions for simplicity (rapid catalytic rate). A full

model with catalytic components can also be solved analytically (Appendix 2, section Non binding-

limited regime (one stop codon), Figure 2A). In the binding-limited regime (kcat ! ¥), the peptide

release time and ribosome recycling time are inversely proportional to the corresponding tlF

concentrations:

t ter ¼
1

kRFIon fRFI

þ 1

kRF4on fRF4

; (6)

where the association rate constants kion are rescaled by the factor’s sizes in proteome fraction units

(Materials and methods, section Conversion between concentration and proteome fraction). The

above expression constitutes the solution of the mass action scheme for termination, connecting fac-

tor abundances to termination time.

The termination time (Equation 6) can then be directly substituted into the optimality condition

(Equation 5) and solved in terms of l�:

f�
RFI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikRFIon

s

; f�
RF4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikRF4on

s

: (7)

If the reactions are not binding-limited, an additional catalytic term / l�=kcat is added to the mini-

mally required levels above (Appendix 2, section Non binding-limited regime [one stop codon]). The

square-root dependence in the optimal RF concentrations emerges from the f�1

i dependence of t i,

for example, for ribosome recycling t recyc /f�1

RF4, which becomes ðf�
i Þ�2 upon taking the derivative

in the optimality condition (Equation 5). The square root is then obtained by solving for f�
i . A similar

square-root dependence has been noted in optimization of the ternary complex and tRNA abundan-

ces (Ehrenberg and Kurland, 1984; Berg and Kurland, 1997). Analysis of tlF expression across

Figure 2. Case study with translation termination. (A) Coarse-grained translation termination scheme. (B) Illustration of the minimization of effective

proteome fraction corresponding to peptide chain release factors, leading to the equipartition principle.

Lalanne and Li. eLife 2021;10:e69222. DOI: https://doi.org/10.7554/eLife.69222 6 of 47

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.69222


slower growth conditions supports the derived square root dependence (Figure 4—figure supple-

ment 2). As a result of the square-root, the optimal RF concentrations are weakly affected by bio-

physical properties such as the association rate constants and protein sizes. In the binding-limited

regime above, the ratio of the optimal concentrations between RFI and RF4 is independent of the

growth rate and only depends on the kinetics of binding.

As a side note, the expression for termination time t ter in Equation 6 must be modified in a

regime where ribosomes are frequently queued upstream of stop codons. This would occur if the

termination rate were slow and approached initiation rates on mRNAs (Bergmann and Lodish,

1979; Lalanne et al., 2021). In this regime, queues of ribosomes at stop codons would incur an

additional time to terminate. In a general description, the resulting additional termination time can

be absorbed in a queuing factor Q : t full
ter :¼ t ter Qðt terÞ (Appendix 1 for derivation and discussion).

The resulting nonlinearity would forbid the decoupling in the optimization procedure between RFI

and RF4. Although absolute rates of termination are difficult to measure in vivo, translation on

mRNAs is generally thought to be limited at the initiation step (Laursen et al., 2005), and consis-

tently, ribosome queuing at stop codons in bacteria is not usually observed (except under severe

perturbations, e.g. Kavčič et al., 2020; Baggett et al., 2017; Mangano et al., 2020; Saito et al.,

2020; Lalanne et al., 2021). In the physiological regime of fast termination, the queuing factor con-

verges to 1, yielding simple solutions that depend only on biophysical parameters (Equations 7).

Equipartition between tlF and corresponding ribosomes
The optimal tlF concentrations (e.g. Equation 7) can also be intuitively derived from another view-

point. For each reaction in the translation cycle, we can define an effective proteome fraction allo-

cated to that process, combining the proteome fractions of the corresponding tlF and the

ribosomes waiting at that specific step. As an example, for the case of peptide chain release factor

(RFI) just treated, the effective proteome fraction includes the release factors and ribosomes with

completed peptides waiting at stop codons (dashed box in Figure 2A), that is, feff
RFI :¼ fRFI þ f

stop
ribo.

This effective proteome fraction corresponds to the total proteomic space associated to a tlF in the

context of the translation cycle.

During steady-state growth, the concentration of ribosomes waiting at any specific step of the

translation cycle is equal to the total active ribosome concentration multiplied by the ratio of the

transit time of that step to the full cycle: for example, here f
stop
ribo ¼

t stop

t tl
fact
ribo, where t stop ¼ 1=ðkRFIon fRFIÞ

is the time to arrival of RFI. Using Equation 1 for fact
ribo, the effective proteome fraction satisfies:

f
eff
RFI :¼fRFI þf

stop
ribo ¼fRFI þ

1

fRFI

l

kRFIon

‘ribo
h‘i

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

kRFIon

‘ribo
h‘i

s

:

(8)

In the last line, we used the inequality of arithmetic and geometric means (aþ b� 2
ffiffiffiffiffi
ab

p
) to obtain

the minimum of the effective proteome fraction. The equality holds when the two proteome frac-

tions are equal (fRFI ¼f
stop
ribo), which provides the solution for optimal fRFI :

f�
RFI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikRFIon

s

; (9)

Hence, we recover Equation 7 by minimizing the effective proteome fraction allocated to a given

process in the translation cycle (the above argument applies to the optimal free concentration in the

non-binding limited regime, see Appendix 2, section Non binding-limited regime (one stop codon)

for an example). From this perspective, optimization of the translation apparatus balances the pro-

duction cost of the enzyme of interest with the improved efficiency of a having less ribosomes idle at

that step, Figure 2B. The optimal abundance in our model corresponds to a point of equipartition:

the proteome fraction of free cognate factors equals the proteome fraction of ribosomes waiting at

the corresponding step (Figure 2B).
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Case study: Ternary complex and tRNA cycle (EF-Tu and aaRS)
We next consider a more complex step of the translation cycle – elongation – and demonstrate that

the optimality criterion (Equation 5) can similarly provide simple analytical solutions in the physiolog-

ically relevant regime. Translation elongation involves multiple interlocked cycles (one for each

chemical species) and enzymes (EF-Tu, EF-G, EF-Ts, aminoacyl-tRNA synthetases (aaRS), and more).

Our simplified kinetic scheme for translation elongation is shown in Figure 3A: charged tRNAs are

brought to ribosomes through a ternary complex (TC), corresponding to a bound tRNA and EF-Tu.

Following tRNA delivery and GTP hydrolysis, EF-Tu is released from the ribosome, and nucleotide

exchange factor EF-Ts recycles EF-Tu back into the active pool, after which EF-Tu can bind a

charged tRNA again and form another TC. At the ribosome, translocation to the next codon is

Figure 3. Case study with elongation factors (EF-Tu/aaRS). (A) Schematic of the translation elongation scheme, with the tRNA cycle, involving

aminoacyl-tRNA synthetases (aaRS) and EF-Tu. Reactions with a # have their association rate constants rescaled by a factor of n�1

aa » 1=20 through our

coarse-graining to a single codon model. Greyed out cycles (EF-Ts and EF-G) can be solved in isolation (Appendix 3, sections Optimal EF-Ts

abundance and Optimal EF-G abundance). (B) Exploration of the aaRS/EF-Tu expression space from numerical solution of the elongation model

(Appendix 3, section Optimal EF-Tu and aaRS abundances). The transition line (orange) marks the boundary between the EF-Tu limited and aaRS

limited regimes. Left panel shows the ternary complex concentration (which is closely related to the elongation rate, Equation 10). The ternary complex

concentration is scaled by the dissociation constant KTC to the ribosome A site (see Equation 39). Middle panel shows the free charged tRNA fraction.

Right panel shows the free EF-Tu fraction (fTuGTP denotes the proteome fraction of EF-Tu GTP that can bind to charged tRNAs to form the ternary

complex). The star marks the optimal solution, as described in the text.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source code 1. Source code to obtain panel (B) can be found in the associated scripts submitted with this work.

Figure supplement 1. Geometrical interpretation of the sharpness of the separation of the aaRS limited and EF-Tu limited regimes.
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catalyzed by EF-G, followed by release of uncharged tRNAs. Aminoacyl-tRNA synthetases then

charge tRNAs to complete the elongation cycle.

To reduce the complexity due to different tRNA isoacceptors and aaRSs, we self-consistently

coarse-grained the translation elongation cycle to have a single codon (derived in Appendix 3, sec-

tion Coarse-grained one-codon model). The resulting model harbors a single effective species for

tRNA, aaRSs, and TCs, respectively. A rescaling factor (1=naa » 1=20, estimated in section Estimation

of coarse-grained rates) arises in the procedure to decrease the rates of codon specific reactions

and can be attached to either the respective rate constants or chemical species concentrations. In

our formulation, we choose to rescale the association rate constants such that the coarse-grained

abundance for each effective species corresponds to the sum over all individual codon-specific com-

ponents. For example, faaRS in our coarse-grained model corresponds to the summed proteome

fraction of all aaRSs in the cell, and its association rate constant with the total tRNAs is rescaled by a

factor of 1=naa.

As a result of this choice of rescaling within our coarse-grained model, there are two classes of

reactions in the elongation cycle that are distinguished by different kinetics: those that were codon

specific (scaled by 1=naa) and those that are not. Codon-specific reactions, for example, aaRS binding

to cognate tRNAs and TC binding to cognate codons, are coarse-grained into one-codon reactions

with reduced association rate constants (marked by # in Figure 3A). By contrast, codon-agnostic

reactions do not incur such a rescaling and are thus much faster. We refer to this as a separation of

timescale between the two classes of reactions (codon-specific vs. codon-agnostic), and note that

this is not a reflection of slower underlying microscopic bimolecular reaction rates, but rather a result

of our choice of variable in the coarse-graining.

Similar to translation termination, the factor-dependent ribosome transit time through a single

codon (t aa) is comprised of two steps, corresponding to binding of the TC and EF-G, respectively

(formal derivation and non binding-limited regime in Appendix 3, section Coarse-grained translation

elongation time):

t aa ¼
1

kTCon
naa

fTC

þ 1

kGonfG

: (10)

The coarse-grained factor-dependent portion of the total translation elongation time in our

model is then given by the single codon time above multiplied by the average number of codons

per protein, that is, h‘it aa. As discussed above, the rescaling of the TC association rate constant by

n�1

aa arises as a result of our coarse-graining to a one-codon model (Appendix C, section C.1 Coarse-

grained one-codon model). Note that the ternary complex concentration, fTC, is a nonlinear function

of the concentrations of all elongation factors (including fG).

Despite the complexity of t aa as a function of the ftlF;i, the fact that all fluxes are equal in steady-

state allows several steps to be isolated and solved separately (EF-Ts and EF-G, greyed out in

Figure 3A, respectively solved in Appendix C, sections C.3.3 Optimal EF-Ts abundance and C.3.4

Optimal EF-G abundance). For example, the approximate binding-limited solution for optimal EF-G

concentration parallels that for termination factors:

f�
G »

ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

kGon

s

: (11)

Importantly, the optimum for EF-G is larger than the optimum for RFs by a factor
ffiffiffiffiffiffi

h‘i
p

, reflecting

that the typical translation cycle to produce a protein requires h‘i steps catalyzed by EF-G and only

one step for RFs (i.e. h‘it aa enters the optimality condition, Equation 5, in contrast to t ter which is

not multiplied by a scaling factor). The square root dependence arises here for the same reason as

in the case of translation termination (derivative of f�1).

In contrast to EF-G and EF-Ts, EF-Tu and aaRS cannot a priori be treated in isolation because the

TC is composed of both EF-Tu and charged tRNAs. Still, the separation of timescales within our

coarse-grained model (see Appendix C, section Interpretation of the sharp separation between aaRS

and EF-Tu limited regimes) simplifies the solution considerably. Indeed, rapid binding of charged

tRNAs to EF-Tu leads to either component being limiting for ternary complex concentration in most

of the aaRS/EF-Tu expression space, leading to two clearly delineated regimes (Figure 3B). In one
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regime, charged tRNAs are limiting (low aaRS), whereas EF-Tu is limiting in the other (low EF-Tu).

These regimes are separated by a narrow transition region, whose sharpness is a reflection of the

smallness of the rate rescaling parameter n�1

aa (see Appendix 3, section Interpretation of the sharp

separation between aaRS and EF-Tu limited regimes). We term the focal region separating the two

regimes in the aaRS/EF-Tu expression space the ’transition line’ (see 1 for derivation and additional

details).

The transition line corresponds to conditions in which EF-Tu and aaRS are co-limiting for TC con-

centration. In the EF-Tu limited region, increasing aaRS abundance does not increase ternary com-

plex concentration: since all EF-Tu proteins are already bound to charged tRNAs, increasing tRNA

charging cannot further increase TC concentration. Conversely, in the aatRNA limited region,

increasing EF-Tu abundance does not increase TC concentration: since all charged tRNAs are

already bound by EF-Tu, increasing EF-Tu concentration does not alleviate the requirement for more

charged tRNAs. Given that the optimality condition requires non-zero increase in ternary complex

concentration with increasing factor abundance (Equation 5 using t aa from Equation 10), the opti-

mal EF-Tu and aaRS abundances must be on the transition line.

Which point on the transition line corresponds to the optimum? Note that inside the EF-Tu lim-

ited region, the ternary complex concentration is entirely set by the total EF-Tu concentration:

fTC »fTu (since most EF-Tu proteins are bound by charged tRNAs, Figure 3—figure supplement 1).

As an approximation resulting from the narrow range of transition region (Figure 3 and Figure 3—

figure supplement 1), we assume that the EF-Tu limited regime solution fTC »fTu holds up to very

close to the transition line. Replacing fTC by fTu in the elongation time Equation 10 and substituting

in the optimality condition (Equation 5), the approximate optimal abundance for EF-Tu (the full solu-

tion includes additional terms from the EF-Ts cycle, section Optimal EF-Tu and aaRS abundances)

can then be obtained in the same way as for translation termination factors:

f�
Tu »

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribonaal
�

kTCon

s

: (12)

Importantly, compared to the solution for EF-G, the above is multiplied by an additional factor of
ffiffiffiffiffiffiffi
naa

p
. This contribution arises from the rescaling of the association rate for the ternary complex to

the ribosome in our coarse-grained one-codon model, increasing the requirement on EF-Tu

abundance.

From the necessity for the combined EF-Tu and aaRS solution to fall on the transition line, the

approximate solution for the optimal aminoacyl-tRNA synthetase abundance is then the intersection

(yellow star in Figure 3B) of the transition line with the EF-Tu-only solution described above (dashed

blue line in Figure 3B, derivation of solution in Box 1).

For the above derivation to be valid, the total number of tRNAs in the cell must be sufficient to

accommodate all ribosomes (about two per ribosome, A- and P-sites) and binding to all EF-Tu

(about gt4 per ribosome based on endogenous expression stoichiometry [Li et al., 2014;

Lalanne et al., 2018]). The number of tRNAs per ribosomes in the cell should thus be at least 6�.

Remarkably, estimates of this ratio in the cell suggest that this is barely the case (between 6 and 7

tRNAs/ribosome at fast growth [Dong et al., 1996]). Although our model treats the total tRNA

abundance as a measured parameter and omits its selective pressure (see Hu et al., 2020 which

includes RNA mass in their optimization procedure), the abundance of three core components of the

tRNA cycle appear to be at the special point where the transition line plateau, that is set by total

tRNA abundance, just crosses the EF-Tu-only optimum (blue line in Figure 3B). At this point, all

three components are co-limiting.

Optimal stoichiometry of mRNA translation factors
Analogous to the case studies above, optimal concentrations for all core translation factors can be

solved using the optimality condition (Equation 5) and their respective kinetics schemes (the case of

translation initiation is solved in Appendix 4). The analytical forms of the optimal solutions are shown

in Table 1. In the binding-limited regime, the ratios of growth-optimized tlF concentrations are inde-

pendent of the growth rate (except for aaRS), and are dependent only on basic biophysical parame-

ters, such as protein sizes and diffusion constants.
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Box 1. The EF-Tu and aaRS transition line.

Within our framework, optimality of translation factors is dictated by how coarse-grained ribo-

some transit times depend on factors’ abundances (Equation 4). For elongation factors aaRS

and EF-Tu, contribution to the ribosome elongation time (t el ¼ h‘it aa) is through the concen-

tration of the ternary complex (Equation 10). Obtaining the optimal EF-Tu and aaRS abun-

dance therefore requires solving for the ternary complex concentration as a function of these

two variables.

The steady-state solution for the ternary complex concentration in the aaRS/EF-Tu expression

displays two sharply separated regime (Figure 3B), separated by a narrow transition region

(the ‘transition line’). As described in the main text, the transition line plays a critical role for

identifying the optimal EF-Tu and aaRS abundances within our model. Away from the line,

there is an unproductive excess of either factors, viz. either qfTC=qfTu » 0 or qfTC=qfaaRS » 0.

Here, we derive the equation for the transition line. First, we leverage the constraint imposed

by the conservation of tRNAs, which in our model is:

tRNAtot ¼ ½R;� þ 2½RTC� þ 2½RtRNA� þ 2½RG�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/ l=kmax
el

þ½tRNA� þ ½tRNA:aaRS� þ ½aatRNA� þ ½TC�:

Above, tRNAtot corresponds to the total tRNA concentration in the cell. In addition: R;: elon-
gating ribosomes with empty A-site, RTC: ribosomes with bound TC, RtRNA: ribosomes with

filled A-site and no bound factor, RG: ribosomes with bound EF-G, tRNA: free uncharged

tRNAs, tRNA:aaRS: tRNA and aaRS complex, aatRNA: free charged tRNAs, and TC: ternary

complex. Here, we assume that the elongating ribosomes always have a tRNA in the P-site,

and a negligible occupancy in the E-site.

Using the system of equations from the mass action scheme at steady-state (section Transla-

tion elongation: optimal solutions), variables in the tRNA conservation equation above can be

solved for in terms of the total abundance of EF-Tu and aaRS, the growth rate, and the

steady-state ternary complex concentration. We note that the three ribosome species with a

filled A site (RTC, RtRNA, and RG) do not depend on EF-Tu concentration, and can be coarse-

grained to a term proportional to l=kmaxel , where kmaxel is the maximal translation elongation rate

(not including the TC diffusion contribution) (Dai et al., 2016). In the binding-limited regime,

converting to proteome fraction units, and leaving out the EF-Ts contribution without loss of

generality (see section Optimal EF-Tu and aaRS abundances for a full treatment), we have:

 tRNA ¼
lðfTCÞ
kTCon
naa

fTC
|fflfflffl{zfflfflffl}

R;

þ2lðfTCÞ
kmaxel

þ lðfTCÞ
kaaRSon

naa
faaRS

|fflfflfflfflffl{zfflfflfflfflffl}

free uncharged tRNA

þ lðfTCÞ
kTuonfTuGTP

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

free aatRNA

þfTC

‘Tu
;

where fTuGTP :¼fTu�fTC:

(13)

Above,  tRNA is a normalized tRNA concentration (see Equation 28). We have explicitly

highlighted that the growth rate is dependent on EF-Tu and aaRS only through the ternary

complex concentration fTC. From the definition of of the elongation time (Equation 10), we

have lðfTCÞ /fTC=ðKTC þfTCÞ(Klumpp et al., 2013; Dai et al., 2016) (definition of KTC in

terms of model parameters: supplement, Equation 39). Equation 13 is closed and can be

solved for fTC at given abundances of EF-Tu ðfTuÞ and aaRS (faaRSÞ.
Although Equation 13 is non-linear and cannot be solved exactly in general, the separation of

timescales in our coarse-grained description simplifies the problem considerably. Indeed,

numerical solutions of Equation 13 (Figure 3B, section Optimal EF-Tu and aaRS abundances)

show that the behavior of TC concentration in the two-dimensional EF-Tu/aaRS expression

space is split into two distinct regimes, sharply delineated by a transition line (orange line in

Figure 3B, a geometric heuristic explaining the sharp separation between the regimes is pre-

sented in Appendix 3, section Interpretation of the sharp separation between aaRS and EF-Tu

limited regimes, Figure 3—figure supplement 1). Since TC concentration only increases as a

function of both aaRS and EF-Tu on the transition line, the optimal solutions for the two factors

must fall on it.
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To obtain the numerical values of association rate constants needed for calculating the optimal

tlF stoichiometry (Table 1), we used the measured k̂TCon in vivo and estimated all other association

rate constants using a biophysically motivated scaling (k̂ denotes the raw association rate constant in

units mM�1s�1, which is different from the rescaled k, see section Conversion between concentration

and proteome fraction). To our knowledge, the binding between TC and ribosomes, k̂TCon ¼ 6:4

mM�1s�1 (Dai et al., 2016), is the only measured association rate constant for any tlFs in a physiolog-

ical context. We estimate the association rate constants for other reactions by scaling k̂TCon by the

respective diffusion coefficients of the chemical species, that is for reaction involving species A and

B : k̂ABon =k̂
TC
on ¼ ðDA þ DBÞ=ðDTC þ DriboÞ, where Di is the diffusion constant for the molecular species i

(see Appendix 5—table 2). Diffusion constants for several tlFs have been measured experimentally

(Bakshi et al., 2012; Sanamrad et al., 2014; Plochowietz et al., 2017; Volkov et al., 2018), and

uncharacterized ones can be estimated using the cubic-root scaling with number of codons per pro-

tein from the Stokes-Einstein relation (Nenninger et al., 2010) (see Appendix 5—table 1). For sim-

plicity, this approach assumes that reactive radii and orientational constraints are similar for the

different reactions (see 3 Discussion for additional assumptions). These strong assumptions are nec-

essary given the lack of in vivo biochemical parameter measurements, and can be relaxed as refined

empirical determination for more physiological association rates become available in the future.

Nonetheless, we note that the square-root dependence on these parameters (Table 1) for our pre-

dictions makes the numerical values less sensitive to possible tlF-specific effects.

The estimated optimal tlF concentrations show concordance with the observed ones, both in

terms of the absolute levels and the stoichiometry among tlFs (Figure 4 for fast growth, see

Supplementary file 1 for data and Figure 4—figure supplement 1 for additional growth condi-

tions). A hierarchy of expression levels emerges such that the factors involved in elongation are

more abundant compared to initiation and termination factors. The separation of these two classes

is driven by the scaling factor
ffiffiffiffiffiffi

h‘i
p

» 14 in our analytical solutions, which reflects the fact that the flux

for elongation factors is h‘i» 200 times higher than that for initiation and termination factors. Within

An expression for the transition line can be derived. Conceptually, the region of transition

between the two regimes has both a low concentration of free EF-Tu molecules (fTuGTP=fTu » 0)

and a low concentration of free charged tRNAs (½aatRNAs�=tRNAtot » 0). Although no values in

the aaRS/EF-Tu expression plane can formally satisfy these two conditions simultaneously, the

transition line is specified by setting the free charged tRNA term to 0 and replacing fTC by fTu

(no free EF-Tu) in Equation 13. We denote by ð�fTu; �faaRSÞ points satisfying the resulting

requirement, namely (see Equation 40 for non binding-limited case):

Transition line : tRNA �l �fTu

� �
naa

kTCon
�fTu

� 2l �fTu

� �

kmax
el

�
�fTu

‘Tu
:¼ DtRNAð�fTuÞ ¼

naal �fTu

� �

kaaRSon
�faaRS

; (14)

where we have defined the excess tRNA (DtRNA) above. In words, DtRNA corresponds to the

available tRNAs after the tRNAs sequestered on ribosomes and EF-Tu in the TC are subtracted

from the total tRNA budget. At large aaRS concentrations, the transition line plateaus as a

result of the finite total tRNA budget within the cell (Figure 3B, middle panel). The plateau is

reached once all tRNAs aaRS are charged: the system is then no longer limited by aaRSs, but

by the amount of tRNAs.

Using the requirement that the optimum must fall on the transition line and the approximate

solution for the EF-Tu optimum, the approximate optimal solution for aaRS is, from Equa-

tion 14 (section Optimal EF-Tu and aaRS abundances for non binding-limited solution):

f�
aaRS »

naal
�

kaaRSon D

�
tRNA

;where :D�
tRNA ¼  tRNA �

naal
�

kTCon f
�
Tu

� 2l�

kmaxel

�f�
Tu

‘Tu
(15)

Within our model, the optimal aaRS concentration is thus set by the excess tRNAs at the EF-

Tu optimum (D�
tRNA).

Lalanne and Li. eLife 2021;10:e69222. DOI: https://doi.org/10.7554/eLife.69222 12 of 47

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.69222


each class, the finer hierarchy of expression levels can also be further explained by simple parame-

ters. For example, EF-Tu is predicted to be more abundant than EF-G by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

naa‘Tu=‘G
p

» 3:3

(observed fTu=fG: E. coli 3.9, B. subtilis 2.7, V. natriegens 3.3). A higher abundance is required for

EF-Tu because it is bound to the different tRNAs, which effectively decreases the concentration by a

factor of naa » 20 (see section Estimation of coarse-grained rates for derivation and discussion of why

the factor is not equal to the number of different tRNAs). Taken together, our model offers straight-

forward explanations for the observed tlF stoichiometry.

For a few tlFs, the observed concentrations are two- to fivefold higher than the predicted optimal

levels (e.g. EF-Ts, RF4, and IF1 in Figure 4). A potential explanation is that the corresponding reac-

tions may not be binding or diffusion-limited, which would lead to a non-negligible fraction of tlFs

sequestered at the catalytic step and thereby require higher total concentrations. Indeed, recent

detailed modeling of the EF-Ts (Hu et al., 2020) cycle estimated only a small fraction (6% to 48%) of

its abundance was in the free form in the cell, consistent with the large deviation we observe for this

factor from our diffusion only prediction. Our optimization model can also be solved analytically in

the non-binding-limited regime (Table 1), with the finite catalytic rate leading to an additional contri-

bution of the form / ‘l�=kcat. However, the numerical values for these solutions are in general diffi-

cult to obtain because the estimates for catalytic rates are sparse and often inconsistent with

estimates of kinetics in live cells. As an example, median estimated aaRS catalytic rates (Jeske et al.,

2019) measured in vitro is » 3 s�1, well below the minimal value of 15 s�1, required to sustain trans-

lation flux at the measured value (Appendix 5), suggesting substantial deviation between in vitro

and in vivo kinetics. While technically demanding, the fraction of free vs. bound factors can in princi-

ple be determined through live cell microscopy of tagged factors by partitioning the diffusive states

of the tagged enzyme. Using that approach, Volkov et al., 2018 estimated that EF-Tu was in its

bound state <10% of the time (consistent with our diffusion-limited prediction closed to the

observed value for this factor).

Table 2. Compilation of predicted optimal abundances for translation factors.

The optimal abundance is the sum of the terms in each row. Columns correspond to contributions of

different nature (diffusion of factor itself, diffusion of other factors involved in the factor’s cycle, cata-

lytic term). Terms must be multiplied by the common factors indicated in each column’s header (/).

For RF1+RF2, d :¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fUAGfUGA

p
(see section Optimal abundances for RF1/RF2).

Factor Diffusion (direct) /
ffiffiffiffiffi

l�

P

r

Diffusion (other) /
ffiffiffiffiffi

l�

P

r

Catalytic sequestration / l�

IF1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘IF1

h‘ik̂IF1on

1þ ‘IF2 þ ‘IF3
‘ribo

� �s

‘IF1
h‘i

ffiffiffiffiffiffiffiffi

h‘i
k̂50Son

s
‘IF1
h‘i

1

kRNA
þ 1

kinicat

� �

IF2
ffiffiffi

3

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘IF2

h‘ik̂IF2on

s

‘IF2
h‘i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘IF1

h‘ik̂IF1on

s

þ
ffiffiffiffiffiffiffiffi

h‘i
k̂50Son

s !
‘IF2
h‘i

1

kRNA
þ 1

kinicat

� �

IF3
ffiffiffi

3

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘IF3

h‘ik̂IF3on

s

‘IF3
h‘i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘IF1

h‘ik̂IF1on

s

þ
ffiffiffiffiffiffiffiffi

h‘i
k̂50Son

s !
‘IF3
h‘i

1

kRNA
þ 1

kinicat

� �

EF-G
ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘G

k̂Gon

s
‘G
kGcat

EF-Ts
ffiffiffiffiffiffiffiffiffiffiffiffi

‘Tu‘Ts

k̂Tson

s
‘Ts
kTscat

EF-Tu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘Tunaa

k̂TCon

s ffiffiffiffiffiffiffiffiffiffiffiffi

‘Tu‘Ts

k̂Tson

s

‘Tu
1

kTCcat
þ 1

kTscat

� �

RF1+RF2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘RFI 1þ dð Þ
h‘ik̂RFIon

s
‘RFI

h‘ikRFIcat

RF4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribo‘RF4

h‘ik̂RF4on

s
‘RF4

h‘ikRF4cat
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Another potential explanation for the observed deviations from our predictions is that the selec-

tive pressure for these tlFs may be lower compared to the more highly expressed tlFs. This explana-

tion is unlikely both because their stoichiometry are observed to be conserved (Figure 1B,

Figure 4—figure supplement 2) and given that the expression of other lowly expressed tlFs (e.g.

RF1, RF2, and individual aaRSs) has been shown to acutely affect cell growth (Lalanne et al., 2021;

Parker et al., 2020). Nevertheless, the deviations from the predicted optimal levels suggest that a

more refined model may be required than our first-principles derivation.

Discussion
Despite the comprehensive characterization of their molecular mechanisms, the ‘mixology’ for the

protein synthesis machineries inside living cells has remained elusive. Here, we establish a first-princi-

ples framework to provide analytical solutions for the growth-optimizing concentrations of transla-

tion factors. We find reasonable agreements between our parameter-free parsimonious predictions

and the observed tlF stoichiometry (Figure 4). These results provide simple rationales for the hierar-

chy of expression levels, as well as insights into several construction principles for biological

pathways.

Figure 4. Predicted optimal abundance (no catalytic contribution, kcat ! ¥) versus observed abundance. Measured proteome fractions are the average

of E. coli, B. subtilis, V. natriegens (Lalanne et al., 2018). We note that given the sensitivity of the optimal aaRS abundance on the total tRNA/ribosome

ratio (visually: yellow star’s position in Figure 3B moves rapidly along x-axis upon changes in plateau of transition line), the prediction for aaRS should

be interpreted with caution. Data and predicted values can be found in Supplementary file 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Measured and predicted proteome fraction for core translation factors in individual conditions.

Figure supplement 2. Expression stoichiometry of core translation factors in different species and at different growth rates.
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An important implication from the agreement between observed stoichiometries and our predic-

tions is that most tlFs are co-limiting for growth. Previous models have focused on expression opti-

mization for the full translation sector, ribosomes (Scott et al., 2010; Belliveau et al., 2021), and

the abundant elongation factors EF-Tu (Ehrenberg and Kurland, 1984; Klumpp et al., 2013). In a

recent study, Hu and colleagues considered additional RNA components and EF-Ts in their optimiza-

tion procedure (Hu et al., 2020). In line with the conclusions of these previous studies, our results

demonstrate that multiple components of the translation machinery, regardless of their observed

expression level, are simultaneously co-limiting for cell growth. By virtue of the interlocked transla-

tion cycles at steady state, the flux through every cycle must be matched. In our model, the optimal-

ity occurs when there are just enough tlFs to support the required flux in every cycle, such that the

proteome fraction of free factors equals that of waiting ribosomes at that step (equipartition). If the

concentration of any one tlF falls below the optimal point, it becomes the limiting factor for protein

synthesis and growth. This result is supported by experimental evidence that slight knockdowns of

individual RFs and aaRSs are detrimental to growth (Parker et al., 2020; Lalanne et al., 2021). Figu-

ratively, the translation apparatus is analogous to a vulnerable supply chain, in which slowdown in

any of the steps affects the full output.

In the binding-limited regime, the optimal tlF stoichiometry is independent of the specific growth

rate (except for aaRS). This is consistent with the observation that relative tlF expression remains

unchanged in E. coli in conditions with doubling times ranging from 20 min to 2 hr (Lalanne et al.,

2018; Li et al., 2014; Figure 4—figure supplement 2A).

Our results are also consistent with the maintenance of the relative tlF expression across large

phylogenetic distances even though the underlying regulation and cellular physiology has diverged

(Lalanne et al., 2018; Figure 1B, and additional comparison to slow growing C. crescentus in Fig-

ure 4—figure supplement 2A). Under the assumption of diffusion-limited association to estimate

parameters, the optimal tlF stoichiometry depends only on simple biophysical parameters, including

protein sizes and diffusion constants, that are likely conserved in distant species. It remains to be

determined if similar biophysical principles apply to the other pathways that also exhibit conserved

enzyme expression stoichiometry.

In principle, our model can also make predictions on the growth defects at suboptimal tlF concen-

trations. However, experimentally testing these predictions will be difficult due to secondary effects

of gene regulation that are not considered in our model near optimality. For example, we have

recently shown that small changes in RF levels lead to idiosyncratic induction of the general stress

response in B. subtilis due to a single ultrasensitive stop codon (Lalanne et al., 2021). As a result,

the growth defect not only arises from reduced translation flux, but is in fact dictated by spurious

regulatory connections that are normally not activated when tlF expression is at the optimum. We

propose that tlF expression may be set at the optimal levels as our first-principles model suggests

but entrenched by connections in the regulatory network. To predict the full expression-to-fitness

landscape away from the optimum, a more comprehensive model may be required to take into

account all the molecular interactions in the cell (Karr et al., 2012; Macklin et al., 2020).

Our coarse-graining approach has several limitations in its connection to detailed biochemical

parameters. Foremost, coarse-grained association rate constants remain difficult to numerically esti-

mate, and possibly neglect important features. In particular, given the sparsity of available in vivo

rate constants, we estimate k̂on for all tlFs reactions by scaling the measured TC association rate con-

stant (k̂TCon ) by the respective diffusion coefficients. This approach generates more plausible values

than the unrealistic overestimate from Smoluchowski theory (diffusion-limited rate for perfectly

absorbing spheres, see Appendix 5). However, the simplifying assumptions that certain molecular

properties of modeled reactions are similar (e.g. the size of the reactive surfaces, orientational con-

straints of the bimolecular interaction, and possible non-cognate binding events) may have to be

modified for more detailed models. We also do not explicitly consider off-rates in our model.

Instead, our parameters correspond to effective rate constants that account for possible sequential

binding and unbinding events, that is, ~kon ¼ kon=nbind, with nbind ¼ kcat=ðkcat þ koff Þ. The effective associ-

ation rate constants in our model thus contain information about catalytic and possible proofreading

steps, which could be tlF-specific and are challenging to estimate. All these effects may contribute

to the discrepancy between our predicted and observed tlF concentrations. As more physiological

and molecular data become available, these tlF-specific features could be used to individually refine
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our estimate for the association rates constants and our predictions. For example, elaborate calcula-

tions from structural data could account for rotational constraints (Schlosshauer and Baker, 2004),

but are beyond the scope of the present work. Overall, we expect these tlF-specific corrections to

be of limited influence on the final predictions due to the square-root dependence of the optimal

expression (Table 2). We further note that a number of conclusions from our model, such as the fac-

tor of
ffiffiffiffiffiffi

h‘i
p

separating the optimal abundances of elongation from initiation/termination tlFs, are

generic and do not depend on the specific association rates.

Taken together, our model provides the biophysical basis for the stoichiometry of translation fac-

tors in living cells. The first-principles approach complements more comprehensive models that

include many biochemical parameters (Hu et al., 2020; Vieira et al., 2016), while providing intuitive

rationales for the expression hierarchy. We anticipate that our approach will be generalizable to elu-

cidate or design enzyme stoichiometry of other biological pathways, especially those whose activities

are required for cell growth.

Materials and methods

Average number of codons per protein: h‘i
We calculate the average number of codons per protein, weighted by expression, as

h‘i :¼
P

i ei‘iP

i ei
; (16)

where ‘i is the number of codon for the protein product of gene i, and ei is the protein synthesis

rate (as estimated from ribosome profiling [Li et al., 2014; Lalanne et al., 2018]) for gene i. For a

stable proteome (in fast growing bacteria, the cell doubling time is shorter than the active degrada-

tion of most proteins [Larrabee et al., 1980]), the protein synthesis rate equals to the proteome

mass fraction (Li et al., 2014). Changes in the expression of genes across growth conditions do not

lead to substantial changes in h‘i. In E. coli, across growth conditions spanning »20 min doubling

time to »120 min, h‘i changes by about 20%. Specifically, we find h‘i ¼ 196, 210, and 240 in respec-

tively MOPS complete (»20 min doubling time [Li et al., 2014]), MOPS minimal (»56 min doubling

time [Li et al., 2014]), and NQ1390 forced glucose limitation (»120 min doubling time [Mori et al.,

2021]), based on ribosome profiling data. Here for simplicity, we take h‘i»200 throughout.

Conversion between concentration and proteome fraction
Throughout, we use both units of concentration (molar), denoted as for example, ½A� for protein A,

and proteome fraction, denoted by fA (Scott et al., 2010). The correspondence between the two is

fA ¼ ½A�‘A=P, where ‘A is the number of amino acid in protein A, and P is the in-protein amino acid

concentration in the cell. P » 2:6� 10
6
mM, and has a value approximately independent of growth

rate (Klumpp et al., 2013; Bremer and Dennis, 2008). This change in units also relates to how asso-

ciation constants are defined in units of proteome fraction: k̂on½A� :¼ konfA, where the hat �̂ refers to

the association constant in usual units of mM�1 s�1 (used to connect to empirical data). Hence,

kon :¼ k̂onP‘
�1 is the rescaled association rate in units of proteome fraction.

Equality of ribosome flux in steady-state
In steady-state exponential growth, the ribosome flux in and out of each intermediate state is equal

to the total flux. This results from the fact that no ribosome can accumulate in any intermediate

state. Since the flux out of state i is given by fi
ribo=t i, we must have:

l‘ribo
h‘i ¼fact

ribo

t trl

¼fini
ribo

t ini

¼fel
ribo

t el

¼fter
ribo

t ter

: (17)

As a consequence, the proportion of ribosome in each state is equal to the proportion of time

spent at that given step, for example for translation initiation:
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fini
ribo

fact
ribo

¼ t ini

t ini þ t el þ t ter

:

Protein production flux and growth rate
In order to write the mass action kinetic scheme for more complex models, it is useful to recast our

framework in terms of the protein number production flux J, defined as the number of full length

proteins produced per cell volume per unit time. The production of each protein requires a ribo-

some to go through the full synthesis cycle, and as such J provides a convenient quantity in mass

action schemes formulated in molar units.

In steady-state of exponential growth (Monod, 1949; Scott et al., 2010; Dai et al., 2016), there

is a direct relationship between the growth rate l (defined through dN=dt ¼ lN, where N is the num-

ber of cells per unit volume of culture) and the protein production flux J. Explicitly, the protein mass

accumulation rate is lM, where M is the total protein mass per unit volume of culture. If V is the

mean cell volume, then lM=V ¼ Nmaah‘iJ, where maa is the mean amino acid mass. Defining

P :¼ M=ðmaaNVÞ, the in-protein amino acid concentration per cell (Materials and methods, section

Conversion between concentration and proteome fraction), the connection between protein produc-

tion flux J and growth rate l is then J ¼ Pl
h‘i. This relationship will be used to convert between molar

and proteome fraction in some equations below.

Summary of optimal solutions
Solutions for the factor predicted optimal abundances as a function of effective biochemical parame-

ters and the growth rate at the optimum, are presented in Table 1. The table breaks down terms in

each solution by categories: direct diffusion term (arising from diffusive search time), catalytic

sequestration, and delay incurred by the diffusion of other proteins in part of the cycle of the factor

of interest. Solutions are listed in terms of on-rate k̂on (units of mM
�1s�1). The aaRS solution follows a

different form:

f�
aaRS ¼ naa‘aaRSl

�

k̂aaRSon PD�
tRNA

þ ‘aaRSl
�

kaaRScat

;

with D

�
tRNA : ¼ tRNAtot

P
� l�

kTCon f
�
TC

� 2l�

kmaxel

�f�
TC

‘Tu
� l�

kaaRScat

; and f�
TC :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

naa‘ribo‘Tul
�

k̂TCon P

s

:

(18)
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Appendix 1

Coarse-grained transition times: models of ribosome traffic
Our coarse-grained model of ribosome transitions between categories of initiation, elongation, and

termination need to be distinguished from the individual molecular times of the respective steps in

one important regard: ribosome traffic on mRNAs can lead to effective delays arising from transient

queuing. For example, if translation termination is slow and ribosomes start to pile up and form

queues upstream of stop codons on mRNAs, the molecular time of termination (time between ribo-

some arrival to the stop codon and its recycling to the free ribosome pool) will not be a correct

reflection of the actual termination time of a ribosome, because of the additional wait time in the

queue. A similar argument can be made for transient queuing forming in the body of genes for elon-

gating ribosomes.

We connect these two (molecular and coarse-grained) levels of description by noting that our

mass action schemes relating the translation factor abundance to the times of the specific steps can

be used as input parameters in traffic models of ribosome movement along mRNAs taking into

account possible many-body interactions (e.g. totally asymmetric exclusion processes [Shaw et al.,

2003; Kavčič et al., 2020]). Solving these traffic models can then be used to obtain transition times

in our coarse-grained translation cycle model. As we show below, corrections arising from transient

queuing are small (for endogenous translation factor abundances) based on current estimates the

absolute rates of initiation, elongation, and termination, on individual mRNAs, such that stochastic

queuing does not play a dominant role in determining optimal translation factor expression levels.

As a first example, we relate the on-stop codon molecular termination time t ter, which we obtain

from solving our mass action scheme (see Equation 6), to the termination time in presence of queu-

ing: t full
ter . The difference between the two, as described above, being related to possible queues

upstream of stop codons leading to further delays in the process of translation termination, and thus

to a longer termination time than that of the molecular on-stop codon termination. The delay factor

will be denoted Q t terð Þ, defined through:

t

full
ter :¼ t terQ t terð Þ:

To derive the expression for the Q factor, note that in steady-state, ribosome numbers in a given

state is directly proportional to the time to transition out of that state. Let mi be the mRNA concen-

tration for gene i in the cell, nterðai;t terÞ the number of terminating ribosomes (including queues if

present) on a transcript with per mRNA translation initiation rate (i.e. translation efficiency [Li, 2015])

ai, then:

t

full
ter /

X

i

mi nterðai;t terÞ;

whereas

t ter /
X

i

mi n
;Q
ter ðai;t terÞ;

with n;Qter ðai;t terÞ the average number of terminating ribosomes on a transcript with translation effi-

ciency ai, assuming no queue upstream of the stop codon. Note that nterðai;t terÞ � n;Qter ðai;t terÞ (the

differences being queued ribosomes). Hence, the queuing factor Q is:

Q t terð Þ :¼ t

full
ter

t ter

¼
P

imi nterðai;t terÞ
P

imi n
;Q
ter ðai;t terÞ

:

Formally, nter can be obtained by solving a TASEP model (Shaw et al., 2003), but a simplified

queue model (Bergmann and Lodish, 1979; Lalanne et al., 2021) disregarding spatial information

recapitulates the statistics of queue formation (as verified by full stochastic simulations, data not

shown). The state space of the queue model is the number of ribosomes N in the queue. Ribosomes

arrive at a rate a (initiation rate on the transcript), and leave at the molecular termination rate t

�1

ter .

The ribosome arrival rate at the queue is rigorously correct in steady-state, unless the queue
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becomes large enough to affect the initiation process (fully jammed transcript), or RNA degradation.

The stochastic process (away from the jammed state) is then described by: N !Nþ 1 at rate a, and

N !N� 1 at rate t

�1

ter for N>0. The probability for the queue to have N ribosomes, PðNÞ, can be

obtained as the steady-state from the resulting master equation, leading to a geometric series:

PðNÞ ¼ at terð ÞN 1�at terð Þ. Hence, the prevalence of higher order queues scales as the ratio of the

initiation to termination rate on the transcript. The average queue size, corresponding to nterðai;t terÞ,
is:

nterðai;t terÞ»

t terai

1� t terai

; t

�1

ter � aið1þ ‘footprint‘�1

i Þ;

‘i
‘footprint

; t

�1

ter<aið1þ ‘footprint‘�1

i Þ:

8

>><

>>:

Above, the solution of the simple model is truncated at the value where the transcript becomes

fully jammed with ‘i=‘footprint ribosomes (‘i and ‘footprint being the size of gene i and the size occupied

by a ribosome respectively). The no queue ribosome number is simply equal to a model where

queues with N>1 do not arise, hence n;Qter ðai;t terÞ ¼ ait ter. Therefore, the queuing factor, under the

stated assumptions (and assuming no transcript is in the jammed state), is

Q t terð Þ»
P

imi
ai

1�t teraiP

imiai

:

Expanding for fast termination gives Q� 1¼ t terha2i
hai as the leading order correction, where the

averages are weighted by mRNA levels. The above was derived assuming exponentially distributed

initiation and termination times, but could be modified to account for more complex dynamics of

the initiation and initiation steps.

The queuing factor can be estimated based on absolute measurements of the initiation and termi-

nation rates in cells. Kennell and Riezman, 1977 estimate 3.2 s between initiation events on the

lacZ mRNA (at 48 min per cell doubling). Bremer and Dennis, 2008 estimate 1 s per ribosome initia-

tion events at 20 min doubling time. Recent calibrated high-throughput measurements report a

genome-wide median of 5.6 s per initiation events (Gorochowski et al., 2019). To our knowledge,

estimation of absolute in vivo termination rates have not been performed, but we can estimate

bounds. Indirect assessment based on steady-state protein production measurements place the frac-

tion of actively elongating ribosome at about 95% (Dai et al., 2016). Assuming (upper bound) that

the 5% of non elongating ribosomes are in the process of termination would give a termination time

of 5%� 11:1s» 0:6 s (fraction of ribosomes in a given state equal to the ratio of transition times),

where we have used that the elongation time of an average protein is about 11.1 s (200=18 s�1) at

fast growth (Dai et al., 2016). This upper bound is still much smaller than the reported median initia-

tion time, suggesting that the queuing factor for termination is small. As additional support to the

view that translation is far from being termination limited, small that queues at stop codons are only

globally observed in ribosome profiling upon severe perturbations (Kavčič et al., 2020;

Baggett et al., 2017; Mangano et al., 2020; Saito et al., 2020; Lalanne et al., 2021).

With regard to translation elongation, transient queuing in the body of gene can also lead to a

difference between molecular and coarse-grained transition times in our model. However, the frac-

tion of ribosomes transiently stalled due to this queuing scales as at aa in the low-density phase

(defined by requirements at ter<1 and at aa<ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘footprint

p
Þ�1

» 0:25Þ of the TASEP model

(Shaw et al., 2003). Since measured estimates place at aa ~ 0:01 (Dai et al., 2016;

Gorochowski et al., 2019), we do not consider the queuing effect for elongating ribosomes within

our optimization framework for elongation factor abundances.
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Appendix 2

Translation termination
Omitted molecular details

The kinetic scheme presented in Figure 2A does not include some known molecular details of trans-

lation termination. For example, GTPase RF3 has been shown to catalyze the release of RF1/RF2

post peptide hydrolysis and to effectively prevent rebinding to empty A site ribosome without pep-

tide (Pavlov et al., 1997). RF3 is not included in our model given our desire for a parsimonious

description and due to the absence of identifiable homologs in multiple bacteria (e.g. B. subtilis)

(Margus et al., 2007). Our scheme aggregates the RF1/RF2 recycling rate with the catalytic rate,

and further assume a unidirectional reaction without rebinding (consistent with a lower bound),

effectively taking into account the action of RF3. In addition, translocation factor EF-G is known to

be implicated in ribosome recycling via translocation post RF4 binding (Zavialov et al., 2005). We

assume EF-G’s abundance requirement toward the function of termination to be a minor fraction of

its total requirement (non-sense to sense codons » 0.5%) and to be non-limiting for this step. We

thus coarse-grain EF-G’s role in ribosome recycling through an effective catalytic rate for RF4, see

Borg et al., 2016 for details of EF-G’s involvement in ribosome recycling. As another example of

simplification in our coarse-graining, we also do not explicitly model RF1/RF2’s post-translational

modification by methyltransferase PrmC (Mora et al., 2007). Thus, the activity of the RFs within our

description to correspond to the average within a possibly heterogeneous pool of modified and

unmodified factors in the cell.

Non binding-limited regime (one stop codon)
If translation termination is not diffusion limited, terms corresponding to the finite catalytic times

must be included in addition to the diffusive contributions in the termination time (Equation 6).

Under our simplified scheme (Figure 2A) and with a single stop codons (grouping RF1 and RF2), the

molecular termination time is then sum of the four separate times corresponding to distinct events:

t ter ¼
1

kRFIon f
free
RFI

þ 1

kRFIcat

þ 1

kRF4on f
free
RF4

þ 1

kRF4cat

The two novelties compared to the diffusion-limited regime (Equation 6) are: (1) addition of the

catalytic times k�1

cat for the two steps, and importantly (2) the mass action diffusion terms now involve

the free concentration of release factors. Generally, the free concentration of the tlFs can be

obtained by solving the steady-state solutions of kinetic schemes under constraints imposed by con-

servation equations. The examples in e.g., sections B.3, C.3, and D.1 below provide the mathemati-

cal details associated with the procedure.

Here, the difference between the total and free concentration of release factor arises from the

finite catalytic turnover of the enzymes, and corresponds to the concentration of ribosome bound

release factors. Given the flux J through the system in steady-state of growth, the concentration of

ribosome bound release factor (e.g. for RF4) is J=kRF4cat , which becomes ‘RF4l
h‘ikRF4cat

upon converting to pro-

teome fraction. This quantity sets the absolute minimum for the release factor abundance necessary

to sustain growth l for a given kcat. The free concentrations for the release factors are then:

f
free
RFI ¼fRFI �

‘RFIl

h‘ikRFIcat

; f
free
RF4 ¼fRF4 �

‘RF4l

h‘ikRF4cat

: (19)

Hence, the final solution for the steady-state termination time as a function of the total abun-

dance of the release factors and growth rate is:

t ter ¼
1

kRFIon fRFI � ‘RFIl
h‘ikRFIcat

� �þ 1

kRFIcat

þ 1

kRF4on fRF4� ‘RF4l
h‘ikRF4cat

� �þ 1

kRF4cat

:

The relationship above, between termination time, total tlF abundance, and growth rate l closes

the solution of the kinetic scheme. Substituting the above in the optimality condition (Equation 5)

leads to the solution:
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f�
RFI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikRFIon

s

þ ‘RFIl
�

h‘ikRFIcat

; f�
RF4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikRF4on

s

þ ‘RF4l
�

h‘ikRF4cat

: (20)

The additional terms / l� correspond to the contribution to the optimal abundance arising from

the finite catalytic rates, no present in the diffusion limited regime (Equation 7).

Full three stop codons model
The full model with three different stop codons (UAA, UGA, UAG) and RF1/RF2 with different specif-

icities (RF1: UAA, UAG; RF2: UAA, UGA) can also be solved exactly, leading to a small correction on

the summed optimal abundance for RF1 and RF2 of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fUAGfUGA

pp

<1:05 (fast growing species

considered, where fUAG and fUGA are the fractional fluxes through the RF1 and RF2 stop codons,

respectively) compared to the single stop codon optimum derived above (f�
RFI , Equation 20). We

provide details below. With three stop codons, the coarse-grained reaction scheme is shown in

Appendix 2—figure 1. The relevant chemical species and parameters are listed in Appendix 2—

table 1.

RF4

RF4

f
UAA

J

f
UAG

J

J

f
UGA

J

k
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RF4
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cat
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cat
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k
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k
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k
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Appendix 2—figure 1. Coarse-grained translation termination scheme with three stop codons and

RF1/RF2.

Appendix 2—table 1. Chemical species and parameters in three stop codons termination model.

Variable Description

½Cþpep
UAA � Ribosomes at UAA with peptide chain [mM]

½Cþpep
UAG � Ribosomes at UAG with peptide chain [mM]

½Cþpep
UGA � Ribosomes at UGA with peptide chain [mM]

½D1

UAA� Ribosomes at UAA with peptide chain and RF1 bound [mM]

½D1

UAG� Ribosomes at UAG with peptide chain and RF1 bound [mM]

½D2

UAA� Ribosomes at UAA with peptide chain and RF2 bound [mM]

Continued on next page
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Appendix 2—table 1 continued

Variable Description

½D2

UGA� Ribosomes at UGA with peptide chain and RF2 bound [mM]

½C�pep� Ribosomes at all stops without peptide chain [mM]

½E4� Ribosomes at all stops without peptide chain and RF4 bound [mM]

½RF1� Free RF1 [mM]

½RF2� Free RF2 [mM]

½RF4� Free RF4 [mM]

JUAA ¼ fUAAJ Ribosome flux through UAA [mM s�1]

JUAG ¼ fUAGJ Ribosome flux through UAG [mM s�1]

JUGA ¼ fUGAJ Ribosome flux through UGA [mM s�1]

k̂RF1on
On-rate for RF1 [mM�1 s�1]

k̂RF2on
On-rate for RF2 [mM�1 s�1]

k̂RF4on
On-rate for RF4 [mM�1 s�1]

kRF1cat
Catalytic rate for RF1 [s�1]

kRF2cat
Catalytic rate for RF2 [s�1]

kRF4cat
Catalytic rate for RF4 [s�1]

RF1tot Total RF1 [mM]

RF2tot Total RF2 [mM]

RF4tot Total RF4 [mM]

The corresponding mass action system of equations for peptide release:

d½Cþpep
UAA �
dt

¼ fUAAJ�½Cþpep
UAA � k̂RF1on ½RF1�þ k̂RF2on ½RF1�

� �
;

d½Cþpep
UAG �
dt

¼ fUAGJ� k̂RF1on ½Cþpep
UAG �½RF1�;

d½Cþpep
UGA �
dt

¼ fUGAJ� k̂RF2on ½Cþpep
UGA �½RF1�;

d½D1

UAA�
dt

¼ k̂RF1on ½RF1�½Cþpep
UAA � � kRF1cat ½D1

UAA�;
d½D1

UAG�
dt

¼ k̂RF1on ½RF1�½Cþpep
UAG � � kRF1cat ½D1

UAG�;
d½D2

UAA�
dt

¼ k̂RF2on ½RF2�½Cþpep
UAA � � kRF1cat ½D2

UAA�;
d½D2

UGA�
dt

¼ k̂RF2on ½RF2�½Cþpep
UGA � � kRF1cat ½D2

UGA�;
d½RF1�
dt

¼�k̂RF1on ½RF1� ½Cþpep
UAA �þ ½Cþpep

UAG �
� �

þ kRF1cat ½D1

UAA�þ ½D1

UAG�
� �

;

d½RF2�
dt

¼�k̂RF2on ½RF2� ½Cþpep
UAA �þ ½Cþpep

UGA �
� �

þ kRF2cat ½D2

UAA�þ ½D2

UGA�
� �

:

And for ribosome recycling:

d½C�pep�
dt

¼ kRF1cat ½D1

UAA� þ ½D1

UAG�
� �

þ kRF2cat ½D2

UAA�þ ½D2

UGA�
� �

� k̂RF4on ½C�pep�½RF4�;
d½E4�
dt

¼ k̂RF4on ½C�pep�½RF4� � kRF4cat ½E4�;
d½RF4�
dt

¼�k̂RF4on ½C�pep�½RF4� þ kRF4cat ½E4�:

The conservation equations for RF1, RF2 and RF4 are:
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RF1tot ¼ ½RF1� þ ½D1

UAA�þ ½D1

UAG�;
RF2tot ¼ ½RF2� þ ½D2

UAA�þ ½D2

UGA�;
RF4tot ¼ ½RF4� þ ½E4�:

With a more complex scheme such as the one above, the optimization problem can be solved in

three steps. First, we obtain the steady-state concentration of the chemical species. Second, we

determine the effective coarse-grained termination time. Finally, the optimal abundance is found by

substituting the termination time in the optimality condition (Equation 5), and solving the resulting

system of equation.

Steady-state concentrations for RFs

Note that the RF1/RF2 and RF4 completely decouple, and that the solution for RF4 is identical to

the one stop codon case solved above (section Non binding-limited regime [one stop codon]). For

peptide chain release, the steady-state of the system can be solved by expressing the all chemical

species in terms of ½RF1�, and ½RF2�:

½Cþpep
UAA � ¼ fUAAJ

k̂RF1on ½RF1�þ k̂RF2on ½RF2�

½D1

UAA� ¼ fUAA
J

kRF1cat

k̂RF1on ½RF1�
k̂RF1on ½RF1� þ k̂RF2on ½RF2�

 !

;

½D2

UAA� ¼ fUAA
J

kRF2cat

k̂RF2on ½RF2�
k̂RF1on ½RF1� þ k̂RF2on ½RF2�

 !

;

½Cþpep
UAG � ¼ fUAGJ

k̂RF1on ½RF1�
; ½Cþpep

UGA � ¼
fUGAJ

k̂RF2on ½RF2�
; ½D1

UAG� ¼ fUAG
J

kRF1cat

; ½D2

UGA� ¼ fUGA
J

kRF2cat

:

(21)

Substituting these in the conservation equations for RF1 and RF2 leads to a closed system in

terms of ½RF1� and ½RF2�:

RF1tot ¼ ½RF1� 1þ fUAA
J

kRF1cat

k̂RF1on

k̂RF1on ½RF1�þ k̂RF2on ½RF2�

 !" #

þ fUAG
J

kRF1cat

;

RF2tot ¼ ½RF2� 1þ fUAA
J

kRF2cat

k̂RF2on

k̂RF1on ½RF1�þ k̂RF2on ½RF2�

 !" #

þ fUGA
J

kRF2cat

:

Under the assumption of identical biochemical properties for RF1 and RF2, namely kRF1cat ¼ kRF2cat :¼
kRFIcat and k̂RF1on ¼ k̂RF2on :¼ k̂RFIon , the total free concentration of RF1 and RF2 simplifies to:

½RF1� þ ½RF2� ¼ RF1tot þRF2tot � J
kRFIcat

, where we used fUAAþ fUAGþ fUGA ¼ 1 (by definition). Using this

relation to eliminate ½RF2� from the ½RF1� equation (and vice-versa), we obtain, upon conversion to

proteome fraction:

f
free
RF;tot :¼fRF1 þfRF2 �

‘RFIl

h‘ikRFIcat

;

f
free
RF1 ¼ �RF1f

free
RF;tot ; f

free
RF2 ¼ �RF2f

free
RF;tot ;

(22)

where

�RF1 :¼
fRF1 � ‘RFIl

h‘ikRFIcat

fUAG

ðfRF1 � ‘RFIl
h‘ikRFIcat

fUAGÞþ ðfRF2� ‘RFIl
h‘ikRFIcat

fUGAÞ
;

�RF2 :¼
fRF2 � ‘RFIl

h‘ikRFIcat

fUGA

ðfRF1 � ‘RFIl
h‘ikRFIcat

fUAGÞþ ðfRF2� ‘RFIl
h‘ikRFIcat

fUGAÞ
:

These constitute the steady-state solutions of the system of equation.
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Coarse-grained translation termination time

In order to obtain an expression for the termination time (peptide release portion), needed to deter-

mine the optimal RF abundance (i.e. to substitute in Equation 5), the peptide chain release contribu-

tion arises from the ribosome containing species listed in Equation 21, which sum to (under the

assumption of identical biochemical properties for RF1/RF2):

½Rpep
ter � ¼ ½Cþpep

UAA � þ ½Cþpep
UAG � þ ½Cþpep

UGA �þ ½D1

UAA�þ ½D1

UAG� þ ½D2

UAA�þ ½D2

UGA�;

½Rpep
ter � ¼ J

fUAG

k̂RFIon ½RF1�
þ fUGA

k̂RFIon ½RF2�
þ fUAA

k̂RFIon ½RF1�þ ½RF2�ð Þ
þ 1

kRFIcat

 !

:

Upon conversion to proteome fraction, the above becomes:

f
pep
ribo ¼

‘ribo
h‘i l

fUAG

kRFIon f
free
RF1

þ fUGA

kRFIon f
free
RF2

þ fUAA

kRFIon f
free
RF1 þf

free
RF2

� �þ 1

kRFIcat

0

@

1

A :¼ ‘ribo
h‘i lt pep:

The bracketed term corresponds to the coarse-grained time associated with peptide chain

release t pep, and the free concentrations are given by Equations 22.

Optimal abundances for RF1/RF2

The solved concentrations in steady-state (as a function of proteome fractions) and coarse-grained

times allow us to determine the optimal RF1 and RF2 solutions (within our model). The optimality

condition (Equation 5) is now:

qt pep

qfRF1

� ��
¼� h‘i

‘ribol
� ;

qt pep

qfRF2

� ��
¼� h‘i

‘ribol
� :

Solving the above system leads to optima f�
RF1 and f�

RF2:

f�
RF1þf�

RF2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
� ð1þ dÞ

h‘ikRFIon

s

þ ‘RFIl
�

h‘ikRFIcat

; (23)

f�
RF1�

fUAG‘RFIl
�

h‘ikRFIcat

f�
RF2�

fUGA‘RFIl
�

h‘ikRFIcat

¼
ffiffiffiffiffiffiffiffiffi

fUAG

fUGA

s

: (24)

where the new factor d :¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fUAGfUGA

p
.

The relative flux through each stop codon (fUAA; fUAG; fUGA) can be estimated in a variety of bacteria

from ribosome profiling data (Lalanne et al., 2018) as the total synthesis fraction of genes with the

respective stop codon. For fast growing species considered in the current study, fUAA » 0:9, and the cor-

rection term to the optimal solution for the summed abundance of RF1 and RF2 (
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
) is conse-

quently small (E. coli: fUAA ¼ 0:888, fUAG ¼ 0:015, fUGA ¼ 0:097,
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
¼ 1:04; B. subtilis: fUAA ¼ 0:888,

fUAG ¼ 0:064, fUGA ¼ 0:049,
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
¼ 1:05; V. natriegens: fUAA ¼ 0:929, fUAG ¼ 0:041, fUGA ¼ 0:031,

ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
¼ 1:04)
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Appendix 3

Translation elongation
Coarse-grained one-codon model

Translation elongation is a more complicated process than termination, involving multiple factors to

bring the charged tRNA to the ribosome (EF-Tu), charge the tRNAs (aaRS), translocate the ribosome

(EF-G), and perform nucleotide exchange on EF-Tu to drive the process (EF-Ts), in addition to others

not included here. Our simplified kinetic scheme is illustrated in Appendix 3—figure 1. In anticipa-

tion coarse-graining procedure detailed below, rates rescaled in the conversion to a one-codon

model are marked by *.

To simplify our model, we coarse-grain the elongation cycle by considering a single codon type

(section Estimation of coarse-grained rates below or details of the coarse-graining procedure), effec-

tively grouping the tRNA’s, tRNA synthetases, and different ternary complexes to single entities.

Importantly, as a result, the on-rates associated with these processes are rescaled by a factor close

to n�1

aa , where naa ¼ 20.

Appendix 3—figure 1. Coarse-grained reaction scheme for a single step (amino acid incorporation)

of translation elongation. Tu: EF-Tu, Ts: EF-Ts, G: EF-G, aaRS: aminoacyl tRNA synthetases. Steps

with slower rates as a result of the coarse-graining to one effective codon are marked by #.

An important distinction for elongation compared to initiation and termination is that multiple

elongation steps (average h‘i» 200) are required to generate a protein. Hence, the flux into the

through the elongation cycle is h‘i larger than that through the initiation and termination steps (there

is one initiation and termination event for each protein made, but about 200 elongation steps on

average).

The mass action reaction scheme for translation elongation:

�!h‘iJ R;;

tRNAþ aaRS �!k̂aaRSon =n1
tRNAaaRS;

tRNAaaRS �!k
aaRS
cat

aatRNAþ aaRS

TuþTs �!k̂
Ts
on
TuTs;

TuTs �!k
Ts
cat

TuGTP þTs;

TuGTPþ aatRNA �!k̂
Tu
on

TC;

TCþR; �!k̂TCon =n2
RTC;

RTC �!k
TC
cat

RtRNA;

RtRNA þG �!k̂
G
on
RG;

RG �!k
G
cat

Gþ tRNA:

(25)
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To arrive at the above, we started with a full model of translation (not shown), will all possible

codons, tRNA species, and ribosomes with different codons. To coarse-grain the model, we intro-

duced the following effective variables, which correspond to the total concentration of each type of

species involved, summed over the of the codon/amino acid specificity:

½tRNA� :¼
X

i

½tRNAi�; ½aatRNA� :¼
X

i

½aatRNAi�; ½aaRS� :¼
X

î

½aaRSî�; ½TC� :¼
X

i

½TCi�

½R�� :¼
X

i;n;�

½R i
n��; ½RTC� :¼

X

i;j;n;�

½R i TCj

n� �; ½RtRNA� :¼
X

i;j;n;�

½R ij
n��; ½RG� :¼

X

i;j;n;�

½R ij
n� ::G�:

In the above, Greek indices correspond to different codons on mRNAs, and Roman indices to dif-

ferent tRNAs. Roman indices with a hat (̂i) correspond to tRNA synthetases recognizing specific

tRNAs (multiple amino acids have more than one tRNA isoacceptor). In defining these coarse-

grained species (our approach is analogous to that of Dai et al., 2016), we redefined the two follow-

ing kinetic parameters:

k̂aaRSon

n1
:¼ k̂aaRSon

X

i

½tRNAi�½aaRSî�
½tRNA�½aaRS� ; and

k̂TCon
n2

:¼ k̂TCon

X

�;n;i;j

½R i
�n�Sn;j½TCj�
½R;�½TC�

: (26)

k̂aaRSon and k̂TCon correspond to the microscopic bimolecular rates (assumed equal for the different

chemical species). Sn;j is the tRNA isoacceptor/codon specificity matrix (one if tRNA i can recognize

codon n, 0 otherwise) (Björk and Hagervall, 2014). Rescaling terms n1 and n2 are estimated below.

Estimation of coarse-grained rates
The definition of coarse-grained parameters (Equations 26) involves sums:

1

n1
:¼
X

i

½tRNAi�½aaRSî�
½tRNA�½aaRS� and

1

n2
:¼
X

�;n;i;j

½R i
�n�Sn;j½TCj�
½R;�½TC�

:

These can be estimated from tRNA abundances, codon usage and individual synthetases’ levels

obtained from ribosome profiling data in E. coli (Li et al., 2014).

We first consider n1. Note that the fraction of free tRNA of type i to the total number of free

tRNA (not bound to any protein) is not readily measurable. Assuming similarities between types of

tRNA’s, we approximate this fraction with the fraction of total tRNA of type i to the total tRNA con-

centration, or

½tRNAi�
½tRNA� »

tRNAtot
i

tRNAtot

:

The total tRNA concentration has been measured at fast growth for E. coli (Dong et al., 1996).

The relative concentration of each tRNA synthetases (appropriately corrected for stoichiometry for

the different classes) can be computed from the ribosome profiling data (Li et al., 2014), and we

obtain

1

n1
:¼
X

i

½tRNAi�
½tRNA�

½aaRSî�
½aaRS�

� �

»

X

i

tRNAtot
i

tRNAtot

½aaRSî�
½aaRS�

� �

»0:056 ) n1 »17:8

This was to be expected since the synthetases in E. coli show little variability around their mean,

and in the case of equal synthetase concentration, n1 ¼ 20 would strictly hold.

For the second sum (n2), we use distribution of ribosome footprint reads across the transcriptome

to estimate ribosome occupancies at different codons. We first make the following approximation

for one of the sub-sum:

X

�;i

½R i
�n�

½R;�
»

X

�

NFP
�n

NFP
tot

;

where NFP
�n is the total number of ribosome footprint reads at codon pairs �;n and NFP

tot is the total

number of footprint reads mapping to coding sequences. The nature of the approximation is that
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we are taking relative fraction of ribosome footprints (representing ribosomes across the elongation

cycle at that codon pair) at a given codon pair to be equal to the relative fraction of ribosomes wait-

ing for the ternary complex to derliver a tRNA to the A site. The modest differences in elongation

rates at different codons seen in ribosome profiling data (Mohammad et al., 2019) justify this

approximation.

From our data (not shown), we have that

X

�

NFP
�n

NFP
tot

»

X

�

NFP
n�

NFP
tot

¼NFP
n

NFP
tot

:¼ fn

holds to better than 0.5% for each codon. fn above is the (expression weighted) codon usage. As

before with the free tRNA concentrations, we can approximate the relative ternary complexes con-

centrations by the corresponding total tRNA concentrations:

1

n2
:¼
X

�;n;i;j

½R i
�n�Sn;j½TCj�
½R�½TC� »

X

n;j

fn Sn;j tRNAtot
j

tRNAtot

»0:048 ) n2 »20:8 (27)

We used the same dataset as before for the total tRNA concentration in E. coli (Dong et al.,

1996). The codon usage was determined directly from ribosome profiling data (Li et al., 2014). The

sum of these products is graphically represented in Appendix 3—figure 2. The above sum of prod-

uct of tRNA fraction and codon usage provides an effective number of different ternary complexes.

A priori, that might have been expected to equal to the number of tRNAs (»40). However, as is

apparent in Appendix 3—figure 2, certain tRNA-codon pairs are much more prevalent than others

(even for amino acid with multiple codons and/or tRNA isoacceptors), which leads to a decrease in

the effective concentration. The exact value depends on the detailed codon usage and tRNA

abundance.

Appendix 3—figure 2. Graphical illustration of the sum (Equation 27). Left: codon usage (vertical,

from analysis of ribosome profiling data from Li et al., 2014), tRNA-codon specificity (matrix, from

Björk and Hagervall, 2014, with different amino acids outlined with different colors), and tRNA

abundance (horizontal, from Dong et al., 1996) organized by amino acid. Right: product matrix.

Given the results above, we take for simplicity n1 ¼ n2 ¼ naa ¼ 20.
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Translation elongation: optimal solutions
The mass action reactions corresponding to the one codon elongation cycle model are

(Equations 25):

d½R;�
dt

¼ h‘iJ� k̂TCon
naa

½TC�½R;�;
d½RTC�
dt

¼ k̂TCon
naa

½TC�½R;� � kTCcat ½RTC�;
d½Tu�
dt

¼ kTCcat ½RTC�� k̂Tson½Tu�½Ts�;
d½tRNA�

dt ¼� k̂aaRSon

naa
½tRNA�½aaRS�þ kGcat½RG�;

d½tRNA::aaRS�
dt ¼ k̂aaRSon

naa
½tRNA�½aaRS� � kaaRScat ½tRNA::aaRS� ¼ �d½aaRS�

dt
;

d½aatRNA�
dt

¼ kaaRScat ½tRNA::aaRS�� k̂Tuon ½aatRNA�½TuGTP�;
d½TuGTP�

dt ¼ kTscat½TuTs�� k̂Tuon ½aatRNA�½TuGTP�;
d½TuTs�

dt
¼�kTscat½TuTs�þ k̂Tson½Tu�½Ts� ¼ �d½Ts�

dt
;

d½TC�
dt ¼ k̂Tuon ½aatRNA�½TuGTP� � k̂TCon

naa
½TC�½R;�;

d½RtRNA�
dt

¼ kTCcat ½RTC�� k̂Gon½RtRNA�½G�;
d½RG �
dt ¼ k̂Gon½RtRNA�½G�� kGcat½RG� ¼�d½G�

dt
:

Conservation equations close the system:

Tstot ¼ ½Ts�þ ½TuTs�;
Tutot ¼ ½Tu� þ ½TuGTP�þ ½TuTs�þ ½TC�þ ½RTC�;

tRNAtot ¼ ½R;�þ 2½RTC�þ 2½RtRNA� þ 2½RG�þ ½tRNA�þ ½tRNAaaRS�þ ½aatRNA� þ ½TC�;
aaRStot ¼ ½tRNAaaRS� þ ½aaRS�;

Gtot ¼ ½G�þ ½RG�:

The ternary complex concentration and free EF-G concentration enter the translation elongation

time (Equation 10, which is the diffusion limited and factor dependent contribution to the elonga-

tion time) and are required to infer optimal abundances of elongation factors. Both can to be

obtained by solving the system of non-linear equations above.

First, catalytic steps must equal to the flux through in the system in steady-state and thus:

½RG� ¼
h‘iJ
kGcat

; ½RTC� ¼
h‘iJ
kTCcat

; ½tRNA::aaRS� ¼ h‘iJ
kaaRScat

; ½Tu::Ts� ¼ h‘iJ
kTscat

:

Together with the conservation equations, these allow for immediate solutions for the free con-

centrations ½Ts�, ½aaRS�, and ½G�:

½Ts� ¼Tstot �
h‘iJ
kTscat

;

½aaRS� ¼ aaRStot �
h‘iJ
kaaRScat

;

½G� ¼Gtot �
h‘iJ
kGcat

:

The solution for other species can then also be obtained in terms ½TuGTP�, and ½TC�:
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½RtRNA� ¼ h‘iJ
k̂Gon Gtot � h‘iJ

kGcat

� � ; ½R;� ¼
h‘inaaJ
k̂TCon ½TC�

½tRNA� ¼ h‘inaaJ
k̂aaRSon aaRStot � h‘iJ

kaaRScat

� � ; ½aatRNA� ¼ h‘iJ
k̂Tuon ½TuGTP�

;

½Tu� ¼ h‘iJ
k̂Tson Tstot � h‘iJ

kTscat

� � :

Substituting these in the conservation equations for tRNAs and EF-Tu lead to the final system to

solve (converting to proteome fraction):

tRNAtot

P
:¼ tRNA ¼

lnaa

kTCon fTC

þ 2l

kTCcat
þ 2l

kGon fG� ‘Gl
kGcat

� �þ 2l

kGcat
þ ::: (28)

lnaa

kaaRSon faaRS� ‘aaRSl
kaaRScat

� �þ l

kaaRScat

þ l

kTuonfTuGTP

þfTC

‘Tu
;

where fTuGTP :¼fTu�
‘Tul

kTson fTs� ‘Tsl
kTscat

� �� ‘Tul
kTscat

�fTC �
‘Tul

kTCcat
:

(29)

where the solution for fTuGTP in terms of the ternary concentration was obtained from the conserva-

tion equation for EF-Tu. Equations 28 and 29 are closed, and the only variables to solve for is fTC in

terms of the tlF abundances: fTu;fTs;fG;faaRS, tRNA abundances, kinetic parameters, and the

growth rate l.

Coarse-grained translation elongation time

In order to obtain the coarse-grained translation elongation time, we proceed as for translation ter-

mination (section Coarse-grained translation termination time). The summed concentration of the

ribosome containing species for translation elongation in our model is:

½Rel� ¼ ½R;�þ ½RTC� þ ½RtRNA� þ ½RG�;
¼ h‘inaaJ
k̂TCon ½TC�

þ h‘iJ
kTCcat

þ h‘iJ
k̂Gon Gtot � h‘iJ

kGcat

� �þh‘iJ
kGcat

:

Converting to proteome fraction:

1

‘ribo
fel
ribo ¼ l

naa

kTCon fTC

þ 1

kTCcat
þ 1

kGon fG� ‘Gl
kGcat

� �þ 1

kGcat

0

@

1

A:

From the coarse-grained flux relations through the different categories (Equation 17), which

defines the coarse-grained transition times, we thus have:

t el ¼ h‘it aa; where t aa ¼
naa

kTCon fTC

þ 1

kTCcat
þ 1

kGon fG� ‘Gl
kGcat

� �þ 1

kGcat
: (30)

Above, t aa is the effective time for a single step (by one codon) of translation elongation, and

t ind corresponds to the summed time of factor independent transitions in each elongation step (not

explicitly included in the kinetic scheme).

Optimality conditions for translation elongation factors

The optimality condition (Equation 5) applied to translation elongation factors leads to:

qt taa

qfG

� ��
¼ qt taa

qfTu

� ��
¼ qt taa

qfTs

� ��
¼ qt taa

qfaaRS

� ��
¼� 1

‘ribol
� : (31)
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where Equation 30 was used for t aa. Since the free EF-G concentration does not depend on EF-Tu,

EF-Ts, or aaRS concentration, the conditions for EF-Tu, EF-Ts and aaRS simplify to:

q

qfTu

naa

kTCon fTC

� ��
¼ q

qfTs

naa

kTCon fTC

� ��
¼ q

qfaaRS

naa

kTCon fTC

� ��
¼� 1

‘ribol
� : (32)

Carrying through the differentiation also leads to conditions on the derivatives of the ternary

complex concentration at the optimum:

qfTC

qfTu

� ��
¼ qfTC

qfTs

� ��
¼ qfTC

qfaaRS

� ��
¼ kTCon f�

TC

� �2

‘ribonaal
� : (33)

These relationships will be useful to solve for the some elongation factor optimal abundances

below.

Optimal EF-Ts abundance

Differentiating Equation 28 with respect to fTu and fTs, we get at the optimum:

1

‘ribo
þ l�

kTuon f�
TuGTP

� �2

qfTuGTP

qfTu

� ��
¼ 1

‘Tu

qfTC

qfTu

� ��
;

1

‘ribo
þ l�

kTuon f�
TuGTP

� �2

qfTuGTP

qfTs

� ��
¼ 1

‘Tu

qfTC

qfTs

� ��
:

By Equation 33, the above leads to the additional condition at the optimum:

qfTuGTP

qfTu

� ��
¼ qfTuGTP

qfTs

� ��
:

Directly differentiating Equation 29, and using Equation 33, leads to:

qfTuGTP

qfTu

� ��
¼ 1� kTCon f�

TC

� �2

‘ribonaal
� ¼ qfTuGTP

qfTs

� ��
¼ ‘Tul

�

kTson f�
Ts� ‘Tsl

kTscat

� �2
� kTCon f�

TC

� �2

‘ribonaal
� :

Therefore, the optimal abundance for EF-Ts is:

f�
Ts ¼

ffiffiffiffiffiffiffiffiffiffiffi

‘Tul
�

kTson

s

þ ‘Tsl
�

kTscat
: (34)

Optimal EF-G abundance

The optimality condition for EF-G is complicated by the fact that EF-G free concentration appears in

the solution for the steady-state ternary complex through the tRNA conservation Equation 28. Dif-

ferentiating the conservation tRNA equation, and using the optimality condition 31 (replacing a num-

ber of terms with the elongation time t aa, Equation 30):

0¼� 2

‘ribo
þ l�naa

kTCon f�
Tu

� �2

qfTC

qfG

� ��
þ 1

‘Tu

qfTC

qfG

� ��
� l�

kTuon f�
TuGTP

� �2

qfTuGTP

qfG

� ��
: (35)

Above, the right-hand portion corresponds to the additional constraint coming from the implica-

tion of EF-G in the steady-state concentration of the ternary complex. From the equation for fTuGTP

(Equation 29), we have directly:

qfTuGTP

qfG

� ��
¼� qfTC

qfG

� ��
:

Substituting this in Equation 35:
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2

‘ribo
¼ 1

‘Tu
þ l�

kTuon f�
TuGTP

� �2
þ l�naa

kTCon f�
TC

� �2

" #

qfTC

qfG

� ��
: (36)

The derivative of the ternary complex with respect to EF-G at the optimum can be obtained from

the original optimality condition 31, by carrying through the differentiation:

qfTC

qfG

� ��
¼ kTCon

naa
f�
TC

� �2 1

‘ribol
� �

1

kGon f�
G� ‘Gl

�

kGcat

� �2

2

6
4

3

7
5:

Substituting in Equation 36, we arrive at a final equation for EF-G in terms of the concentration

of other elongation factor and the optimal growth rate:

2

‘ribo
¼ l� 1þ kTCon f�

TC

� �2

naa‘Tul
� þ kTCon f�

TC

� �2

naakTuon f�
TuGTP

� �2

" #

1

‘ribol
��

1

kGon f�
G� ‘Gl

�

kGcat

� �2

0

B
@

1

C
A:

The optimal solution for EF-G is thus:

f�
G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

kGon

Dþ 1

D� 1

� �
s

þ ‘Gl
�

kGcat
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

kGon

s

þ ‘Gl
�

kGcat
;

where: D :¼ kTCon f�
TC

� �2

naa‘Tul
� þ kTCon f�

TC

� �2

naakTuon f�
TuGTP

� �2
:

(37)

Note that given that the term D involves f�
TC and f�

TuGTP , and so the solution above is not a priori

complete. However, using the approximate ternary complex concentration at the optimum (Equa-

tion 12, derived in details in section Optimal EF-Tu and aaRS abundances), we have:

D>
kTCon f�

TC

� �2

naa‘Tul
� »

‘ribo
‘Tu

»18:5� 1

This means that the lower bound for f�
G above (Equation 37) is a good approximation: in the

physiological regime, we can approximately neglect the indirect dependence of the ternary complex

concentration on EF-G via the tRNA conservation equation. Hence, the approximate solution for the

EF-G optimal abundance is (same for had we initially assumed that fTC was independent of fG, in

which case the solution for EF-G can be obtained identically as that of release factors):

f�
G »

ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

kGon

s

þ ‘Gl
�

kGcat
:

Optimal EF-Tu and aaRS abundances

While simplifying relations were possible with EF-Ts and EF-G, allowing their solution (approxi-

mately) independently from the rest of the cycle, EF-Tu and aaRS are intricately connected through

the tRNA cycle. We thus return to the tRNA conservation equation, Equation 28. For notational sim-

plicity, we group the catalytic step of the TC, EF-G binding, and EF-G catalytic action (translocation)

in parameter kmaxel (these do not depend on fTu and faaRS) which we take to the be experimentally

determined value of 22 s�1 (Dai et al., 2016). Further dropping the EF-Ts related and catalytic terms

(will be added back at the end, they only contribute a fixed term at the optimum) in the equation for

the free EF-Tu, we get:
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tRNAtot

Pl
¼ naa

kTCon fTC

þ 2

kmaxel

þ :::

naa

kaaRSon faaRS� ‘aaRSl
kaaRScat

� �þ 1

kaaRScat

þ 1

kTuonfTuGTP

þ fTC

‘Tul
;

where fTuGTP ¼ fTu�fTC is the free EF-Tu concentration.

(38)

This system is first solved numerically (Figure 3B). To close the equation in terms of uniquely fTC,

we use our relationship for l (Equation 1), with:

t trl ¼ h‘i naa

kTCon fTC

þ 1

kmaxel

� �

þ t iniþ t ter;

where as before kmaxel is the maximum rate of translation elongation (from reactions other than ter-

nary complex diffusion) estimated from in vivo kinetic measurements (»22 s�1[Dai et al., 2016]), and

t iniþ t ter »0:5 s the estimated time for the initiation and termination step (»5� 10% of the full trans-

lation cycle translation time), taken as fixed parameters here. Using this relationship for the transla-

tion time leads to the explicit relationship between growth and ternary complex concentration:

lðfTCÞ ¼
fribo

‘ribo

ktrlfTC

fTC þKTC

� �

; with ktrl :¼
h‘ikmaxel

h‘iþ kmaxel ðt ini þ t terÞ
and KTC :¼ ktrlnaa

kTCon
(39)

which is the same relationship as the one derived in Klumpp et al., 2013, with the addition of the

terms corresponding to the rest translation cycle. Substituting the explicit relationship between

growth and ternary complex concentration above (Equation 39) in the aaRS/EF-Tu tRNA cycle rela-

tionship (Equation 38) closes the system for fTC. Numerical solution for this equation is presented in

Figure 3B (see section Estimation of optimal abundances for other parameters).

The main conclusion from numerically solving the reduced system (Equations 38 and 39) is that

the EF-Tu/aaRS space is partitioned in two regimes, resulting from the separation of scale of reac-

tions in the coarse-grained model. Specifically, kTuon � kTCon
naa
, so that any imbalance between the constit-

uents of the ternary complex (charged tRNAs, free EF-Tu), results in stoichiometric unproductive

excess of the component in surplus.

We can derive a relation for the ”transition line’ in the aaRS/EF-Tu space where both free charged

tRNAs and free EF-Tu are at low concentrations. This corresponds to setting the (formally impossi-

ble) requirement fTuGTP » 0 ) fTC »fTu and ½aatRNA� / 1

kTuonfTuGTP
» 0, that is,

tRNAtot

Pl �fTu

� �� naa

kTCon
�fTu

� 2

kmaxel

�
�fTu

‘Tul �fTu

� �¼ naa

kaaRSon
�faaRS�

‘aaRSl �fTuð Þ
kaaRScat

� �þ 1

kaaRScat

: (40)

The �� signifies the transition line relationship between �fTu and �faaRS, which is displayed in

Figure 3B.

The heuristic to estimate the optimal EF-Tu concentration described in the main text can be

extended to include the EF-Ts cycle. In particular, in the EF-Tu limited regime, with fTuGTP » 0, we

have (from Equation 29):

fTC »fTu�
‘Tul

kTson fTs� ‘Tsl
kTscat

� �� ‘Tul
kTscat

� ‘Tul
kTCcat

:

Substituting the above expression for fTC in the optimality condition (Equation 32) for fTu, we

arrive at (using the optimal solution for EF-Ts, Equation 34):

f�
Tu »

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribonaal
�

kTCon

s

þ
ffiffiffiffiffiffiffiffiffiffiffi

‘Tul
�

kTson

s

þ ‘Tul
�

kTscat
þ ‘Tul

�

kTCcat
:

Above, the last three terms (not appearing in Equation 12) correspond to the additional diffusion

of the EF-Ts cycle, and catalytic contributions.

Lalanne and Li. eLife 2021;10:e69222. DOI: https://doi.org/10.7554/eLife.69222 37 of 47

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.69222


Following the argument (see main text) that the optimal aaRS abundance should lie on the transi-

tion line (Equation 40), we obtain:

f�
aaRS »

naal
�

kaaRSon D

�
tRNA

þ ‘aaRSl
�

kaaRScat

;

with Dt related to the excess tRNA (tRNAs remaining after subtracting tRNAs sequestered on the

ribosome and TC from the total tRNA budget):

D

�
tRNA :¼

tRNAtot

P
� naal

�

kTCon f
�
TC

� 2l�

kmaxel

�f�
TC

‘Tu
� l�

kaaRScat

; where f�
TC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

naa‘ribol
�

kTCon

s

:

Interpretation of the sharp separation between aaRS and EF-Tu limited
regimes

The sharp separation of the solution for fTC in two distinct regimes (EF-Tu limited, and aaRS limited,

illustrated in Figure 3B), can be intuitively understood from a geometrical viewpoint.

For the simplicity of the argument (not strictly necessary), neglecting the short initiation and ter-

mination times in Equation 39, and using tRNAtot ¼ tfriboP

‘ribo
(with t the tRNA to ribosome molar ratio).

The tRNA conservation condition, Equation 38, can then be rewritten as (binding-limited regime):

ðt� 1Þfribo

‘ribo
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

tRNAbudget

� fTC

‘Tu
|{z}

ternarycomplex

� lðfTCÞ
kmaxel
|fflfflffl{zfflfflffl}

A�sitetRNA

¼ lðfTCÞ½
naa

kaaRSon faaRS
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

unchargedtRNA

þ 1

kTuon fTu�fTCð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

freechargedtRNA

�

At given abundance of EF-Tu ðfTuÞ and aaRS ðfaaRSÞ, the solution for fTC is obtained when equal-

ity in the above equation is reached. The behavior of the various terms with fTC is illustrated for dif-

ferent values of faaRS and fTu in Figure 3—figure supplement 1: the number of uncharged tRNAs

(pink line in Figure 3—figure supplement 1) is a decreasing function of aaRS, and free charged

tRNA (red line in Figure 3—figure supplement 1) are dependent on fTu. Specifically, the free

charged tRNA contribution, due to the rapid association rate kTuon (codon agnostic) between charged

tRNAs and EF-Tu (red line), is negligible except for a very narrow range where fTC »fTu, at which

point a sharp divergence occurs. This rapid divergence bounds the solution for fTC at the total EF-

Tu concentration.

The aaRS limited regime corresponds to conditions in which the uncharged tRNA contribution

(pink line) intersects the available tRNA budget (full black line), lower left in Figure 3—figure sup-

plement 1. In contrast, the EF-Tu limited regime corresponds to conditions in which the free

charged tRNA (red line) intersects the tRNA budget, upper right in Figure 3—figure supplement 1.

The sharpness of the transition between the two regime arises from the near vertical divergence of

the free charged tRNA contribution.
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Appendix 4

Translation initiation
Translation initiation is also relatively complex compared to translation termination. In contrast with

other steps of the translation cycle, binding of factors necessary for the process (IF1, IF2, IF3, initia-

tor tRNA) do not occur in a strict sequential order, leading to a ’heterogeneous assembly landscape’

(Gualerzi and Pon, 2015; Chen et al., 2016) more complex to model. However, one assembly path-

way is kinetically favored (Milón et al., 2012). We take this favored assembly pathway as our kinetic

scheme (Appendix 4—figure 1, note that binding of tRNA/mRNA are coarse-grained to a single

even without loss of generality). We provide some evidence below that taking a more complex

assembly pathway would minimally affect the predicted optimal initiation factor abundances.

Appendix 4—figure 1. Simplified kinetic scheme for translation initiation. Reactions in dashed box

correspond to sub-system solved in detail first (section Sub-pathway without subunits joining).

Variables are labeled on the scheme.

The reactions in our simplified schemes are:

�!J R30S þR50S;

R30Sþ IF3 �!k̂
IF3
on

R3;

R30Sþ IF2 �!k̂
IF2
on

R2;

R3þ IF2 �!k̂
IF2
on

R23;

R2þ IF3 �!k̂
IF3
on

R23;

R23þ IF1 �!k̂
IF1
on

R123;

R123 �!kRNA R123m;

R123mþR50S �!k̂
50S
on

RPIC;

RPIC �!k
ini
cat

IF1þ IF2þ IF3;

with corresponding mass action equations:
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d½R30S�
dt

¼ J� k̂IF2on ½R30S�½IF2� � k̂IF3on ½R30S�½IF3�;
d½R2�
dt

¼ k̂IF2on ½R30S�½IF2� � k̂IF3on ½R2�½IF3�;
d½R3�
dt

¼ k̂IF3on ½R30S�½IF3� � k̂IF2on ½R3�½IF2�;
d½R23�
dt

¼ k̂IF2on ½R3�½IF2� þ k̂IF3on ½R2�½IF3�� k̂IF1on ½R23�½IF1�;
d½R123�
dt

¼ k̂IF1on ½R23�½IF1�� kRNA½R123�;
d½R123m�

dt
¼ kRNA½R123�� k̂50Son ½R123m�½R50S�;

d½RPIC�
dt

¼ k̂50Son ½R123m�½R50S� � kinicat½RPIC�;
d½R50S�
dt

¼ J� k̂50Son ½R123m�½R50S�;
d½IF1�
dt

¼�k̂IF1on ½R23�½IF1�þ kinicat½PIC�;
d½IF2�
dt

¼�k̂IF2on ½R30S� þ ½R3�ð Þ½IF2� þ kinicat½PIC�;
d½IF3�
dt

¼�k̂IF3on ½R30S� þ ½R2�ð Þ½IF3� þ kinicat½PIC�;

and conservation equations:

IF1tot ¼ ½IF1� þ ½R123� þ ½R123m�þ ½RPIC�;
IF2tot ¼ ½IF2� þ ½R2�þ ½R23� þ ½R123� þ ½R123m� þ ½RPIC�;
IF3tot ¼ ½IF3� þ ½R3�þ ½R23� þ ½R123� þ ½R123m� þ ½RPIC�;
½R50S� ¼ ½R30S� þ ½R2�þ ½R3� þ ½R23�þ ½R123� þ ½R123m�:

We assume the steady-state concentrations of small and large ribosomal subunits to be equal.

Sub-pathway without subunits joining
The system of equation is complicated by the second branch of the pathway corresponding to 50S

subunit binding. However, in the regime

ffiffiffiffiffiffiffiffiffiffiffiffi

‘IF
‘ribo

k̂50Son

k̂IFon

r

� 1 (which is realized because of the large size of

the ribosome and slower association rate constant for the large subunit compared to the initiation

factors again due to size), the effect of this branch is to add a term to the optimal abundance equal

to the concentration of species R123m (see derivation in section Pathway including subunits joining).

We focus here on the solution of the part of the reaction scheme boxed in Appendix 4—figure 1.

This sub-scheme corresponds to:

�!J R30S;

R30S þ IF3 �!k̂
IF3
on

R3;

R30S þ IF2 �!k̂
IF2
on

R2;

R3 þ IF2 �!k̂
IF2
on

R23;

R2 þ IF3 �!k̂
IF3
on

R23;

R23þ IF1 �!k̂
IF1
on

R123;

R123 �!kRNA R123m:
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d½R30S�
dt

¼ J� k̂IF2on ½R30S�½IF2� � k̂IF3on ½R30S�½IF3�;
d½R2�
dt

¼ k̂IF2on ½R30S�½IF2� � k̂IF3on ½R2�½IF3�;
d½R3�
dt

¼ k̂IF3on ½R30S�½IF3� � k̂IF2on ½R3�½IF2�;
d½R23�
dt

¼ k̂IF2on ½R3�½IF2�þ k̂IF3on ½R2�½IF3� � k̂IF1on ½R23�½IF1�;
d½R123�
dt

¼ k̂IF1on ½R23�½IF1�� kRNA½R123�;
d½IF1�
dt

¼�k̂1on½R23�½IF1� þ kRNA½R123�;
d½IF2�
dt

¼�k̂IF2on ð½R30S� þ ½R3�Þ½IF2�þ kRNA½R123�;
d½IF3�
dt

¼�k̂IF3on ð½R30S� þ ½R2�Þ½IF3�þ kRNA½R123�;

with conservation equations:

IF1tot ¼ ½IF1�þ ½R123�;
IF2tot ¼ ½IF2�þ ½R2� þ ½R23� þ ½R123�;
IF3tot ¼ ½IF3�þ ½R3� þ ½R23� þ ½R123�;

This system can be solved as with the previous schemes. In steady-state, we find for concentra-

tions in terms of the free concentrations ½IF2� and ½IF3�:

½R123� ¼ J

kRNA
; ½IF1� ¼ IF1tot �

J

kRNA
; ½R23� ¼

J

k̂IF1on ½IF1�
; ½R30S� ¼

J

k̂IF2on ½IF2�þ k̂IF3on ½IF3�
;

½R2� ¼ k̂IF2on ½IF2�
k̂IF3on ½IF3�

J

k̂IF2on ½IF2�þ k̂IF3on ½IF3�

 !

; ½R3� ¼
k̂IF3on ½IF3�
k̂IF2on ½IF2�

J

k̂IF2on ½IF2� þ k̂IF3on ½IF3�

 !

;

and the coupled equations for ½IF2� and ½IF3� that need to be solved:

IF2tot ¼ ½IF2�þ k̂IF2on ½IF2�
k̂IF3on ½IF3�

J

k̂IF2on ½IF2�þ k̂IF3on ½IF3�

 !

þ J

k̂IF1on ½IF1�
þ J

kRNA
;

IF3tot ¼ ½IF3�þ k̂IF3on ½IF3�
k̂IF2on ½IF2�

J

k̂IF2on ½IF2�þ k̂IF3on ½IF3�

 !

þ J

k̂IF1on ½IF1�
þ J

kRNA
:

(41)

As for translation termination (section Coarse-grained translation termination time) and elonga-

tion (section Coarse-grained translation elongation time), summing the ribosome containing species:

½Rini� ¼ ½R30S� þ ½R2�þ ½R3� þ ½R23�þ ½R123�;

¼ J
1

k̂IF2on ½IF2�
þ 1

k̂IF3on ½IF3�
� 1

k̂IF2on ½IF2� þ k̂IF3on ½IF3�
þ 1

k̂IF1on ½IF1�
þ 1

kRNA

 !

;

allows us to read the initiation time directly (recast in proteome fraction units):

t ini ¼
1

kIF2on f
free
IF2

þ 1

kIF3on f
free
IF3

� 1

kIF2on f
free
IF2 þ kIF3on f

free
IF3

þ 1

kIF1on f
free
IF1

þ 1

kRNA
: (42)

The above is the time can be used in the optimality condition (Equation 5). Note that the parallel

nature of the reactions with IF2 and IF3 leads to a reduction compared to a purely sequential path-

way (negative term above decreasing the total initiation time, as expected if multiple reactions can

occur in parallel).

Given that binding of IF1 occurs last in this scheme, its free concentration takes a simple form

(ffree
IF1 ¼ fIF1 � ‘IF1l

h‘ikRNA). In contrast, computing the free IF2 and IF3 concentrations requires solving the

non-linear coupled system, Equations 41. Recasting these in units of proteome fraction:
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~fIF2 ¼f
free
IF2 þ

l‘IF2

h‘ikIF3on f
free
IF3

kIF2on f
free
IF2

kIF2on f
free
IF2 þ kIF3on f

free
IF3

 !

;

~fIF3 ¼f
free
IF3 þ

l‘IF3

h‘ikIF2on f
free
IF2

kIF3on f
free
IF3

kIF2on f
free
IF2 þ kIF3on f

free
IF3

 !

;

with ~fIF2 :¼fIF2 � ‘IF2l
h‘ikRNA �

‘IF2l

h‘ikIF1on f
free

IF1

, and similarly for ~fIF3. We show now that the terms coupling the

two equations for f
free
IF2 and f

free
IF2 (bracketed above) are small at the optimum. Indeed, based on

results in simpler schemes (self-consistency confirmed below), we expect at the optimum:

f
free;�
IF2 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF2on

s

and f
free;�
IF3 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF3on

s

:

Hence, we expect the two terms at the optimum in the coupled equations above to compare as

(e.g. in the free IF2 equation):

f
free;�
IF2

l�‘IF2

h‘ikIF3on f
free;�
IF3

 !
~

‘ribo
‘IF2

ffiffiffiffiffiffiffiffi

kIF3on

kIF2on

s

� 1;

coming from the large size of the ribosome compared to the initiation factors. In addition, the

derivative of the coupling terms, which appear in the optimality condition and therefore in identify-

ing the optimal abundances, are all of the form
l�‘IF

h‘ikIFonðffree
IF Þ2

compared to the main term. This scales

scales as ‘IF‘
�1

ribo � 1 at the self-consistent solution. Hence, neglecting the coupling is justified as an

approximate solutions near the optimum, and we obtain for the free concentrations of IFs:

f
free
IF1 ¼fIF1 �

‘IF1l

h‘ikRNA
;

f
free
IF2 »fIF2 �

‘IF2l

h‘ikRNA
� ‘IF2l

h‘ikIF1on f
free
IF1

;

f
free
IF3 »fIF3 �

‘IF3l

h‘ikRNA
� ‘IF3l

h‘ikIF1on f
free
IF1

:

Substituting these in the expression for the initiation time, Equation 42, and using the optimality

condition (Equation 5, we find that no simple solution exist for the non symmetric case of

kIF2on 6¼ kIF3on ). Since the on-rates should be similar for IF2 and IF3 (difference in size should only lead to

modest difference in on-rates coefficient, by roughly ð‘IF2=‘IF3Þ1=3 »1:7 assuming Stokes scaling), the

symmetric case is approximately correct. We report the symmetric solution for simplicity. The final

optimal solutions for the three factors for the sub-scheme solved here is:

f�
IF1 »

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF1on

1þ ‘IF2 þ ‘IF3
‘ribo

� �
s

þ ‘IF1l
�

h‘ikini ;

f�
IF2 »

ffiffiffi

3

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF2on

s

þ ‘IF2h‘i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF1on

s

þ ‘IF2l
�

h‘ikini ;

f�
IF3 »

ffiffiffi

3

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF3on

s

þ ‘IF3h‘i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF1on

s

þ ‘IF3l
�

h‘ikini :

(43)

The form of the solution is again similar to that derived for the simpler translation termination

scheme (c.f., Equation 20), with three differences, each of which has an intuitive interpretation. First,

the factor 1þ ‘IF2þ‘IF3
‘ribo

h i

in the IF1 solution arises as a result of IF1 binding being last in our initiation

pathway. Indeed, IF1 concentration also influences free IF2 and IF3 concentration, leading to addi-

tional selective pressure to increase its abundance. In effect, the molecular species waiting for IF1 to

diffuse to its target is not only the ribosome, but the ribosome with IF2 and IF3 bound, and a total
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amino acid weight ‘ribo ! ‘ribo þ ‘IF2 þ ‘IF3. Second, the factor of
ffiffiffiffiffiffiffiffi

3=4
p

»0:87<1 for IF2 and IF3 (corre-

sponding to the symmetric case), arising from the parallel pathway for IF2 and IF3 rendering the pro-

cess more efficient. We therefore see that the correction from having multiple reactions in parallel is

modest (0.87 vs. 1). The third difference to the simpler case of translation termination are the second

terms for IF2 and IF3, corresponding to the additional delay incurred by binding of IF1. These come

from the assumed sequential nature of our initiation scheme (Appendix 4—figure 1). In such cases,

factors binding earlier have to be present at higher abundances to account for their wait times for

later binding events. The exact form of this correction term would be different for more complex

assembly pathways (but would be captured by average delays from other factor binding).

Pathway including subunits joining
The solutions above (Equations 43) are for the reduced scheme (boxed in Appendix 4—figure 1).

The full solutions includes the delay arising from 50S subunit binding. Including subunit joining

requires the solution of an additional equation for the steady-state concentration of species with all

three initiation factors, mRNA and initiator tRNA waiting for subunit joining (species R123m in Appen-

dix 4—figure 1, denoted f123m in units of proteome fraction). The equation to solve for f123m can be

obtained from the 50S ribosome subunit conservation equation:

l

k50Son f123m

¼ l

kIF2on f
free
IF2

þ l

kIF3on f
free
IF3

� l

kIF2on f
free
IF2 þ kIF3on f

free
IF3

þ l

kIF1on f
free
IF1

þ l

kRNA
þh‘if123m

‘30S
:

f123m appears in the equations for the free concentration of the initiation factors (from the con-

servation equations), and also leads to the appearance of a new term in the expression for the initia-

tion time t ini (Equation 42) corresponding to this step: h‘if123m

‘30Sl
.

These two additions, resulting from the parallel branch of 50S joining, can be simplified due to a

separation of scales between the various terms. For large initiation factor concentrations, the corre-

sponding mass action terms in the equation for f123m negligibly contribute to the solution. In this

regime, the new term involving f123m in the initiation time t ini does not alter the form the optimal

abundances of IF1, IF2, and IF3 beyond adding a constant term. Hence, in the regime of high free IF

concentration, the optimality condition has the same form as derived in the previous section.We can

therefore obtain f123m assuming large IF concentration, denoted f¥
123m:

f¥
123m ¼ ‘30S

h‘i � l

2kRNA
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4

l

kRNA

� �2

þ h‘il
‘30Sk50Son

s0

@

1

A

This solution will be self-consistent provided (for all initiation factors):

l�

kIFonf
free;�
IF

� l�

kRNA
þh‘if¥

123m

‘30S
¼ l�

2kRNA
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4

l�

kRNA

� �2

þ h‘il�
‘30Sk50Son

s

;

It therefore suffices to show:

l�

kIFonf
free;�
IF

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h‘il�
‘30Sk50Son

s

:

Using our optimality condition on f
free;�
IF (Equation 43) assuming no contribution from f123m (self-

consistency), and converting association rates in units mM�1s�1, the above condition reduces to:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘IF
‘ribo

k̂50Son

k̂IFon

s

� 1:

The self-consistency condition is met both because initiation factors are smaller than ribosomes

‘IF � ‘ribo, and because the on-rate for subunit joining is lower than initiation factor binding

(k̂50Son � k̂IFon), given again the size differences. The solution, including the contribution from ribosome

subunits joining is then:
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f�
IF1 »

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF1on

1þ ‘IF2 þ ‘IF3
‘ribo

� �
s

þ ‘IF1
‘30S

f¥
123mþ ‘IF1l

�

h‘i
1

kRNA
þ 1

kinicat

� �

;

f�
IF2 »

ffiffiffi

3

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF2on

s

þ ‘IF2h‘i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF1on

s

þ ‘IF2
‘30S

f¥
123mþ ‘IF2l

�

h‘i
1

kRNA
þ 1

kinicat

� �

;

f�
IF3 »

ffiffiffi

3

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF3on

s

þ ‘IF3h‘i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ribol
�

h‘ikIF1on

s

þ ‘IF3
‘30S

f¥
123mþ ‘IF3l

�

h‘i
1

kRNA
þ 1

kinicat

� �

;

where for kRNA much faster than the association between the subunits, f¥
123m »

ffiffiffiffiffiffiffiffiffiffi
‘30Sl

�

h‘ik50Son

q

.
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Appendix 5

Estimation of optimal abundances
To compare prediction from our parsimonious framework (Table 1) requires specific values of kinetic

parameters. We use empirical measurements together with scaling relations to estimate these kinetic

parameters.

Catalytic rates for many enzymes have been measured in vitro, but the obtained values can be

sharply incompatible with kinetic parameters that have been measured in the cell. An example is the

class tRNA synthetases. Tallying the measured kcat for all wild-type E. coli aaRSs (Jeske et al., 2019),

we find a median value of kaaRScat » 3 s�1, and 80% of reported value below 6 s�1. The total molar con-

centration of aaRSs in the cell is comparable to the total number of ribosomes, and the per-step

elongation speed of ribosome is above 15 s�1 (Dai et al., 2016; Johnson et al., 2020). Hence, the

absolute minimum catalytic rate to sustain the translation elongation flux needs to obey kaaRScat >15

s�1, which is much higher than most in vitro measured values. To avoid the difficulties in estimating

catalytic parameters, and to derive a lower bound on factor abundance from our model, we focus on

the diffusive contributions (related to the associate rate) in our predictions, assuming large catalytic

rates (kcat ! ¥).

To estimate diffusion-limited association rate constants k̂on, we scaled the measured in vivo asso-

ciation rate constant for the ternary complex, k̂TCon ¼ 6:4 M�1s�1 (Dai et al., 2016) by diffusion of the

respective components, that is, k̂ABon =k̂
TC
on ¼ ðDA þ DBÞ=ðDTC þ DriboÞ, where Di is the diffusion coeffi-

cients for the molecular species i. While the in vivo diffusion coefficient for a number of component

of the translation apparatus exist (Bakshi et al., 2012; Sanamrad et al., 2014; Volkov et al., 2018;

Plochowietz et al., 2017), several factors do not have measured diffusion coefficients. For these, we

used the cubic root scaling from the Stokes-Einstein relation (Nenninger et al., 2010), see Appen-

dix 5—table 1.

We note that an alternative estimate for k̂on using the Smoluchowski relation (k̂Smolon ¼ 4pDR, where

D is the relative diffusion coefficients of the two reactants and R the capture radius) is overly simplis-

tic as it assumes perfectly absorbing spheres. The actual diffusion-limited association rate constant

could be much lower due to orientation constraints and other factors. It is also difficult to measure

the capture radius in physiological conditions. Indeed, the Smoluchowski k̂Smolon calculated using the

diffusion coefficients of EF-Tu in vivo (» 3 mm2s�1, [Volkov et al., 2018]) and a previous estimate for

the capture radius (R » 2 nm, [Klumpp et al., 2013]) yields k̂TC;Smolon » 45 mM�1s�1, which is several fold

greater than the in vivo estimate of kTCon based on kinetic measurements of elongation (k̂TCon ¼ 6:4

mM�1s�1, [Dai et al., 2016]). This comparison illustrates that the idealized Smoluchowski formula is

not applicable. That said, our scaling approach does come at the price of assuming similar molecular

properties leading to decrease of the association rate constants for the other tlFs. These could be

further refined via for example, structural modeling (Schlosshauer and Baker, 2004), or upon new in

vivo rate constant measurements.

Additional measured quantities required to compute our estimates are: the measured growth

rate l* = 5.5 � 10�4 s�1 (for Figure 4 taken to be the average of the fast-growing species consid-

ered, corresponding to a doubling time of 21 ± 1 min. Individual species values: E. coli: 21.5 ± 1 min,

B. subtilis: 21 ± 1 min, V. natriegens: 19 ± 1 min. See below for slower growth conditions), the tRNA

concentration (estimated from the tRNA to ribosome ratio of 6.5 (Dong et al., 1996) using:

tRNAtot ¼ (tRNA/ribo)friboP=‘ribo), the maximum per-codon elongation rate, excluding ternary com-

plex diffusion, kmaxel ¼ 22 s�1 (Dai et al., 2016) (used to estimate the number of tRNAs sequestered

on ribosomes and therefore the excess tRNA number in the optimum for aaRS, see Equations 18

and 38), the in-protein amino acid concentration P ¼ 2:6 M (Klumpp et al., 2013; Bremer and Den-

nis, 2008).

For the fast growth average, results are displayed in Figure 4 listed in Supplementary file 2.

Additional predictions in individual conditions are shown in Figure 4—figure supplement 1, with

numerical values for measured and predicted values listed in Supplementary files 1–4. For predic-

tions in different growth conditions/species, we used used the measured growth rates in the corre-

sponding conditions (values listed in Supplementary files 1 and 3), and association rate constants

estimated based on E. coli data (Appendix 5—tables 1–3), and the tRNA abundance (only needed
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for the prediction of aaRS) at the corresponding growth rate in E. coli from Dong et al., 1996. As a

result of the lack of quantitation of tRNA abundance in other species, these values were used for B.

subtilis, V. natriegens and C. crescentus, and should be interpreted with caution given possible dif-

ference in cellular physiology for these species.

Appendix 5—table 1. Protein sizes (number of codons) and diffusion coefficients.

Unless otherwise noted, number of codons per protein are taken for E. coli (Keseler et al., 2017)

(ribosome size taken from Wittmann, 1982). #For the ternary complex, the total mass of tRNA+EF-Tu

was converted to an equivalent amino acid length for the diffusion constant scaling estimate. †For

aaRS, the size for the summed aaRSs is, from the coarse graining, ‘aaRS ¼
P

i faaRS;i=
P

iðfaaRS;i=‘aaRS;iÞ,
here with proteome fractions estimated from ribosome profiling (Li et al., 2014) in E. coli and sizes

accounting for varying complex stoichiometries. Measured diffusion coefficients are taken from:

Bakshi et al., 2012; Sanamrad et al., 2014 for the ribosome, from Plochowietz et al., 2017;

Volkov et al., 2018 for tRNAs, and from Volkov et al., 2018 for the TC.

Factor Number of codon per protein Diffusion coefficient (mm2 s�1)

Ribosome ‘ribo ¼ 7336 Dribo ¼ 0:05� 0:01

30S subunit ‘30S ¼ 3108 Dsubunits ¼ 0:2� 0:1

TC ‘TC ¼ 630
# DTC ¼ 3� 0:5

tRNA N/A DtRNA ¼ 8� 1

IF1 ‘IF1 ¼ 72
DIF1 ¼ DTC

ffiffiffiffiffiffi
‘TC
‘IF1

3

q

IF2 ‘IF2 ¼ 890
DIF2 ¼ DTC

ffiffiffiffiffiffi
‘TC
‘IF2

3

q

IF3 ‘IF3 ¼ 180
DIF3 ¼ DTC

ffiffiffiffiffiffi
‘TC
‘IF3

3

q

EF-G ‘G ¼ 704
DG ¼ DTC

ffiffiffiffiffi
‘TC
‘G

3

q

EF-Ts ‘Ts ¼ 283
DTs ¼ DTC

ffiffiffiffiffi
‘TC
‘Ts

3

q

EF-Tu ‘Tu ¼ 394
DTu ¼ DTC

ffiffiffiffiffi
‘TC
‘Tu

3

q

aaRS ‘aaRS ¼ 987
†

DaaRS ¼ DTC

ffiffiffiffiffiffiffi
‘TC
‘aaRS

3

q

RF1/RF2 ‘RFI ¼ 362
DRFI ¼ DTC

ffiffiffiffiffiffi
‘TC
‘RFI

3

q

RF4 ‘RF4 ¼ 185
DRF4 ¼ DTC

ffiffiffiffiffiffi
‘TC
‘RF4

3

q

Appendix 5—table 2. Expression used to estimate the association rate constants for our predictions

(Table 1).

Diffusion coefficients are listed in Appendix 5—table 1.

Factors involved in reaction Variable Used expression for association rate constant

Ternary complex and ribosome k̂TCon
6:4� 0:6 mM�1s�1 (Dai et al., 2016)

EF-G and ribosome k̂Gon k̂TCon ðDG þ DriboÞ=ðDTC þ DriboÞ
aaRS And tRNAs k̂aaRSon k̂TCon ðDtRNA þ DaaRSÞ=ðDTC þ DriboÞ
EF-Ts and ribosome k̂Tson k̂TCon ðDTs þ DriboÞ=ðDTC þ DriboÞ
EF-Tu and tRNAs k̂Tuon k̂TCon ðDtRNA þ DTuÞ=ðDTC þ DriboÞ
IF1 and 30S subunit k̂IF1on k̂TCon ðDIF1 þ DsubunitÞ=ðDTC þ DriboÞ
IF2 and 30S subunit k̂IF2on k̂TCon ðDIF2 þ DsubunitÞ=ðDTC þ DriboÞ
IF3 and 30S subunit k̂IF3on k̂TCon ðDIF3 þ DsubunitÞ=ðDTC þ DriboÞ
Continued on next page
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Appendix 5—table 2 continued

Factors involved in reaction Variable Used expression for association rate constant

50S and 30S subunits k̂50Son k̂TCon ðDsubunit þ DsubunitÞ=ðDTC þ DriboÞ
RF1/RF2 and ribosome k̂RFIon k̂TCon ðDRFI þ DriboÞ=ðDTC þ DriboÞ
RF4 and ribosome k̂RF4on k̂TCon ðDRF4 þ DriboÞ=ðDTC þ DriboÞ

Appendix 5—table 3. Additional parameters used to obtain numerical values for predictions.

For the doubling times (growth rates) and tRNA to ribosome ratios used for in individual growth con-

ditions considered, see Supplementary files 2 and 4. P is taken from Klumpp et al., 2013, kmaxel from

Dai et al., 2016, and the tRNA/ribosome ratios from Dong et al., 1996.

Parameter Value Description

P 2.6 ± 0.5 M In-protein amino acid concentration in the cell.

l (5.5 ± 0.6) � 10�4 s�1 Average fast growth, see Supplementary file 1.

h‘i 200 ± 10 Average number of codons per protein (Equation 16).

naa 20 ± 2 Rescaling factor in elongation model (see Equation 26).

kmaxel 22 ± 2 s�1 Maximal translation elongation rate.
ffiffiffiffiffiffiffiffiffiffiffi
1þ d

p
1.05 ± 0.01 Factor in three stop codon model (see Equation 23)

t :¼ tRNA/ribosome 6.5 to 11 Values taken listed in Supplementary files 2 and 4.

tRNAtot tfriboP=‘ribo Total tRNA abundance, estimated from tRNA/ribosome.
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