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Human chorionic gonadotropin (hCG) serves as one of the first signals provided by the

embryo to the mother. Exactly at the time when the first step of the implantation process

is initiated and the blastocyst adheres to the maternal endometrium, the embryonic

tissue starts to actively secrete hCG. Shortly thereafter, the hormone can be detected

in the maternal circulation where its concentration steadily increases throughout early

pregnancy as it is continuously released by the forming placenta. Accumulating evidence

underlines the critical function of hCG for embryo implantation and placentation. hCG

not only regulates biological aspects of these early pregnancy events but also supports

maternal immune cells in their function as helpers in the establishment of an adequate

embryo-endometrial relationship. In view of its early presence in the maternal circulation,

hCG has the potential to influence both local uterine immune cell populations as well

as peripheral ones. The current review aims to summarize recent literature on the

participation of innate and adaptive immune cells in embryo implantation and placentation

with a specific focus on their regulation by hCG.

Keywords: human chorionic gonadotropin, uterine immune cells, embryo implantation, placentation, fetal

tolerance, pregnancy

INTRODUCTION

Within a few days, after fertilization of the oocyte took place in the fallopian tube, the early
embryo in its morula stage enters the uterine cavity. Here, after becoming a blastocyst, the embryo
starts to implant into the maternal endometrium (Figure 1). The implantation process is initiated
by an apposition reaction followed by the adhesion of the trophoblast cells of the blastocyst
to the epithelial layer of the endometrium. Subsequently, trophoblast cells begin to proliferate,
differentiate, cross the epithelial basement membrane and invade into the endometrial stroma
to form the placenta (1). Uterine spiral arteries (uSA) located within the stroma are targeted
by invasive trophoblast cells that replace the endothelial cell layer and provoke alterations in
extracellular matrix proteins. Consequently, maternal SA are remodeled from high-resistance into
low-resistance vessels with the aim to guarantee a high blood flow from the mother to the fetus
by the mid-second trimester and ascertain the fetus to be supplied with sufficient nutrients for an
adequate fetal development (2). Impairments in placentation due to shallow trophoblast invasion
is associated with late-onset adverse pregnancy outcomes such as intrauterine growth restriction
(IUGR) and early-onset preeclampsia (PE) (3) (Figure 1). Moreover, on the maternal side,
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FIGURE 1 | Hypothetical scenario on the participation of human chorionic gonadotropin and immune cells in ovulation and embryo implantation. (A) Pituitary

gland-produced LH and p-hCG induce ovarian CCL20 secretion that in turn promotes leukocyte influx from the periphery into the ovary. Ovarian DCs and MØ are

suggested to actively contribute to the ovulation process. (B) Cytotrophoblast-derived H-hCG and syncytiotrophoblast-derived r-hCG promote angiogenesis,

trophoblast invasion, and tissue-remodeling by inducing endometrial expression of GAL-3, GD, MIF, and VEGF as well as trophoblastic expression of MMP-2 and−9,

and by inhibiting endometrial expression of PRL, IGFBP-1, M-CSF, and TIMPs. (C) Decidual innate and adaptive immune cells support embryo implantation by

producing and secreting a variety of factors that are indicated aside each immune cell type and are partially induced by hCG. Additionally, hCG confers fetal tolerance

by enhancing uterine NK cells, M2 cells, tolerogenic DCs, Th2 cells, Treg, and Breg, by promoting NETs formation by neutrophils, and by inducing fetal-protective

AAbs in B cells. (D) Neutrophils, MØ, MCs, NK cells, and Treg cells are proposed to support uSA remodeling and fetal nourishment. A lack or dysfunctionality of these

immune cells may result in improper uSA remodeling followed by fetal undernourishment and fetal growth restriction. AAbs, asymmetric antibodies; ANG-1/2,

angiopoietin-1/2; AP, anterior pituitary gland; Breg, regulatory B cell; CCL20, CC-chemokine ligand 20; CT, cytotrophoblast; DC, dendritic cell; PDGF, platelet derived

growth factor; FGF, fibroblast growth factor; GAL-1/3, galectin-1/3; GD, glycodelin; IGFBP-1, insulin-like growth factor binding protein-1; H-hCG, hyperglycosylated

human chorionic gonadotropin; IL, interleukin; LH, luteinizing hormone; MØ, macrophage; MC, mast cell; M-CSF, macrophage colony stimulating factor; MIF,

migration inhibitory factor; MMP-2/9, matrix metalloproteinase-2/9; NETs, neutrophil extracellular traps; NK cell, natural killer cell; p-hCG, pituitary human chorionic

gonadotropin; PGF, placental growth factor; PP, posterior pituitary gland; PRL, prolactin; r-hCG, regular human chorionic gonadotropin; ST, syncytiotrophoblast;

TGF-β, transforming growth factor-β; TIMPs, tissue inhibitors of matrix metalloproteinases; Treg, regulatory T cell; uSA, uterine spiral artery; VEGF, vascular endothelial

growth factor.

endometrial stromal cells differentiate into a specialized cell
type called decidua cells, via a process called decidualization
(4). This structural and functional remodeling of the uterine
bed is strongly mediated by the steroid hormones progesterone
(P4) and estrogen (E2) (5). In addition, a variety of growth
factors, cytokines, prostaglandins, matrix degrading enzymes
and their inhibitors as well as adhesion molecules orchestrate
the fetal-maternal dialogue and ensure a timely well-defined
progression of the highly complex implantation process (6).
However, embryo implantation and placentation do not only
depend on the availability of individual molecules but also rely on
the presence of distinct immune cell populations. These immune

cell populations reside in the decidual tissue and are often
highly specialized compared to their peripheral counterparts.

Unique phenotypic and functional features allow them not only
to tolerate the foreign paternal antigens expressed by the fetal
tissue but also to actively participate in the different steps of

the implantation procedure. Immunological dysregulations are
often made responsible for cases of idiopathic infertility and
miscarriage underlying the meaning of the maternal immune
system for healthy pregnancy progression.

This review will discuss the state-of-the art for the
involvement of innate and adaptive immune cell populations in
embryo implantation and placentation and will particularly
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emphasize the role of the hormone human chorionic
gonadotropin (hCG) as immune-modulating factor in
these processes.

hCG IN EMBRYO IMPLANTATION AND
PLACENTATION

hCG represents one of the first molecular messages send out
by the pre-implanting embryo to modulate the implantation
site and to ensure a timely initiation of the nidation process.
Despite CGB gene expression was proven already in the 8-cell
stage embryo (7), active secretion of the hormone starts at the
blastocyst stage (8) and enables hCG detection in the maternal
circulation 10 days after fertilization. Later on, hCG is produced
in high amounts by trophoblast cells (9) resulting in the highest
hCG values between the 10th and 11th week of pregnancy. By the
end of the first trimester, hCG levels decrease but remain elevated
compared to non-pregnant individuals. Notably, a drop of hCG
seems to be required for normal pregnancy progression. A recent
meta-analysis provided evidence that elevated hCG levels can
be detected already at the end of the first trimester in women
developing preterm PE (10) and hCG was suggested as a useful
predictor for the development and severity of PE (11, 12).

Five different hCG isoforms have been described so far:
regular hCG (r-hCG), free-β hCG (hCGβ), hyperglycosylated
hCG (H-hCG), hyperglycosylated free-β hCG (H-hCGβ), and
pituitary hCG (p-hCG) (13), all of them with distinct
biological functions.

r-hCG, produced by syncytiotrophoblast cells is best known
for its function to rescue the corpus luteum and to maintain
P4 production during early pregnancy (14). However, although
often neglected, r-hCG has a broader influence on fetal
and maternal pathways allowing proper implantation and
placentation. This includes the fusion of cytotrophoblast cells
into the multinuclear structure of the syncytiotrophoblast (15),
the formation of the umbilical circulation in villous tissue and
the formation of the umbilical cord (16, 17), the growth of
fetal organs (18), the contribution to angiogenesis by forcing the
development and growth of uSA (19–21) and the suppression
of myometrial contractions (22). Thereby, hCG targets several
molecules that are involved in decidualization, implantation,
vascularization and tissue remodeling such as prolactin, insulin-
like growth factor binding protein-1, macrophage colony
stimulating factor, leukemia inhibitory factor (LIF), vascular
endothelial growth factor (VEGF), matrix metalloproteinase
(MMP)-9, tissue inhibitors of MMPs (TIMPs), galectin-3, and
glycodelin (23–26) (Figure 1B).

H-hCG is produced by cytotrophoblast cells and is the
most abundant hCG isoform around implantation (27). Its
major function is to induce proliferation and invasion of
cytotrophoblast cells and it has been reported that H-hCG
proportions higher than 50% of total hCG are required for
successful embryo implantation (28) (Figure 1B). Whereas,
tissue growth factors and collagenases positively modulate
H-hCG expression, endothelin-1 and prostaglandin F2α are
negative modulators of H-hCG expression (29).

High hCGβ and H-hCGβ levels are also indicative for highly
invasive processes as both hCG isoforms support tumor cell
growth and survival and their presence is associated with poor
prognosis for the patients (30). Finally, p-hCG in collaboration
with the luteinizing hormone (LH) promotes ovulation and
corpus luteum formation during the menstrual cycle (31).

CLINICAL APPLICATION OF hCG IN
ARTIFICIAL REPRODUCTIVE
TECHNIQUES (ART)—ADVANTAGE OR
DISADVANTAGE?

An increasing number of unintentionally childless couples
is seeking help in medical reproduction centers to fulfill
their wish of having a child of their own. After several in
vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI)
cycles using the common clinical protocols after which the
patients failed to become or stay pregnant, the demand for
unconventional treatment options increases. However, for most
of these treatment options there is still no clear evidence for an
overall higher success rate or only specific patient groups benefit
from these interventions (32). Thus, personalized medicine and
the development of new treatment strategies for infertile and
miscarriage patients are strongly desired and hCGmay represent
a promising target in this regard.

hCG is usually applied in two different preparations,
either as urine-derived preparation (uhCG) or as recombinant
preparation (rhCG) in gonadotropin-releasing hormone agonist
or antagonist protocols (33). As a standard procedure, hCG
is applied after ovarian stimulation to induce final oocyte
maturation. Additionally, some patients receive an intrauterine
hCG injection prior to embryo transfer with the aim to improve
implantation rates (IR) and live birth rates (LBR). In the majority
of recently published studies, uhCG or rhCG is injected into the
uterine cavity using an insemination catheter after the cervical
mucus is wiped out with a cotton swab or a syringe (34–36).
Some study designs also include a flushing step with saline
prior to hCG infusion (37). hCG is infused in different doses
of 500 up to 1,000 IU solved in either medium or saline and
application time points differ between <5min and days before
embryo transfer (38).

As clearly pointed out by Makrigiannakis et al. in their review
article in 2017, the efficacy of hCG via the intrauterine hCG
application route is controversially discussed (39). Since 2011,
several meta-analyses reported different outcomes with regard
to IR, clinical pregnancy rates (CPR), ongoing-pregnancy rates
(OPR), miscarriage rates (MR), and LBR. The heterogeneity
among the different meta-analyses might be attributed to the
timing of intrauterine hCG administration meaning the exact
time-point of hCG injection prior to embryo transfer as well as
the time-point when the embryo is transferred (early cleavage
stage or blastocyst stage), the choice of the hCG preparation
and the hCG dosage applied. Supportive evidence for improved
clinical parameters after intrauterine hCG administration arose
from a meta-analysis published by Ye et al. (40) and a potential
explanation for the clinical benefit is provided by Strug et al.
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(41). The latter suggested that hCG counteracts endometrial
dyssynchrony resulting from ovarian stimulation and promotes
expression ofmarkers essential for the survival of the endometrial
stroma (41). On the contrary, Osman et al. (42) and Hou et al.
(43) found no beneficial effects on all clinical parameters
or showed improvements on only some of them. Notably,
Volovsky et al. (44) even demonstrated negative effects on CPR
after intrauterine hCG application and this was particularly
true for patients without defined repeated implantation
failure (RIF).

In a recent Cochrane review from Craciunas et al.
(45), it is proposed that in particular patients undergoing
cleavage-stage embryo transfer receiving an hCG dosage
above 500 IU benefit from intrauterine hCG injection
but not patients undergoing blastocyst transfer. The last
meta-analysis from 2019 concluded that intrauterine hCG
administration before embryo transfer could significantly
improve IR, CPR, OPR, and LBR and significantly lowered
the MR. These authors suggested that patients treated with
500 IU hCG within 15min prior to embryo transfer can
achieve optimal outcomes (46). Moreover, a recent study
by Huang et al. (37) implied that the number of previous
implantation failures may influence the efficacy of intrauterine
hCG treatment.

Altogether, it can be stated that an overall beneficial effect
of intrauterine hCG injection before embryo transfer is not
definitely proven and more research has to be done in
this field.

BENEFICIAL ROLE OF hCG IN
PREGNANCY AND IN ART—IS THE
IMMUNE SYSTEM INVOLVED?

There is no doubt that hCG possesses a variety of immune-
modulating properties (47, 48). However, how hCG supports
immune cells in their function in controlling embryo
implantation and placentation is far from being understood. The
participation of immune cells in pregnancy-related processes
is not restricted to pregnancy itself but begins already during
the menstrual cycle before ovulation takes place. Upon the LH
surge, an inflammatory reaction is induced where leukocytes
are actively recruited to the ovaries through a mechanism
involving the leukocyte chemoattractant CCL20. Among these
leukocytes are neutrophils, monocytes, natural killer (NK)
cells, dendritic cells (DCs), B cells, and T cells and for some of
them, a critical role in the ovulation process has been proven
(49, 50). Notably, hCG also augments CCL20 expression in
the ovaries and thereby stimulates a CCL20-driven leukocyte
influx (51). Most likely, this function is attributed to the p-
hCG isoform (Figure 1A). Moreover, p-hCG may induce the
expression of the macrophage migration inhibitory factor (MIF)
in human endometrial stromal cells during the menstrual cycle
(Figure 1B). MIF is known to modulate immune responses
on his part and to act as a growth and angiogenic factor (52),
features that are highly relevant to support remodeling of the
endometrial bed.

Later on, during the pre-implantation period local immune
cell populations seem to take over critical functions in preparing
the implantation site. Approaches where RIF patients received
autologous peripheral blood mononuclear cells (PBMCs) before
embryo transfer resulted in significantly increased IR and
CPR (53, 54). PBMCs were isolated from peripheral blood
by using density-gradient centrifugation either on the day of
ovulation in fresh embryo transfer cycles or 5 days prior
scheduled frozen-thawed embryo transfer cycles. PBMCs were
then cultured and monitored for up to 3 days as quality of
PBMC cultures was shown to be predictive for the efficiency
of PBMC transfers. In each case, 1 × 106 or 4 × 107 PBMCs
were transferred into the uterine cavity 2 days before embryo
transfer (53, 54).

Markedly, PBMCs that have been activated by hCG prior to
their transfer into RIF patients also significantly improved IR,
CPR, and LBR irrespective whether the patients underwent fresh
or frozen/thawed embryo transfer or whether early cleavage stage
embryos or blastocysts were transferred (55–57). Moreover, it
became evident that patients with more than three implantation
failures may be the group that particularly benefits from this
immunotherapy. Several studies were conducted to estimate
the underlying mechanisms of an implantation-regulation by
hCG-activated PBMCs. One study involved pure mouse material
and found that adoptive transfer of PBMCs from non-pregnant
mice into mice suffering from an implantation dysfunction
elevated the pregnancy rate and increased the endometrial
expression of VEGF and LIF during the implantation window
(58). Another study combined human PBMCs and mouse
embryos. The authors showed that PBMCs from early pregnant
women enhanced spreading and invasion of mouse embryos
to a greater extent than PBMCs from non-pregnant women.
Interestingly, when PBMCs from non-pregnant women were
previously exposed to hCG, they possessed a higher capability
to promote embryo outgrowth compared to untreated PBMCs
(59). Additionally, two studies focusing on human sample
material depicted that PBMCs obtained from early pregnant
women increased invasion of human trophoblast cells in
vitro, while PBMCs from non-pregnant women did not. After
PBMCs from non-pregnant women were treated with hCG
they showed comparable effects on human trophoblast cells as
PBMCs from pregnant women (60, 61) suggesting that previous
exposure to hCG is required for PBMC-driven trophoblast
invasion. Yu et al. (61) further indicated that hCG-activated
PBMCs significantly augmented MMP-2, MMP-9, and VEGF
and decreased TIMP-1 and TIMP-2 expression in human
trophoblast cells.

These findings let assume that hCG administration to
patients undergoing ART will support pregnancy in two
steps that involve the maternal immune system. First, hCG
injection will provoke an active immigration of immune
cells into reproductive tissues and thereby direct those
cells to the place of action. Second, hCG will activate
immigrated and residual immune cell populations in the
pre-implantation phase to support these cells in promoting
embryo attachment and invasion as well as in forcing the
decidualization process.
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hCG-MEDIATED IMMUNE REGULATION
FAVORING EMBRYO IMPLANTATION AND
PLACENTATION

Innate and adaptive immune cell types play a pivotal role in
the early and late steps of embryo implantation as well as in
placentation. hCG is recognized as a key factor in this immune-
mediated regulation. However, it remains to be elucidated which
specific immune cell populations are targeted by hCG and how
they are regulated.

Neutrophils
Neutrophils are in the first line of innate defense against
pathogens to protect the mother and her unborn child. Their
functional repertoire includes: phagocytosis, production of
granules with potent proteolytic activity and of microbicidal
peptides, synthesis of reactive oxygen species, formation of
neutrophil extracellular traps (NETs) (Figure 1C), and secretion
of pro-inflammatory cytokines and chemokines. Furthermore,
they directly interact with macrophages, DCs, NK cells, B
cells, and T cells (62). During pregnancy, NETs formation with
microbicidal impact is considered as another defense mechanism
to protect fetal tissues from infections (63) and hCGwas reported
to stimulate this pathway (64). In non-pregnant individuals,
neutrophils can be found in the cervix, endometrium and
fallopian tubes (65, 66) while in pregnant women neutrophils
additionally invade the decidua, placenta, and fetal membranes
(67, 68). At insemination neutrophils specifically migrate and
accumulate around the uterine epithelium (69). Here, they
overtake various critical functions associated with angiogenesis,
uSA remodeling and trophoblast invasion (70, 71) (Figure 1D).
One of the major molecules involved in neutrophil activity with
regard to tissue remodeling processes isMMP-9 (72) (Figure 1C).
Moreover, human neutrophils under the influence of P4 and E2
induce a specific subpopulation of regulatory T (Treg) cells with
pro-angiogenic properties (73). Whether hCG affects neutrophils
in a similar way is not known. However, it was described that
low doses of hCG inhibit proliferation and induce apoptosis
in human neutrophils (74, 75). By doing so, hCG may control
neutrophil function as their excessive activation was proven in
adverse pregnancy outcomes such as fetal loss and PE (67, 76).

Monocytes and Macrophages
After their generation in the bone marrow, monocytes typically
circulate in the peripheral bloodstream for some days before
they enter into tissues and differentiate into tissue-specific
macrophages. Here, macrophages fulfill a plethora of different
functions including the removal of dead cells and cell debris as
well as the presentation of foreign antigens during inflammatory
processes (77). Two major subtypes of macrophages have been
described: pro-inflammatory M1 cells and anti-inflammatory
M2 cells (78). As embryo implantation is a state of controlled
inflammation, M1 cells are the main macrophage subtype
during this period. Immediately after fertilization, macrophages
are actively recruited into the endometrium, myometrium
and the decidua and represent the second most abundant
immune cell population (79). They support angiogenesis

by secreting pro-angiogenic factors like VEGF-A, fibroblast
growth factor, platelet derived growth factor, and angiopoietin-
1 and−2 (Figure 1C). Moreover, although not directly affecting
trophoblast invasion or smooth muscle cell organization, M1
cells promote uSA remodeling by inducing extracellular matrix
breakdown and phagocyte apoptotic vascular smooth muscle
cells (80). After implantation, macrophages have to switch into
the immunomodulatory M2 phenotype to ensure tolerance
toward the increasing levels of foreign fetal antigens. This
M1 to M2 cell shift seems to be partially fostered by hCG
as indicated in human and mouse experimental settings (81,
82) (Figure 1C). On the other hand, hCG stimulates pro-
inflammatory functions in human monocytes and macrophages
(83, 84) suggesting that in case of an infection, hCG helps
to protect the fetus from being attacked. Notably, human
placental macrophages are able to produce high amounts of
the pro-inflammatory cytokine IL-1 which in turn stimulates
hCG secretion by human trophoblast cells (85) proposing a
reciprocal interrelationship between macrophages and hCG
during pregnancy.

Equally important are fetal macrophages, called Hofbauer
cells that infiltrate the villous stroma and reside close to the
fetal capillaries (86). Hofbauer cells represent a M2 phenotype
and mainly produce IL-10 and TGF-β (87). They promote
placental angiogenesis, villous tree growth and branching and
protect the fetus from being immunological rejected (88, 89).
Likewise human decidual macrophages (90), Hofbauer cells
express the LH/CG receptor (91) allowing them to bind
and incorporate hCG. This ability seems of fundamental
importance in adjusting hCG levels at the fetal-maternal interface
and to prevent an aberrant genital differentiation in early
pregnancy (92).

Mast Cells
The contribution of mast cells (MCs) for pregnancy
establishment, maintenance, and termination was longtime
controversially discussed (93–96). However, nowadays there is
accumulating evidence that MCs are indeed critically involved
in pregnancy success and in particular regulate fundamental
processes during early pregnancy. MCs are present in human
(97) and rodent uteri (98, 99) exhibiting a mixed population
of different MC types (97, 100). We showed that female
mice devoid of MCs were either completely incapable to
implant or implanted but showed insufficient uSA remodeling
and abnormal placentation (100) resulting in IUGR (101)
(Figure 1D). Our and other data further revealed that factors like
VEGF (102), galectin-1 (100), and chymases (103) are involved
in MC-mediated activities (Figure 1C). As human and mouse
MCs express steroid receptors (97, 104) it is suggested that their
functionality is affected by the local hormonal environment. In
fact, E2 and P4 upregulate chemokine receptor expression on
MCs and promote their immigration into the fetal-maternal
interface, induce the production of MC mediators and their
release by degranulation (104). However, whether hCG possesses
similar effects on MCs is unknown as research activities in this
field are very limited.
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Natural Killer Cells
Uterine NK cells display a unique profile that differentiates
these cells fundamentally from their peripheral counterparts. A
high cytokine and angiogenic secretory profile as well as a poor
cytotoxic potential are characteristic for uterine NK cells (105).
During the first trimester of pregnancy NK cells represent the
most abundant immune cell population in decidual tissue (105).
However, whether decidual NK cells are derived from peripheral
NK cells that enter the fetal-maternal interface and convert into
the decidual phenotype and/or expand from residual NK cells
is not finally resolved (106, 107). Recently, it was suggested
that under the influence of P4 and IL-15, peripheral NK cells
start to proliferate, migrate into the implantation site along
chemotactic and hormonal gradients provided by trophoblast
and endometrial cells and finally convert into decidual NK cells
due to high levels of local TGF-β and IL-11 (106).

hCG seems to influence peripheral and endometrial NK cells
in several ways although hCG effects on peripheral NK cells
are rather inconclusive. While studies from the 80s showed
an inhibitory effect of hCG on human peripheral NK cell
activity (108, 109), more recent studies suggested a stimulatory
effect of hCG on NK cell activity and number (110). Shirshev
et al. proposed that hCG levels representative for the first
trimester stimulated the expression of specific miRNAs within
peripheral NK cells known as positive regulators of NK cell
survival, cytolytic activity and production of pro-inflammatory
cytokines (111). Notably, higher KIR2DL4+ peripheral NK cell
numbers and lower implantation rates have been found in
patients undergoing IVF and receiving hCG for final oocyte
maturation suggesting that in those patients hCG treatment
may compromise pregnancy success (112). By contrast, hCG
elevates the number of endometrial NK cells through the
mannose receptor andmay therefore positively influence embryo
implantation (113) (Figure 1C).

In line with macrophages and MCs, uterine NK cells are
key regulators of embryo implantation and placentation. In
both humans and mice, uterine NK cells control trophoblast
invasion, support angiogenesis and contribute to proper uSA
remodeling (Figure 1D). More specifically, human uterine
NK cells either directly force remodeling of the endometrial
vascular bed through secretion of MMPs (114) or indirectly
by regulating invasive trophoblast cells that in turn promote
vascular transformation (115). Human uterine NK cells also
produce and secrete a variety of pro-angiogenic factors including
VEGF, placental growth factor, angiopoietin-1, and angiogenin-2
(116) (Figure 1C). Inmice, uterineNK cells are subdivided in two
major subsets based on the expressionDolichos biflorus agglutinin
(DBA).Whereas, DBA− uNK cells secrete high amounts of IFN-γ
and thereby assist in vascular remodeling (117), DBA+ uNK cells
predominantly produce pro-angiogenic factors (118). In contrast
to human uterine NK cells suggested to either enhance or
inhibit trophoblast invasion, mouse uNK cells seem to primarily
suppress trophoblast motility (119).

Our own research studies identified the heme catabolizing
enzyme heme oxygenase-1 (HO-1) as a regulator of uterine
NK cell numbers and functionality. HO-1 deficient female
mice showed fewer uterine NK cells and lower expression
of uterine NK cell-associated angiogenic factors. Moreover,

pregnant HO-1 deficient female mice displayed insufficient
remodeled uSAs, IUGR fetuses and gestational hypertension
(120, 121). The administration of gaseous carbon monoxide,
a HO-1 degradation product, normalized uNK numbers and
restored uSA remodeling, suggesting that uNKs cells are
responsible for SA remodeling. However, fetal impairments are
not only attributable to NK absence as their depletion, although
interfering with uSA remodeling, did not result in fetal growth
restriction (103). This finding, however, contradicts observations
made by other research groups (122, 123). Intriguingly, in our
NK cell-deficient mouse model, females increase their number
of uterine MCs that can compensate for the effects of NK
cells and avert major damage to the fetus (124). Accordingly,
pregnant females lacking both innate immune cell populations
show markedly impaired uSA remodeling and high vascular
resistance resulting in disturbed fetal development and growth
restricted neonates (101). This was attributable to the chymase
Mcpt5, secreted by both cell types (103). Consequently, mice
without Mcpt5+ cells present a similar phenotype of impaired
uSA remodeling and IUGR but not hypertension (103).

Dendritic Cells
DCs link the innate and the adaptive immune system and
are therefore decisive for the induction of late immune
responses. Although they are detectable in the uterine tissue
before and during pregnancy, compared to macrophages and
NK cells, DCs represent a minor immune cell population.
DCs accumulate in the uterine tissue when the embryo
establishes its first contacts with the maternal endometrium
(125). At this time, uterine DCs are critically involved in
endometrial changes that are indispensable for further pregnancy
progression. In female mice lacking decidual DCs it has
been shown that decidual proliferation and differentiation was
markedly impaired. Moreover, these females showed perturbed
angiogenesis characterized by reduced vascular expansion and
attenuated maturation (125). In agreement, impaired homing
of CXCR4+ DCs into decidual tissue led to a disorganized
vasculature with improper uSA remodeling later on (126).
As a result, decidual DC-deficient females were unable to
implant (125).

DCs also participate in the ovulation process. In follicular
fluid, these cells make up a major fraction of all ovarian
immune cells and were proven to possess an anti-inflammatory
capacity that likely serves to restrict the ovulatory-associated
inflammation (127). Furthermore, ovarian DCs are essential for
expansion of the cumulus-oocyte complex, release of the ovum
from the ovarian follicle, corpus luteum formation and enhanced
lymphangiogenesis (49). Gonadotropins including hCG induce
immigration of DCs into ovaries, thus supporting DC-mediated
ovulation control (49) (Figure 1A).

Additionally to their non-immunological activities during
pregnancy, DCs are naturally involved in decisions whether
fetal tissues are immunologically tolerated or rejected. Typically,
DCs take up antigens in peripheral tissues, undergo maturation,
immigrate into lymphoid organs and finally present antigen-
derived peptides to T cells. By doing so, DCs efficiently prime
T cell responses either with a pro- or an anti-inflammatory
profile. As presentation of fetal alloantigens may provoke an
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overwhelming alloreactive T cell response leading to fetal
rejection, phenotype, and functions of DCs are modulated
during normal pregnancy to restrict detrimental effects for
the fetus. This accounts in particular for decidual DCs that
in contrast to their peripheral counterparts possess a tolerant,
immune regulatory phenotype characterized by a reduced T cell
stimulatory capacity (128) and high expression of IL-10 and
TGF-β (129). Decidual DCs are able to induce Treg cells and
Th2 responses contributing to an overall anti-inflammatory fetal
environment (130) (Figure 1C). Both decidua- and trophoblast-
derived factors such as E2, soluble HLA-G, glycoprotein 1a,
thymic stromal lymphopoietin and galectin-1 instruct DCs to
adopt a tolerogenic phenotype (131–135). Moreover, several
human and mouse studies identified hCG as a regulator of DCs
during pregnancy, however with contradicting results (131, 136–
138). Our own analyses revealed that the application of hCG as
well as adoptive transfer of hCG-treated tolerogenic DCs into
abortion-prone females significantly reduced peripheral and local
frequencies of mature DCs, increased Treg cells and protected
fetuses from rejection (139, 140). Notably, tolerogenic DCs
have to be present at fecundation to confer protection (140)
emphasizing their role at very early pregnancy stages. In humans,
we proposed hCG as a factormaintainingmature peripheral DCs,
and particular myeloid DCs type 1, at low levels but not as a
general regulator of DC frequencies during pregnancy (141, 142).

B Cells
B cells are one of the two major immune cell types belonging to
the adaptive branch of the immune system. Best known for their
ability to produce immunoglobulins, B cells also participate in
antigen presentation and in cytokine production. Early studies
from the 70s and 80s investigated the development of an anti-
paternal humoral immune response during murine pregnancy
and found that this response was restricted to specific allogeneic
mating combinations and only became evident after repeated
mating cycles. Bell and Billingham (143) further identified the
placenta as the tissue provoking the anti-paternal humoral
immune response. Nowadays, the participation of B cells in
fundamental pregnancy processes is increasingly becoming
the focus and it is to be assumed that these cells are also
involved in embryo implantation and placentation. We recently
observed that pregnant female mice lacking B cells were more
susceptible to lipopolysaccharide meaning their fetuses died at
doses compatible with fetuses from B cell-competent female
mice. This implies a critical role of B cells in the control
of bacterial infections during pregnancy (144). Under steady
state conditions, mouse studies from the 80s proposed that
B cell deficiency during pregnancy does not affect resorption
frequencies, litter sizes and neonatal survival (145–147). Our own
previous findings show that fetuses of B cell-deficient female mice
were smaller compared to fetuses from B cell-competent female
mice already within the first half of pregnancy (144). This implies
that a lack of B cells during pregnancy, although not leading to
complete fetal loss, compromises fetal growth andmay thus affect
the health of the progeny in long term.

In humans, a B cell deficit evoked by medical intervention
before or during pregnancy resulted in an elevated rate of

pregnancy-associated complications such as spontaneous
abortions, PE, IUGR, and preterm deliveries (148–150)
suggesting that B cells are involved in early pregnancy pathways
determining pregnancy outcome. However, the study of
phenotypic and functional characteristics of uterine B cell
populations is impeded by their scarcity at the fetal-maternal
interface (151). Analyses of B cell frequencies during mouse and
human pregnancy revealed around 1% of mouse B cells and<5%
of human B cells in decidual tissue (152, 153). Furthermore,
pregnancy-driven changes in B cell numbers of all developmental
stages in bone marrow, blood, spleen and lymph nodes (154–
160) may affect local B cell frequencies and if deregulated may
cause adverse pregnancy outcomes. Indeed, there is evidence
that not only a lack but also an overrepresentation of distinct
B cell populations at different gestational ages can harm the
fetus. For instance, reduced frequencies of regulatory B (Breg)
cells during early pregnancy in humans and mice are associated
with spontaneous abortions (161, 162). Breg cells comprise
all B cells that negatively regulate immune responses and are
able to secrete high amounts of immune suppressive cytokines
such as IL-10, IL-35, and TGF-β (Figure 1C). We and other
research groups demonstrated that hCG not only suppressed
the proliferation of mouse splenic B cells but also induced the
generation of mouse and human IL-10-producing Breg cells
as well as the production of pregnancy-protective asymmetric
antibodies (163, 164) (Figure 1C). By doing so, hCG supports
the immune suppressive characteristics of B cells and fosters
maternal immune tolerance during early pregnancy.

Yet, there are two sides of the medal. In mice, Breg cells are
often reported to be part of the CD19+ CD5+ B1a cell population
(165), however B1a B cells depending on their phenotype seem
to play an ambivalent role during pregnancy. We found that
mouse peritoneal B1a B cells expressing high levels of plasma
cell alloantigen 1 and IL-10 support fetal survival, whereas B1a
B cells expressing low levels of both marker molecules can induce
fetal rejection (166). Moreover, increased frequencies of human
B1a B cells during the third trimester of pregnancy were detected
in PE patients and were associated with pathologic elevated hCG
levels proposing a rather detrimental effect of hCG in this regard.
As B1a B cells possess the capacity to produce autoantibodies
against the angiotensin II type 1 receptor they were suggested
to promote PE-associated symptoms (12). Likewise, production
of autoantibodies by increased numbers of plasma cells present
in endometrial lesions of endometriosis patients was associated
with infertility (167).

Altogether, physiological elevated hCG levels during early
pregnancy assist in fetal tolerance induction by promoting the
generation and function of Breg cells, whereas high hCG levels
at later pregnancy stages may compromise fetal well-being by
enhancing autoreactive B cells. Whether hCG encourages B cells
in promoting embryo implantation and placentation remains to
be elucidated.

T Cells
T cells being the second major adaptive immune cell type are
more abundant at the fetal-maternal interface than B cells and
are much better studied. Approximately 10–20% of all decidual
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leukocytes are T cells, being CD8+ T cells more than CD4+ T
cells including classical as well as regulatory subsets (168). In
mice, CD4+ T helper (Th) and CD8+ T cells represent up to 2%
of decidual leukocytes during early and mid-gestation (169). It is
suggested that human decidual T cells are highly differentiated,
express a broad range of cytokines and cytotoxic markers
and exhibit a unique transcriptional profile characterized by
strong expression of genes involved in interferon signaling
(170). Moreover, although capable to recognize the foreign
trophoblastic antigens, decidual T cells do not attack trophoblast
cells but rather support their growth and invasiveness (171).
Among all decidual T cells, the best described are pro-
inflammatory Th1 and Th17 cells as well as anti-inflammatory
Th2 and Foxp3+ Treg cells and dysregulations in these Th subsets
are indicative for several pregnancy complications (172, 173).
Nevertheless, the functional properties of decidual T cells are still
poorly defined.

Normal pregnancy progression is the result of timely-
regulated local shifts between pro- and anti-inflammatory
immune responses allowing implantation and placentation in
a pro-inflammatory environment, fetal growth in an anti-
inflammatory environment and finally the induction of labor and

delivery again under pro-inflammatory conditions (174). hCG
was shown to affect Th cells in several ways and it is suggested
that the hormone advance the passage from a Th1-dominated

into a Th2-dominated local environment at the end of the first
trimester. hCG is suggested to impair proliferation and to induce
apoptosis of conventional T cells (175–179), thus reducing the
number of alloreactive T cells that may harm the fetus. Moreover,
hCG helps T cells to adopt a suppressor phenotype and to secrete
preferentially immune regulatory cytokines such as IL-10 and
TGF-β (139, 175, 180, 181). This is true for both human and
mouse T cells as both express highly conserved LH/CG receptor
molecules (139, 182) and are susceptible to hCG signaling. hCG
signaling in turn was proposed to act through the signaling
molecules AKT and ERK (183).

Remarkably, in vivo hCG administration into mice and
humans could significantly improve pregnancy outcomes. We
showed that hCG injection during the peri-implantation period
into abortion-prone mice increased Treg cell frequencies and
significantly reduced the fetal rejection rate (139). In agreement,
IVF patients receiving hCG exhibited significantly elevated
peripheral Treg cell levels associated with improved IR and LBR

when compared to non-hCG-treated controls (36). Likewise,
spontaneous abortion patients showed lower peripheral numbers
of Th17 cells and elevated Treg cell frequencies after hCG
exposure (184, 185), indicating that hCG is able to correct
immunological dysbalances associated with adverse pregnancy
outcomes. It is worthy to speculate that hCG not only increases
peripheral Treg cells but also augments the local Treg cell pool.
By this means, hCG may act through three different pathways:
(A) active recruitment of peripheral Treg cells into the fetal-
maternal interface (186), (B) local expansion of decidual Treg
cells (82), and (C) conversion of conventional T cells into Treg
cells (181, 183) (Figure 1C).

Recently, Robertson and colleagues provided novel insights
into the functionality of decidual Treg cells. The authors
proposed a role of decidual Treg cells in preventing excessive
inflammatory responses evoked by local effector T cells, a
supportive function for other leukocytes and non-hematopoietic
cells in the implantation process and a direct involvement of
decidual Treg cells in adaptions of the maternal vascular bed
(187) (Figure 1D). All these mechanisms are pivotal for the
embryo to successfully pass the first steps of its development and
because of their modulation by hCG, it can be stated that this
unique hormone is critically involved.

CONCLUDING REMARKS

During early pregnancy, innate and adaptive immune cells
participate in several fundamental physiological processes
including trophoblast invasion, decidualization, angiogenesis,
and placentation, all of them allowing proper fetal development
and growth. Hereby, some of the immune cells work in close
relationships as suggested forMCs, NK cells, and DCs. Moreover,
as emphasized throughout this review, hCG is a molecule with a
multitude of immunological properties. This hormone does not
only regulate local immune cell numbers but also forces these
cells to adopt a unique phenotype with the aim to support and
protect the fetus. Taken together, the literature discussed here
may at least partially provide an explanation for the success rates
after hCG treatments in ART or miscarriage patients.
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