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Detection of movement intention from the movement-related cortical potential (MRCP) derived from the electroencephalogram
(EEG) signals has shown to be important in combination with assistive devices for effective neurofeedback in rehabilitation.
In this study, we compare time and frequency domain features to detect movement intention from EEG signals prior to
movement execution. Data were recoded from 24 able-bodied subjects, 12 performing real movements, and 12 performing
imaginary movements. Furthermore, six stroke patients with lower limb paresis were included. Temporal and spectral features
were investigated in combination with linear discriminant analysis and compared with template matching. The results showed that
spectral features were best suited for differentiating between movement intention and noise across different tasks. The ensemble
average across tasks when using spectral features was (error = 3.4 + 0.8%, sensitivity = 97.2 + 0.9%, and specificity = 97 + 1%)
significantly better (P < 0.01) than temporal features (error = 15 + 1.4%, sensitivity: 85 + 1.3%, and specificity: 84 + 2%). The
proposed approach also (error = 3.4 + 0.8%) outperformed template matching (error = 26.9 + 2.3%) significantly (P > 0.001).
Results imply that frequency information is important for detecting movement intention, which is promising for the application of
this approach to provide patient-driven real-time neurofeedback.

preprocessing, for example, the electrical activity to enhance
the signal-to-noise ratio, extracting features to discriminate
between two or more different states which then can be trans-

The movement-related cortical potential (MRCP) is a slow
negative brain potential that can be observed in the elec-
troencephalogram (EEG) up to 2s prior to self-initiated
movements: self-paced and cue-based [1, 2]. In addition,
MRCPs can be observed in the EEG with a similar wave
form when self-initiated movements are imagined [3]. Due
to the intrinsic feature that a depression can be observed in
the EEG prior to an imaginary movement, the MRCP has
been used as a control signal in brain-computer interface
(BCI) technology. BCIs can link the activity in the brain
with an external device through a series of steps that include

lated to device commands by a classifier [4]. BCIs have mainly
been used for control and communication purposes [4], but
in recent years, its potential in neurorehabilitation has been
explored [5]. The MRCP has been suggested in several studies
to be a useful control signal for BCIs in neurorehabilitation
[4, 5]. The movements or attempted movements from motor
impaired patients can be predicted around 100 ms before
their onset, which is important for induction of Hebbian-
like plasticity (an underlying mechanism for motor recovery)
[6], which leaves time to close the disrupted motor control
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loop by initiating electrical stimulation or rehabilitation
robots [7-11]. Besides the MRCP, different approaches to
detect movement intentions for BCI for neurorehabilitation
exist. These include, for example, extraction of spectral
components from, for example, power spectral densities and
sensorimotor rhythms [12-15].

In a previous study it was shown that the outcome of a
BClI-based rehabilitation protocol was positively correlated
with the performance of the system [9]; therefore, there is
an incitement for optimizing BCI system performance. As
outlined, the BCI consists of different components (prepro-
cessing, feature extraction, and classification) that may be
optimized using various signal processing techniques. Pre-
viously proposed preprocessing methods include temporal,
spectral, and spatial filtering as well as blind source separation
[8,16-19]. For decoding of movement intention using MRCPs
and other control signals, two strategies have been used
in the literature, detection and classification. For example,
for detection, a matched filtering [8] approach can be used
to detect the initial negative phase of MRCP with help of
template matching. Using classification methods, it has to be
set up as a 2-class classification problem between two states:
an idle state (often noise) and an active state (motor execution
or motor imagination).

From the raw EEG signal point of view, various fea-
tures and classifiers have been applied in BCI for control
purposes [15, 16] using different classifiers [9, 11, 13, 14, 17].
In rehabilitation, the focus has been on spectral features
computed from the EEG around the intended movement
onset [15] or from temporal features computed from the
MRCP (low pass filtering) usually detected by a simple
matched filter (MF) [7] from a single optimized channel.
The application of MF is optimal when the noise is additive
Gaussian, a condition that usually fails in real applications [9].
Recently, application of locality preserving projections (LPP)
has proven suitable for the detection of MRCPs [9]. Although
LPP proved superior compared to MF, the lower dimen-
sional feature space does not provide information about
the characteristics of the signals that maximize separability
between movement and noise. Furthermore, 0.5s after the
movement onset was also included during training of the
detector, and as for any dimension reduction algorithms, the
optimal dimension for the LPP space needs to be determined
to achieve optimal performance. In this study, we compare
the detection performance of MF with time domain features
extracted from the initial negative phase of the MRCP and
spectral features computed from the entire band of EEG,
which have shown to be useful for movement discrimination,
for example, using sensorimotor rhythms. Thus we propose
to compare matched filtering with features extracted from
the frequency domain of EEG (full band) and from the
time domain of the MRCP recorded in cue-based sessions
to discriminate between two states: no movement (idle state)
and movement intention (using only information prior to the
movement onset) with the constraint that movements must
be predicted to fulfill the temporal association of induction of
Hebbian-like plasticity. The investigation was conducted on
real, imaginary, and attempted (stroke patients) movements
with linear discriminant analysis (LDA) for classification.
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FIGURE 1: The subjects were presented with the following cues for
each of the two tasks. In the 3 s prior to the task onset subjects
were asked to start preparing to perform the motor execution or
imagination. They rested after the movement was maintained for
0.5s.

2. Methods

2.1. Subjects. 24 healthy subjects (7 women and 17 men: 27 +
4 years old) and six stroke patients with lower limb paresis
participated in the study. All procedures were approved by the
local ethical committee (N-20100067 and N-20130081), and
the participants gave their written informed consent before
the experiment.

2.2. Experimental Protocol. The subjects sat comfortably in a
chair. After placement of the EEG electrodes, the right leg (or
affected for the patients) was fixed to a custom-made pedal
for ankle joint torque measurements. Subjects performed
maximum voluntary contraction (MVC) three times and the
highest value was retained to compute 20% and 60% MVC.
After the MVC was determined, subjects performed 2 x
50 repetitions (see Figure 1) of the following tasks of ankle
dorsiflexion: (1) a fast movement (f60: 0.5s to reach 60%
MVC) and (2) a slow movement (s20: 3 s to reach 20% MVC)
[20]. The ensemble average of the movements is shown in
Figure 2.

Subjects were provided with a visual cue (the two traces
in Figure 1) in order to perform the movements correctly as
they were constrained to spend the given time to reach the
desired level of MVC. The healthy subjects were randomly
divided into two subgroups of 12. One group was asked
to perform the actual dorsi-flexion movements while the
subjects in the other group imagined the movements. The
patients were asked to attempt to perform the tasks. The
tasks were randomized in blocks, and ~5min practice was
performed before each task.

2.3. Signal Acquisition

2.3.1. EEG. Continuous EEG was recorded from FP1, F3,
Fz, F4, C3, Cz, C4, P3, Pz, and P4 according to the inter-
national 10-20 system (32 Channel Quick-Cap, Neuroscan
and EEG Amplifiers, Numaps Express, Neuroscan). The
signals were referenced to the right ear lobe. The EEG was
sampled with 500 Hz and digitized with 32 bits accuracy.
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FIGURE 2: Ensemble average of the epochs associated with the two
movement tasks and the noise for a healthy subject performing the
actual movement.

Electrooculography (EOG) was registered from FPI. The
impedance of the electrodes was below 5kQ during the
experiment. The digital trigger from the interface software
was sent to the EEG amplifier to be used as marker to segment
the continuous EEG into epochs.

2.3.2. Force Measurement. For real movements, force was
used as input to the program that cued the subjects, so they
were provided with visual feedback on their performance.
Subjects performing imaginary movement did also receive a
cue, but the force signal was only used to verify that the move-
ment was not actually performed. The force was recorded
with custom-made software (SMI, Aalborg University) and
sampled with 2000 Hz. The MVC was recorded at the begin-
ning of the experiment. The onset of each executed movement
for the healthy subjects and patients was determined from
the force trace. This was used to synchronize all epochs. It
was identified as the first sample when all values in a 200 ms
window (with a 1-sample shift) exceeded the baseline. The
baseline was defined as the mean value of the signal 2-4s
before the task onset provided by the visual cue.

2.4. Signal Processing. The EEG was band-pass filtered with a
2nd order Butterworth filter from 0.05-10 Hz in the forward
and reverse direction for the extraction of temporal features.
The spectral features were extracted from data that was high-
pass filtered with a cut-off frequency of 0.05Hz. To correct
for the poor spatial resolution of EEG, the data was spatially
filtered using a large Laplacian spatial filter, so a single
surrogate channel was obtained (linear combination of the
nine EEG channels).

Signal epochs were extracted from the movement/task
onset and 2 s prior to this point; noise epochs were extracted
5-3s prior to the movement/task onset from the surrogate
channel.

The proposed approach of movement detection consisted
of two steps: a feature extraction step from each epoch and a

classification (signal versus noise epoch) step using LDA. This
approach was compared to the method based on template
matching as previously proposed [8, 9, 20, 21]. In short, the
template matching technique was based on determining a
suitable MRCP template and used correlation measures to
detect a similar shape in the testing data. All the features
and the template matching were performed on the surrogate
channel.

2.5. Feature Extraction

2.5.1. Temporal Features. Six temporal features were extracted
for the executed movements, as described previously [20]: (i)
point of maximum negativity, (ii) mean amplitude, (iii + iv)
slope and intersection of a linear regression of the data until
the point of detection, and (v + vi) slope and intersection of
a linear regression of the data from the movement onset and
0.5s prior to this point. For the imaginary movements, the
same features were extracted except for the intersections of
the two linear regressions. Also, the mean amplitude of the
data from the movement onset and 0.5 prior to this point
was extracted.

2.5.2. Spectral Features. Five spectral features were extracted.
Welch’s power spectral density estimate was calculated on
each epoch using a Hamming window with 50% overlap
of the segments. The average power was calculated in the
following frequency ranges: (i) 0-4Hz, (ii) 4-8Hz, (iii)
8-13Hz, (iv) 13-30Hz, and (v) 30-100 Hz. These ranges
correspond approximately to the delta, mu, alpha, beta, and
gamma frequency bands, respectively.

2.6. Movement Detection. We introduce the concept of 5-
fold test procedure to evaluate the proposed classifier-based
approach. N-fold test differs from N-fold validation as N-fold
test includes (N-1)-fold validation step. The procedure is as
follows:

(1) Divide data into five parts (partl, part2, part3, part4,
and part5).

(2) Use four parts (e.g., partl, part2, part3, and part4)
in a 4-fold validation procedure where three parts
are used for training and the remaining part is
used for validation in order to minimize overfitting.
For the classifier approach, this step finds the best
LDA structure. For the template matching approach,
the best template, with associated best threshold, is
determined.

(3) Permute and repeat item 2 four times.

(4) Find the training set with the lowest validation error
(e.g., part2).

(5) Use this best training set to test on the last part (not
used in the validation step, here part5).

(6) Permute and repeat from item 2 five times.
(7) Report the average test error.

This procedure was performed for each feature type (tem-
poral and spectral) to compare their ability to discriminate
between noise and movement.
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FIGURE 3: Detection performance of different features in terms of (a) detection error, (b) sensitivity, and (c) specificity for the three tasks.

* indicates where the difference is statistically significant.

2.7. Performance Measures. The performance of the system
was quantified using the detection error, sensitivity, and
specificity. Detection error is the sum of false positives and
false negatives. Sensitivity (also called true positive rate)
measures the proportion of actual positives (movements)
which are correctly identified. Specificity (sometimes called
the true negative rate) measures the proportion of negatives
(no motion or noise) which are correctly identified.

2.8. Statistical Analysis. The statistical analysis was carried
out for each task separately first by comparing temporal and
spectral features and then comparing the best of these two
to template matching. Thus for each task (real, imaginary,
and attempted movement), the nonparametric Friedman’s
test was used to evaluate the difference between spectral and
temporal features and the difference between the best feature
type and template matching approach. P values less than 0.05
were considered significant. Results are presented as mean +
standard error.

3. Results

The ensemble average across tasks when using spectral
features was (error: 3.4 + 0.8%, sensitivity: 97.2 + 0.9%, and
specificity: 97 + 1%) significantly better (P < 0.01) than
temporal features (error: 15 + 1.4%, sensitivity: 85 + 1.3%,
and specificity: 84 + 2%). However, for each single task, the
difference was significant only when using imaginary and
attempted movements (P < 0.005) suggesting that temporal
features are discriminative only when the movement is
actually performed. Figure 3 summarizes the results.

Figures 4 and 5 show the two discriminative fea-
tures when each feature type is projected using Fisher

discrimination projection considering three classes (60, s20,
and noise) for the best subject and worst subject, respectively.

For all tasks the proposed classifier-based approach
outperformed the template matching approach significantly
(P < 0.001) suggesting that the use of mainly temporal
information of the MRCP is not optimal for detection
purposes. The results for template matching and spectral
features are summarized in Table 1.

4. Discussion

Spectral features of EEG and MRCP temporal features were
investigated to test the performance of a BCI that can detect
movement intention and this was also compared with MFE.
Spectral features classified by LDA led to a lower detection
error compared to temporal features and a template matching
technique using the noise and signal epochs containing
MRCP.

4.1. LDA Classification of Temporal and Spectral Features
for Movement Detection and Template Matching. Overall
classification accuracies that were obtained for the spectral
features were higher compared to those obtained when using
the temporal features across the tasks (real, imaginary, and
attempted). This finding suggests that the spectral features
are less sensitive to the variability in the signal compared
to, for example, the amplitude of specific segments of the
MRCP. However on further exploration it was found that
the difference between temporal and spectral features clas-
sification was not significant for real movements (Figure 3)
as compared to imaginary or attempted movement of stroke
patients. This can be explained by the greater signal-to-
noise ratio that is observed for motor execution [3, 20]. The
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FIGURE 4: Feature space representation using two discriminative features after Fisher projection. Features are normalized between —1 and 1
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TABLE 1: Result summary when comparing the proposed classifier
approach against template matching. Results are given as mean + SE
and are all expressed in %.

Spectral features ~ Template matching

Real movement

Detection error 55+18 289+35

Sensitivity 93.0+17 82.0+27

Specificity 96.0 £ 2.1 60.0 £5.0
Imaginary movements

Detection error 1.5+0.83 29.6 +2.8

Sensitivity 100+ 0 80.6 £2.5

Specificity 97 +1.7 60.3+4.2
Attempted movements

Detection error 0.63+0.21 224+24

Sensitivity 99.8 £0.17 83.8£17

Specificity 98.9 +0.39 71.3 £ 4.6

risk that the MRCPs are corrupted by muscle or movement
artifacts is limited due to the higher frequency content

compared to the MRCP frequency range. The usefulness of
a BCI operated by motor execution can be debated since
EMG is better for, for example, prosthetic control due to
higher signal-to-noise ratio. However, in applications where
early detection of movement intentions is essential, such
as neurorehabilitation, EEG can be used to predict when
a movement occurs before the onset of EMG (movement).
The performance of the classifier to estimate the detection
performance was higher compared to previous studies where
the detection performance was estimated from noise-signal
discrimination [18, 19, 22-27]. It should be noted, however,
that similar movements were not performed in the different
studies leading to differences in signal morphology and
signal-to-noise ratios. The optimal feature type (spectral) was
compared to template matching which is one of the current
techniques that have been implemented in online BCI for
neurorehabilitation purposes [9]. It was found that the use of
spectral features outperformed the template matching tech-
nique. The performance of the template matching technique
is similar as reported in previous studies [8-10, 21, 28] using
simulated or actual online systems. Contrary to projection-
based feature selection [9], the current study reveals the
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actual features that are needed for improved performance,
thus eliminating the need for parameter optimization for each
use.

In the current study a single Laplacian channel was used
based on a limited number of electrodes (nine). It should be
investigated if performing the same feature extraction on all
nine electrodes could lead to better detection performance.
This will lead to a feature vector of higher dimensionality
where only some of the features will be useful. Therefore,
different feature selection methods should be investigated
such as principal component analysis or sequential forward
feature selection techniques. This could potentially improve
the detection performance.

4.2. Implications. There is no consensus to what type of
performance is good for rehabilitation systems [23] based
on BCI. There is some evidence that performance might be
related to outcome measure of neurorehabilitation [8, 24].
For this reason, epochs extracted from cue-based MRCPs
were used to reduce the variability in performance results
as compared to the results obtained in self-paced MRCPs.
Improving the decoding of movement-related activity from
the brain means that a causal link can be established between
the brain and muscles in the weakened part of the body when
combined with assistive technologies for, for example, stroke

rehabilitation. Besides restorative interventions, improved
control can be useful for controlling, for example, prosthetic
devices in patients that are severely damaged, where myo-
electric control is not possible; this, however, will most likely
require more degrees of freedom than a binary switch.

4.3. Limitations. The analysis in this study was performed
offline on the contrary to the intended use, which is online.
However, the proposed techniques for feature extraction
and classification are simple to use and are expected to be
easily implemented in an online system. The use of the zero-
phase shift filter has been implemented previously [29]. To
implement the filter in an online system the data must be
imported in blocks and streamed continuously; however, this
processing delay is expected to be only a few milliseconds,
since it is a 2nd order filter. Alternatively, a Butterworth filter
could be used without the zero-phase shift implementation,
since the phase shift in the passband is linear and the
processing delay is expected to be low. The performance of
the classifier is expected to decrease due to the fact that
movement epochs in this study were extracted with a priori
knowledge of when the movement occurred; therefore, the
optimal 2's data window could be extracted which will not
be the case in an online system where incoming data will
be classified continuously. Another aspect that must be taken
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into consideration is how often the incoming data should be
processed in an online system; if the delay is small between
two consecutive classifications, the system will be activated
many times around each movement where the features are
likely to be similar. However, this may be avoided by using a
majority vote of X consecutive windows or by increasing the
delay between the data segments that are classified.

5. Conclusions

This study compared the use of spectral features with time
domain features derived from the EEG and template match-
ing for improved detection of movement intentions in offline
study. The spectral features outperformed significantly the
temporal features for imaginary and attempted movements
but for real movements it was not significant. Furthermore,
spectral feature-based classification also outperformed sig-
nificantly the template matching approach. The results imply
that frequency information is important for detecting move-
ment intentions, which is promising for the application of this
approach to provide patient-driven real-time neurofeedback.
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