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Summary 
The routes used by antigen-presenting cells (APC) to convert the transmembrane fusion glycoprotein 
(F) of measles virus (MV) to HLA class I and class II presentable peptides have been examined, 
using cloned cytotoxic T lymphocytes in functional assays. Presentation by Epstein-Barr 
virus-transformed B lymphoblastoid cell lines was achieved using live virus, ultraviolet 
light-inactivated virus, and purified MV-F delivered either as such or incorporated in 
immunostimulating complexes (MV-F-ISCOM). Only live virus and MV-F-ISCOM allow 
presentation by class I molecules, while all antigen preparations permit class II-restricted presentation. 
We observe presentation of MV-F from live virus and as MV-F-ISCOM by class II molecules 
in a fashion that is not perturbed by chloroquine. Our studies visualize novel presentation pathways 
of type I transmembrane proteins. 

p resentation of protein antigens to MHC class I- and 
II-restricted T cells by APC requires that APC degrade 

antigens to peptides, and that peptides combine with class 
I or II molecules. Two major pathways for antigen processing 
have been identified (for review see references 1-5). 

The endosomal/lysosomal processing pathway in APC is 
involved in the processing of exogenous antigen taken up by 
endocytosis in a low pH endocytotic compartment (6-12), 
Peptides resulting from endosomal processing combine with 
class II molecules that are subsequently expressed at the sur- 
face of APC for recognition by CD4 + T cells (13, 14). The 
endosomal pathway intersects the biosynthetic route of class 
II molecules (15). Recent evidence indicates that peptides 
generated by processing of exogenous antigens may bind to 
newly synthesized class II molecules in acidic compartments 
(16-19), leading to the formation of stable class II dimers. 
Recent immunocytochemical studies with human EBV- 
transformed human lymphoblastoid cell lines (B-LCL) 1 have 

i Abbreviations used in this paper: Elk, endoplasmic reticulum; F, fusion; 
ISCOM, immunostimulating complex; I_EL, lymphoblastoid cell line; 
MOI, multiplicity of infection; MV, measles virus; NP, nucleoprotein. 

demonstrated the acidic compartment highly enriched for class 
II molecules that is a close relative of lysosomes (20). 

The endogenous processing pathway requires that antigens 
are synthesized de novo within APC (21-26), or that exoge- 
nous antigens are experimentally introduced into the cyto- 
plasmic compartment of APC (27-29). Current evidence sug- 
gests that the endogenous processing of antigen, which 
includes cytosolic proteins as well as membrane glycoproteins 
synthesized in the endoplasmic reticulum (ER), may occur 
in the cytosol of APC (21, 25, 26, 30-35). At an as yet 
unidentified site, peptides may combine with class I mole- 
cules to form stable complexes (36-44) that are subsequently 
deported to the cell surface of APC for recognition by 
CD8 + T cells. 

Alternative routes of processing of antigens for presenta- 
tion to class I- and class II-restricted cells may exist. Several 
exogenous antigens may be presented to class I-restricted T 
cells in vivo and in vitro (27-29, 45-52). It is not clear whether 
the same intracellular protein processing pathway that is oper- 
ative for de novo synthesized proteins is used in such cases. 
Second, proteins synthesized de novo in cytosol or ER of 
APC, can be presented to class II-restricted T cells (53-59). 
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The routes of protein breakdown and presentation in such 
cases require further clarification. 

We therefore examined the processing and presentation of 
the measles virus (MV) transmembrane fusion (F) glycopro- 
tein to class I- and class II-restricted cloned CTL. During 
biosynthesis the MV-F protein is cotranslationally inserted 
into the membrane of the ER as a type I transmembrane gly- 
coprotein (60, 61). To distinguish the possible pathways in- 
volved in the processing of class I- and class II-restricted epi- 
topes, we used different forms of presentation of MV-F 
proteins. We used UV-irradiated nonreplicative MV (UV- 
MV) expected to be processed and presented via the endosomal 
class II pathway, and purified MV-F protein, likewise expected 
to be routed via the endosomal class II pathway. Further- 
more, we utilized MV-F protein incorporated in immunostim- 
ulating complexes (ISCOM) (62, 63) and MV-F protein bio- 
synthesized within APC after infection with live virus. We 
show that exogenous MV-F protein, when presented in UV- 
MV, MV-F, or MV-F-ISCOM, can be processed via the en- 
dosomal/lysosomal pathway to peptides that are recognized 
by class II-restricted CTL only, but when presented in MV- 
F-ISCOM can be processed also via the endogenous pathway 
to peptides that are recognized by both class I- and class II-re- 
stricted CTL. The same class I and class II binding peptides 
are also generated via the endogenous nonendosomal pathway 
by processing of MV-F derived by de novo synthesis within 
the APC. 

Materials and Methods 

Antigen Preparations 
Infectious MV. Plaque-purified MV (Edmonston B strain), cul- 

tured in Veto cells and containing 107 TCIDs0/ml infectious MV, 
was routinely used to infect human EBV-transformed B cell lines 
(B-LCL). 

UVMV. As a source of inactivated MV, plaque-purified MV 
was propagated in Veto cells in a microcarrier culture (64). Cul- 
ture supernatants were concentrated 20-fold in a hollow fiber system 
with a molecular weight cut-off of 106 (Amicon Corp., Denver, 
CO), and the virus was further purified by discontinuous sucrose 
gradient centrifugation according to methods described (65). The 
purified MV, containing 300/zg/ml of viral protein was subsequently 
UV irradiated with a UV dose (1.5 x 10 -2/~W/mm 2, Transillu- 
minator; Ultra Violet Products, San Gabriel, CA) suffxcient to elim- 
inate virus infectivity completely, but preserving the hemaggluti- 
nation and hemolysing/fusion activities of MV. 

MV-E The transmembrane fusion glycoprotein ofMV (MV-F) 
was purified from whole virus by solubilizing purified MV with 
octyl-fl-D glycopyranoside (2% [wt/vol] octylglycoside; Sigma 
Chemical Co., St. Louis, MO), followed by af~nity chromatog- 
raphy using MV-F-specific mAb 7-21 coupled to CNBr-activated 
Sepharose 4B as described (62). Preparations, containing 300/zg/ml 
purified MV-F, were maintained in octylglucoside (0.1% [wt/vol]) 
to preserve a micellar solution of the protein, as determined by 
electron microscopy. 

MV--F Peptides. 12-mer sequences of the MV-F-protein were syn- 
thesized on an automated peptide synthesizer according to methods 
described by Van der Zee et al. (66). Two peptides were used in 
these studies, corresponding to sequences of MV-F recognized by 

the two T cell clones JG-F94 and WH-F40: respectively, F 452-463 
(amino acid sequence GPPISLERLDVG) and F 437-448 (amino 
acid sequence SRRYPDAVYLHR). 

MV-F-ISCOM. ISCOM were prepared from MV according to 
the methods described by Morein et al. (63). Briefly, MV was solu- 
bilized with 2% Triton Xd00 and layered over a 20-60% sucrose 
gradient in TNE buffer (0.1 M TRIS-HC1, 0.1 M NaC1, and 0.01 
M EDTA, pH 7.4) containing 0.2% (wt/vol) Quil A (Spikoside, 
Iscotec, Sweden) and centifuged in an SW 28 rotor at 20,000 rpm 
for 18 h at 4~ Gradient fractions containing ISCOM particles 
were pooled and analyzed by SDS-PAGE and by a double-antibody 
ELISA for the quantitation of MV-F, as described by De Vries et 
al. (62). 

Empty ISCOM. The matrix of ISCOM, devoid of any incor- 
porated proteins (empty ISCOM), was constructed from Quil A 
and cholesterol according to methods described by Possum et al. 
(67). Where appropriate, empty ISCOM was used in Quil A-based 
amounts equivalent to MV-F-ISCOM. 

Characterization of ISCOM Structures 
The morphologies of MV-F-ISCOM, empty ISCOM, and puri- 

fied MV-F were analyzed by electron microscopy. Preparations were 
negatively stained on glow-discharged formvar carbon-coated copper 
grids using 2% phospho tungstic acid (PTA), pH 5.2. The grids 
were examined by negative contrast electron microscopy. MV-F- 
ISCOM, purified MV-F, and whole virus were also analyzed by 
SDS-PAGE (12.5%) under reducing conditions, followed by im- 
munoblotting. MV proteins were detected using rabbit anti-MV 
polyclonal antibody Ko35/50 (62). 

T Cell Clones 
MV-specific human T cell clones described in this paper were 

established from PBMC of two healthy adult individuals (JG and 
GR) and of two children (Jp and WH) 4 wk after clinical symp- 
toms of measles were observed. All T cell clones were generated 
from PBMC that were stimulated and cloned with autologous MV- 
infected B-LCL and were cultured in vitro as described (68, 69). 
These clones were analyzed for the expression of CD3, CD4, and 
CD8 in standard cytofluorometry assays as described (69). 

Cytotoxicity Assays 
B-LCL were cultured and maintained in RPMI 1640 sup- 

plemented with 5% (vol/vol) FCS, 2 mM t-glutamine, penicillin 
(100 U/ml), streptomycin (100 ~g/ml), and 10 -s M 2-ME. Au- 
tologous or HLA-matched B-LCL (106 to 107) were infected with 
MV at a multiplicity of infection (MOI) of 3.0 for 24 h at 37~ 
or were left uninfected. Alternatively, B-LCL were pulsed two or 
three times during a 24- or 48-h culture period, as indicated in 
the text either with UV-MV (10/zg/ml per 3 x 10 s B-LCL), 
MV-F (1/~g/ml per 3 x 10 s B-LCL), or with MV-F-ISCOM (1 
/zg/ml ISCOM per 3 x 10 s B-LCL). When pulsed with peptides, 
B-LCL were incubated during the course of the CTL-assay (4 h) 
with synthetic peptides F 437-448 and F 452-463 at a final con- 
centration of I/zM. The human mutant cell line T2 and the con- 
trol cell line C1K, both transfected with the gene encoding HLA- 
B27 (37), were also used as target cells. T2-B27 and C1R-B27 were 
either infected with MV or left uninfected, incubated for 48 h with 
MV-F-ISCOM, or incubated during the course of the CTL-assay 
with the synthetic peptides F 437-448 or NP 380-393 using the 
same procedures as described for B-LCL target cells. The genera- 
tion of the HLA-B27-restricted influenza virus-specific CTL line 
(HF) recognizing a synthetic peptide (nucleoprotein [NP] 380-393) 
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corresponding to the NP epitope of influenza virus has been de- 
scribed elsewhere (70). T cell clones were subsequently incubated 
with StCr-labeled B-LCL, T2-B27, or CIR-B27 at different E / T  
ratios. After 4 h of incubation at 37~ supernatants free from cells 
were collected from individual cultures and counted in a gamma 
counter. Spontaneous StCr release (target cells only) and maximal 
SlCr release (target cells in 2% Triton X-100) were used as con- 
trol values in all assays. Results are expressed as the mean percen- 
tages of specific target cell lysis + SD of triplicate cultures. 

Proliferative Assays 
T cell clones were cultured in 96-well round-bottomed micro- 

titer plates (Greiner Labor Technik, Ntlrtingen, Germany) in 150 
/zl of RPMI 1640, supplemented with 10% (vol/vol)pooled human 
AB serum, 2 mM r-glutamine, penicillin (100 U/ml), streptomycin 
(100 /~g/ml), 10 -5 M 2-ME plus 20 U/ml  rlL-2 (Boehringer 
Mannheim, Mannheim, Germany), referred e |  as complete medium. 
Growing clones were expanded and kept at a density of 3-5 x 
104 cells/well in the presence of rlL-2 and were restimulated with 
MV-infected B-LCL every 10-14 d of culture. HLA-typed B-LCL 
were used as stimulator cells for proliferative responses of T cell 
clones. B-LCL were incubated with the same antigens and by the 
same procedures as described for the cytotoxicity assays. In addi- 
tion, B-LCL were also infected with two vaccinia virus recom- 
binants, either a control vaccinia virus (vv-vsc8) or vaccinia virus 
containing the full-length cDNA encoding MV-F (vv-F37). Briefly, 
10 y B-LCL were infected with vv-vsc8 or vv-F37 at a MOI of 5.0 
for 16 h at 37~ All B-LCL stimulator cells were then fixed for 
15 rain with 0.5% (wt/vol) paraformaldehyde in 1 mM PBS, pH 
7.2, and subsequently treated for 15 min with 0.2 M glycine in 
PBS and 60 min with complete medium before they were used as 
stimulator cells. For proliferative T cell responses, T cell clones (3 
x 104/well) were cultured for 3 d at 37~ in the absence of rlL-2 

with paraformaldehyde-fixed B-LCL and pulsed with 0.5 /zCi 
[3H]Tdr over the last 18 h of culture. Cells were harvested, and 

the incorporated radioactivity was counted in a flat-bed 3-scintil- 
lation counter. Results are expressed as the mean cpm _+ SD of 
triplicate cultures. 

Chloroquine Inhibition Experiments 
2 h before antigen incubation and throughout the culture of 

B-LCL with the same antigens as described above, B-LCL were 
cultured in the presence of 50/~M chloroquine (Sigma Chemical 
Co.). Chloroquine-treated and untreated B-LCL were fixed with 
paraformaldehyde and used as stimulator cells in proliferative assays 
as described above. 

Results 

MV-F-specific CD8 + Class I -  and CD4 § Class II-restricted 
CTL.  Our first series of experiments were aimed at the 
generation of CD8 + class I- and CD4 + class II-restricted 
CTL clones with specificity for the fusion protein of MV 
(MV-F). An extensive analysis of the T cell clones that we 
obtained is described elsewhere (68, and R. van Binnendijk 
et al., manuscript in preparation). 

For the present study, two CD8 +, class I-restricted T cell 
clones 0P-F20 and WH-F40) and two CD4 + class II-re- 
stricted T cell clones (GRIM-F99 and JG-F94) were selected. 
All clones are specific for the MV-F protein and exert CTL 
activity for appropriately sensitized target cells (Fig. 1). The 
CD8 + T cell clones JP-F20 and WH-F40 recognized MV-F 
when presented in association with HLA-Bw62 and HLA- 
B27, respectively, and the CD4 § T cell clones GRIM-F99 
and JG-F94 recognized their epitopes when presented in as- 
sociation with HLA-DQwl (either DQ5 or DQ6) and HLA- 
DRw53, respectively (Fig. 1). 
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Figure 1. Antigen recognition and HLA- 
restriction of MV-F-specific CD3 + CD4 + CD8- 
(CD4) and CD3 § CD4- CD8 + (CD8) CTL 
clones. (.4) Proliferative T cell responses and (B) 
CTL responses (measured at an E/T ratio of 3 in 
a 4-h saCr-release assay) were carried out as de- 
scribed in Materials and Methods. Autologous 
(auto) and other HLA-typed B-LCL were used as 
APC, either uninfected or infected with MV (24 h, 
MOI 3), control vaccinia virus (vv-vsc8; 18 h, MOI 
5), or vaccinia virus expressing MV-F (w-F37; 18 
h, MOI 5). Proliferative and cytotoxic T cell re- 
sponses of clones WH-F40 and JG-F94 were also 
conducted with B-LCL that were pulsed for 24 h 
with 1/zM of the synthetic peptides F 435-446 
or F 450-461, or pulsed with 1 #M of these pep- 
tides before and during the course of the CTL ex- 
periment. HLA-typing: B-LCL WH: A2,11; 
B27,35; DQwl (DQ5), 3 (DQ8); DR1,4, w53; 
B-LCL JP: A2; Bw55,w62; DQw3 (DQ7,DQS); 
DR4,w53; B-I.CL JG: A1; B8,12,44; DQw2,3; 
DR3,4,w52,w53; B-LCL GR: A1,3; B7,27; DQwl 
(DQ6); DR2, w6,w52; B-LCL VG: A24,31; 
B27,w62; DQw3; DR4,w53; B-I.CL RB: A28,29; 
B12,27,44; DQwl,2; DR1,7,w53. 
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Figure 2. Recognition of UV-MV by MV-F-specific CD8 + (WH-F40, 
JP-F20) and CD4 + (JG-F94, GRIM-F99) CTL clones. Cytotoxic T cell 
responses were carried out in a 4-h stCr-rehase assay at an E/T ratio of 
3 using B-LCL that were either infected with MV (24 h, MOI 3) or pulsed 
with UV-MV (30/~g/ml, 24 h). 

CD4 + Class II-restricted, but not CD8 + Class I-restricted, 
CTL Detect the Presentation of Exogenous MV-E B-LCL target 
cells, either infected with MV or pulsed with UV-MV, were 
analyzed for their ability to be lysed by the class I- and class 
II-restricted T cell clones. Clones JP-F20 and WH-F40, both 
class I restricted, killed MV-infected B-LCL, but consistently 
failed to kill B-LCL pulsed with UV-MV (Fig. 2). Clones 
GRIM-F99 and JG-F94, both class II restricted, killed target 
cells that presented MV-F either way. These results are 
concordant with the view that intracellular de novo syn- 
thesized proteins (i.e., virus infection of APC) can be processed 
to yield peptides that may associate with both class I and 
class II molecules, whereas exogenously added protein an- 
tigens are degraded to peptides that associate with class II 
molecules only. 

MV-F Incorporated in ISCOM Is Presented to Both CD8 + 
Class 1-restricted and CIM + Class II-restricted CTL. ISCOM 
are stable molecular structures in which detergent-solubilized 
proteins are incorporated in a matrix of the adjuvant glyco- 
side Quil A (63). From whole virus, we prepared MV-F- 
ISCOM containing almost exclusively MV-F (Fig. 3). We 
investigated whether MV-F incorporated in ISCOM could 
sensitize B-LCL for lysis by the CTL clones JP-F20, WH- 
F40, and JG-F94. B-LCL incubated for 24 h with 1/~g MV- 
F-ISCOM are only sensitized for lysis by the class II-restricted 
clone JG-F94, but not by the class I-restricted clone JP-F20 
(Fig. 4, exp. 1). 2 or 3/~g MV-F-ISCOM given at a single 
dose to B-LCL severely affected the viability of the cells (data 
not shown). We therefore fed B-LCL two or three times with 
1/~g MV-F-ISCOM during a 24 h incubation period. This 
resulted in the sensitization of target cells for class II-restricted 
killing by done JG-F94. However, killing of such targets by 
class I-restricted clones JP-F20 or WH-F40 was minimal or 
absent (Fig. 4, exps. 2 and 4). However, when the same MV- 
F-ISCOM-fed B-LCL were used as APC in a 72-h prolifera- 
tive T cell response, proliferation of class I-restricted clones 

Figure 3. Analyses of MV-F-ISCOM by electron microscopy and by 
Western blotting. MV-F-ISCOM (A) and empty ISCOM (/3). Purified 
MV-F protein MV-F (C). Bars represent 100 nm. Western blot analyses 
of the individual polypeptides of MV (/9, lane I), MV-F-ISCOM (D, lane 
2), and purified MV-F (D, lane 3) using polyclonal anti-MY antibody 
Ko35/50. Under reducing conditions, MV-F is a cleaved product of 41 
kD with a minor contamination of a dimer in the purified MV-F prepara- 
tion (indicated as/:1). H, hemagglutinin; F, fusion protein; NP, nudeo- 
protein; and M, matrix protein. 

was noticed, indicating that prolonged incubation of B-LCL 
with MV-F-ISCOM would be required to sensitize target cells 
for CTL recognition (data not shown). We therefore pulsed 
targets one or three times with 1/xg MV-F-ISCOM for 48 h. 
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Figure 4. HLA class I- and class II-restricted CTL respond to MV-F- 
ISCOM. CTL responses of clones JP-F20, WH-F40, and JG-F94 were 
measured at an E/T ratio of 6, using B-LCL Jp as target cells in Exps. 
1-3, and B-LCL WH in Exps. 4-6. B-LCL were either infected with MV 
for 24 h in all experiments, or were feeded with one, two, or three pulses 
of MV-F-ISCOM (1/xg/ml) or UV-MV (10/zg/ml) during a 24- or 48-h 
culture period, according to the following regime: one pulse/24 h (Exp. 
1); two pulses/24 h (Exp. 2); three pulses/24 h (Exp. 4); one pulse/48 h 
(Exp. 5); and three pulses/48 h (Exps. 3 and 6). 
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Figure 5. Intact MV-F-ISCOM structure is required to induce class 
I-restricted CTL responses. B-LCL VG were used as untreated target cells 
(open triangles) or they were incubated during a 48-h culture period with 
MV-F-ISCOM (I/~g/ml three times; o/xon squares), empty ISCOM (1/~g/ml 
three times; filled triangles), MV-F protein (1/~g/ml three ftrnes; filled squares), 
or with a mixture of empty ISCOM plus MV-F protein (1/~g/ml each 
three times; filled circles). 

T'2-B27 C1R-B27 

none 

MV 

MV-F-ISCOM ) 

F437-448 ~ ' ~  

NP 380-393 
I I I i ! I 

0 40 80 0 50 100 
% killing 

Figure 6. Activation of HLA-B27-restricted CTL done WH-F40 is not 
due to the presence of peptide in MV-F-ISCOM. T2-B27 and control cell 
line C1R-B27, both transfected with the gene encoding HLA-B27, were 
either uninfected, infected with MV (24 h, MOI 3), or incubated for 48 h 
with MV-F-ISCOM (1 Izg/ml three times). In addition, these cell lines 
were also incubated with 1 #M of the synthetic peptides F 435-446 or 
NP 380-393 (influenza virus) during the course of the CTL assay. The 
CTL response of done WH-F40 (dark bars) and of the influenza virus 
NP-specific T cell line HF (light bars) is demonstrated at an E/T ratio of 3. 

As shown in Fig. 4, exps. 3, 5, and 6, this made targets sus- 
ceptible for both dass II- and class I-restricted killing by clones 
JG-F94, JP-F20, and WH-F40, respectively. In agreement 
with the CTL responses shown in Fig. 2, all clones lysed 
MV-infected but not uninfected B-LCL target cells, whereas 
only the class II-restricted done JG-F94 killed target cells 
sensitized with UV-MV (Fig. 4, exps. 1-6). Thus, in con- 
trast to UV-MV, which activates class II-restricted CTL only, 
MV-F-ISCOM activates both class II- and class I-restricted 
CTL. 

Could the CTL clones have been activated nonspecifically 
by the ISCOM matrix structure, notably by Quil A? This 
possibility was addressed by testing the cytolytic capacity of 
CTL clones towards targets incubated for 48 h with: MV-F- 
ISCOM, purified MV-F (shown as protein miceUes in Fig. 
3 C), empty ISCOM (Fig. 3 B), and empty ISCOM mixed 
with purified MV-F. The class l-restricted clones JP-F20 and 
WH-F40 only lysed targets pulsed with MV-F-ISCOM (Fig. 
5). In contrast, the class II-restricted clone JG-F94 killed targets 
pulsed with MV-F presented as an intact MV-F-ISCOM struc- 
ture, as purified MV-F alone or as purified MV-F mixed with 
empty ISCOM. Empty ISCOM alone consistently failed to 
activate either class of CTL (Fig. 5). Thus, only intact 
MV-F-ISCOM can activate class I-restricted clones. 

A P C  Defective in the Generation of Class I Presentable Pep- 
tides from Cytosolic Proteins Do Not Present MV-F-ISCOM to 
Class 1-restricted CTL.  We used T2 cells transfected with 
HLA-B27. These cells have lost the ability to present intra- 
cellular viral antigen in the context of HLA-B27 molecules 
but can be sensitized by extracellular peptides added for cy- 
tolysis by HLA-B27-restricted CTL (37). When the T2-B27 
cell line was incubated with MV-F-ISCOM for 48 h, no pre- 
sentation of MV-F to clone WH-F40 was found, whereas 
control cell line CIR-B27, when pulsed with MV-F-ISCOM, 

effectively presented MV-F to WH-F40 (Fig. 6). Likewise, 
presentation of the WH-F40 epitope by the T2-B27 cell line 
via the classical class I route, i.e., infection of T2-B27 with 
MV, also failed to activate clone WH-F40, whereas the MV- 
infected CIP,-B27 line did activate the clone, to CTL activity. 
Cytofluorometric studies showed clear evidence for reproduc- 
tive MV infection in both T2-B27 and CIR-B27 cell lines 
(Fig. 7). When pulsed with the HLA-B27 binding peptides 
spanning the epitope of MV-F recognized by clone WH-F40 
(F 437-448) or the epitope of the influenza virus-specific CTL 
line HF (NP 380-393), both the peptide-pulsed mutant T2- 
B27 and the CIR-B27 control cell lines were lysed by their 
respective CTL (Fig. 6). Thus, the integrity of cytosolic en- 
zymes and/or transporter molecules is required to generate 
class I presentable peptides from MV-F either presented in 
ISCOM or as de novo synthesized transmembrane MV-F in 
MV-infected APC. 
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Figure 7. De novo synthesis of MV-F in MV-infected T2-B27 and C1R- 
B27. The expression of MV-F on the surface of uninfected (dotted lines) 
and on 24-h MV-infected call lines (solid lines) was analyzed by FACS | 
measured fluorescence using monospecific anti-MV-F polyclonal antibody 
Ko-9. 
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Figure 8. MV-F synthesized de novo is presented by an endogenous 
processing pathway to both class I- and class ll-restficted CTL. B-LCL 
were infected with MV (24 h, MOI 3) or pulsed with UV-MV (10 #g/ml) 
in the presence (dark bars) or absence (light bars) of 50 #M chloroquine. 
Thereafter, B-LCL were fixed with paraformaldebyde (pfa) before being 
used as stimulator cells in proliferative assays. B-LCL GR (B27,DQwl) 
was used as stimulator cell in combination with clones WH-F40 and GRIM- 
F99, and B-LCL JP (Bw62, DRw53)) in combination with dones JP-F20 
and JG-F94. 

MVF Peptides Are Presented by Class I and Class II Molecules 
in MVinfected and MVF-ISCOM-pulsed B-LCL via the Endog- 
enous Pathway. Exogenously presented proteins are usually 
degraded in the endocytotic compartment to peptides that 
associate with class II but not class I molecules, a process 
sensitive to lysosomotropic agents such as chloroquine. Chlo- 
roquine blocked the presentation of UV-MV to CD4 + 
clones (Fig. 8). The CD8 + CTL clones failed to respond to 
UV-MV, as also was shown in Fig. 2. Surprisingly, chloro- 
quine had no inhibitory effects on the activation of either 
type of CTL clones by MV-infected B-LCL, whereas in the 
same experiment, the drug inhibited the presentation of ex- 
ogenously added UV-MV to the class II-restricted T cell clones 
(Fig. 8). These data suggest that an endogenous (nonen- 
dosomal) pathway for presenting epitopes of viral membrane 
glycoproteins to class II-restricted CTL may be operational 
in virus-infected cells. 

The endogenous (nonendosomal) route could also be in- 
volved in the breakdown of MV-F presented as MV-F-ISCOM. 
Thus, we incubated B-LCL JP (HLA-Bw62, HLA-DRw53) 
with MV-F-ISCOM for 24 or 48 h in the presence or absence 
of chloroquine. B-I.EL were also infected with MV or pulsed 
with UV-MV in the presence or absence of chloroquine. The 
ability of class I- and class II-restricted clones to respond 
to these sensitized stimulator cells was examined (Fig. 9). 
The results with infected and UV-MV-pulsed B-LCL were 
similar, as in previous experiments (see Figs. 2, 4, and 8). 
B-I_CL pulsed with MV-F-ISCOM for 24 h (see Fig. 9) gener- 
ated peptides in a chloroquine-sensitive compartment that 
could be presented in association with class II molecules only. 
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Figure 9. MV-F-ISCOM is presented by an endogenous processing 
pathway to both class I- and class II-restricted CTL. Proliferative T cell 
responses were carried out, using pfa-fixed B-LCL Jp, either uninfected 
or infected with MV, or previously incubated for 24 h (,4) or 48 h (B) 
with UV-MV (10/~g/ml two or three times, respectively) or MV-F-ISCOM 
(1 #g/ml two or three times, respectively) in the presence (dark bars) or 
absence (light bars) of 50/zM chloroquine. 

Prolonged incubation (48 h) of B-LCL with MV-F-ISCOM, 
in agreement with the CTL assays (See Fig. 4), resulted in 
stimulation by these cells of both the class I- (JP-F20) and 
the class II- (JG-F94) restricted clone. This latter presenta- 
tion of MV-F to either of both clones was not inhibitable 
by chloroquine. 

Thus, an endogenous (nonendosomal) route for presenta- 
tion of MV-F-ISCOM to both class I and class II molecules 
must therefore exist. In addition, MV-F-ISCOM can be routed 
to the endocytotic pathway, yielding the same class II present- 
able peptide. 

D i s c u s s i o n  

We have demonstrated the in vitro activation of CD8 § 
class I-restricted and MV-F-specific CTL clones by MV-F in- 
corporated in ISCOM (Figs. 4 and 5). Clearly, when presented 
in ISCOM, MVoF is processed via an endogenous nonen- 
dosomal pathway for association with class I molecules (Figs. 
8 and 9). The experiments with the antigen presentation-defec- 
tive mutant T2-B27 (71-77) demonstrate that processing of 
MV-F in MV-F-ISCOM-pulsed B-LCL occurs in the cytosol. 
MV-F-ISCOM-pulsed T2-B27 cells, but not C1R-B27 con- 
trol cells, are defective in presentation of MV-F to the HLA- 
B27-restricted T cell clone WH-F40. However, in the same 
experiment, T2-B27 cells are able to synthesize functional 
class I molecules, as revealed by pulsing with peptide (Fig. 
6). These results are in agreement with those of other groups, 
showing defective presentation by T2 cells in the context of 
class I molecules of proteins, either introduced in the cytosol 
by osmotic lysis of pinosomes or de novo synthesized in the 
cytosol (37, 38). Results of the experiments with T2-B27, 
as well as those presented in Fig. 5, also exclude the fact that 
free peptides might have been present in the MV-F-ISCOM 
preparation, as such peptides would have sensitized T2-B27 
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targets for recognition by class I-restricted CTL. Given these 
observations, it is very likely that the ISCOM matrix may 
serve as a vehicle for introducing soluble viral proteins into 
the cytosol of APC. How would MV-F-ISCOM enter the 
cytosol? ISCOM do not fuse with cell membranes as lipo- 
somes can (B. Morein, unpublished results). We assume they 
may integrate in membranes, either cell membranes or en- 
dosomal membranes, thereby exposing the incorporated pro- 
tein to the cytosol. This allows the cytosolic degradation of 
viral proteins, thereby making peptides available for the loading 
of class I molecules in the ER. Although MV-F-ISCOM are 
rapidly taken up by endocytosis (see Fig. 4), resulting in degra- 
dation of MV-F to class II presentable peptides, their postu- 
lated integration in membranes is apparently a slow process 
(see Fig. 4). We are currently investigating the mechanism 
involved in the entry of MV-F-ISCOM in APC. 

The nonendosomal processing of MV-F into class II pre- 
sentable peptides, as is evidently shown by the chloroquine- 
insensitive presentation of MV-F-ISCOM to class II-restricted 
CTL, again indicates that the ISCOM matrix may facilitate 
cytosolic introduction of MV-E In addition, we have obtained 
evidence for nonendosomal processing of de novo synthesized 
MV-F (Figs. 8 and 9). These results and those of others (46, 
55, 56) apparently contradict recent findings, showing that 
stable class II-peptide complex formation is a chloroquine- 
sensitive exogenous antigen-dependent process only occur- 
ring with class II c~/3 dimers free from the invariant chain 
(Ii) (16, 18). Recent evidence has shown that the biosynthetic 
route of class II molecules intersects the endosomal/lysosomal 
pathway of protein degradation (15). Association of peptides, 
resulting from endosomal processing, with nascent class II 
molecules may occur in a low pH lysosomal compartment 
(16). In this compartment, dissociation of the Ii from class 
II oe/3 heterodimers may also occur (77), thereby allowing 
the formation of stable class II-peptide complexes. In our 
case, it could be postulated that MV-F class II presentable 
peptides, derived from the cytosol, can enter the ER com- 
partment. Assuming high affinity for certain class II mole- 
cules (i.e., HLA-DRw53), such peptides could charge nascent 
class II molecules under conditions that would otherwise pre- 
vent the formation of stable peptide-class II complexes, i.e., 
neutral pH and presence of Ii. Preliminary results of binding 

studies have indeed revealed evidence for high affinity pep- 
tide binding to HLA-DRw53 bearing B-LCL, using a 10- 
mer peptide spanning the minimal length of the JG-F94 epi- 
tope (R. van Binnendijk, unpublished observations). An al- 
ternative explanation would be that after cytosolic processing 
of MV-F, peptides could combine with class II molecules in 
a lysosomal compartment where they have arrived, i.e., by 
a process of autophagy (78). 

The assumptions that processing of de novo synthesized 
transmembrane glycoproteins occurs in the cytosol of APC, 
as apparently is the case for de novo synthesized nontrans- 
membrane proteins, merely rest on observations that the con- 
version of such proteins into cytosolic versions by, e.g., deleting 
the leader-insertion sequences of the genes encoding them, 
does not affect their presentation by class I molecules (25, 
26). In this report, we have shown additional evidence highly 
suggestive of cytosolic processing of a de novo synthesized 
transmembrane glycoprotein, i.e., MV-F. FACS | analysis 
showed that MV-F is expressed on the surface of both MV- 
infected CIR-B27 and T2-B27 (Fig. 7). However, in con- 
trast to C1R-B27, which do present MV-F to HLA-B27- 
restricted CTL, T2-B27 cells do not. In a recent report by 
Anderson et al. (75), it was shown that T2 cells do present 
a de novo synthesized peptide, provided it was translocated 
in the ER during biosynthesis. Collectively, these data show 
that, whereas in T2 cells the secretory pathway for de novo 
synthesized membrane glycoproteins and class I peptide com- 
plexes is functional, proteolytic degradation of ER-synthesized 
proteins to class I presentable peptides apparently does not 
occur in the ER or Golgi complex of T2 cells. These results 
could be explained if one assumes that residence in the cytosol 
or in another as yet unidentified compartment is required 
for membrane proteins to be processed to class I presentable 
peptides. 

In conclusion, our studies demonstrate two novel routes 
for presentation of a type I transmembrane glycoprotein: pre- 
sentation of exogenously added antigen to class I, and a nonen- 
dosomal presentation of either exogenously added or en- 
dogenously synthesized antigen to class II molecules. In 
addition, our findings indicate that processing of type 1 trans- 
membrane glycoproteins to class I presentable peptides occurs 
in the cytosol of APC. 
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