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Synopsis
To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and
ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour
cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management
of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion,
and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher
than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP + GFP)
hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells
and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of
the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days
after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal
was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by
suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis
of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel
direction for treatment of ovarian cancer.
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INTRODUCTION

Ovarian cancer, featured by rapid aggravation and insidious on-
set, is the most lethal gynaecologic malignancy, ranking as the
fifth most frequent cause of death in females with cancers, which
inevitably has a severe impact on public health [1,2]. Accord-
ing to statistics, more than 22000 new cases were diagnosed and
approximately 14000 died of the disease in the United State pop-
ulation [3]. Due to a lacking of specific symptoms and effective
early screening strategies, over 70 % of the diagnoses are con-
firmed at advanced stages, and the average relative 5-year survival
rates are extremely low [4,5]. For example, among 100 women
who have suffered ovarian cancer, approximately 30 women will
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have a recurrence and die of the disease, and a recent research
from the UK showed a 5-year survival rate of only close to half
percentage [6,7]. The aetiology of ovarian cancer is multifactorial
which can be both environmental and genetical, such as family
history, genetic mutations, reproductive history, lifestyle factors
(smoking or obesity), excessive gonadotropin secretion, as well
as oestrogen and progesterone imbalance [8–11].

There is adequate evidence on the mechanism exploration of
the development of ovarian cancer, but definitive explanation is
still warranted. Recently, with the development of cancer stem
cell research, it is found that tumour cells have many similarities
to the stem cells [12], the cancer stem cell hypothesis is there-
fore proposed and merits more rigorous tests. The hypothesis in-
sisted that the development and recurrence of tumours is mainly
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attributed to the unlimited proliferation of cancer stem cells, and
cancer stem cells may come from the mutation or fusion of stem
cells. Targeted therapy has been a hotspot for tumour treatment
[13,14], which changes the site-directed genetic characteristics
of cancer cells according to the therapeutic goal to treat the dis-
eases [15–17]. The most important method for reconstruction of
tumour cell specificity is reprogramming [18–20]. At present co-
culture of stem cell extracts and cell fusion are the most common
reprogramming methods [21–25]. After fusion, the cells have the
genetic materials from the two parental cells, which will have
new genetic or biological characteristics [26,27]. In the present
study, we aimed to observe the changes of gene expression and
tumorigenicity in hybrid cells of human embryonic stem cells
(hESCs) and ovarian cancer cells in vitro and in vivo, and to de-
termine if the tumour cells can be reprogrammed successfully,
for a potential exploration of the role of hESCs and tumour cells
fusion in the management of ovarian cancer.

MATERIALS AND METHODS

Ethics statement
Procedures involving animals and their care were conducted in
conformity with NIH guidelines (NIH Pub. No. 85-23, revised
1996) and was approved by Animal Care and Use Committee of
the First Affiliated Hospital of Sun Yat-Sen University.

Preparation of mouse embryonic fibroblast (MEF)
feeder layer
MEF feeder layer in primary culture
Pregnant Kunming mice (13.5 days, weighing 30 +− 5 g) provided
by Animal Center of the Sun Yat-Sen University were bred at this
centre and maintained under standard laboratory conditions. The
mice were killed by cervical dislocation, and then soaked with
75 % alcohol for 5 min, placed in a sterile culture dish and re-
moved the head, tail, limbs and organs, the remaining tissues
were washed with PBS buffer (×2 times) containing penicillin
(100 units/ml) and streptomycin (100 ug/ml). Tissues were then
cut and digested with 0.25 % trypsin at 37 ◦C for 10 min. Termin-
ated the digestion, 1000 rmp centrifugation was last for 5 min
(two times) to clean the cells. After the centrifugation, these cells
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
Gibco BRL) containing 10 % fetal calf serum at 37 ◦C in 5 % CO2

under humidity conditions.

MEF feeder layer in subculture
When the primary cultured cells were gradually converged, and
the bottom of the bottle covered most of the surface, the first pas-
sage was performed. With 0.25 % trypsin digestion cells added,
cells were observed under microscope. When the contraction of
the circular was observed under the microscope, the addition
of the culture fluid in a ratio of 1:3 was used to terminate the

digestion for the first generation. On behalf of the cell at the bot-
tom of the bottle, some cells continued to subculture, some of the
cells were collected and frozen. The cell density was 1×107 ml
and the frozen solution was 10 % DMSO + 40 % fetal bovine
serum + 50 % culture fluid at -80 ◦C overnight in liquid nitrogen
for long-term preservation.

Preparation of MEF feeder layer
The mouse embryonic fibroblast (MEF) feeder layer was pre-
pared after continuously purifying through digestion and passage,
and the 3–5 generation of MEF can be used as the ideal feeder
layers. When the cells covered the bottom of the bottle, the cells
were treated with culture liquid with 10 ug/ml MMC for 2 h at
room temperature (37 ◦C), and then washed with PBS for five
times, followed by a 0.25 % trypsin digestion and centrifugation
to collect cells. Subsequently, the collected cells were transferred
to the coated culture plates pre-treated with 0.1 % galectin (2 ml).

Cells line, experimental animals and reagents
Human epithelial ovarian cancer cell line OVCAR-3 and HO8910
were provided from the State Key Laboratory (SKL) of Onco-
logy in South China of Sun Yat-Sen University and preserved
in the Laboratory. Severe combined immunodeficiency (SCID)
male mice, aged from 5 to 8 weeks, were provided by the Animal
Center of the Sun Yat-Sen University. PEG1500 kit, DMEM cul-
ture medium, PRMI-1640 culture medium, DMEM/F-12 culture
medium were obtained from Life Technology.

Fusion of hESCs and ovarian cancer cells
Construction of plasmids co-expressing hESC (H1 was used
as the short name in the experimental process) and OVCAR-
3, HO8910 was performed. Gateway Technology was ap-
plied for the construction of pFinal/PGK-BSD-EF1α-hrGFP and
pFinal/PGK-puro-EF1α-dTomato vector plasmid. AttB4-EF1-
attB1R was amplified following PCR carried with attB1R and
attB4, and then under the action of ClonaseTM II Enzyme Mix, the
BP site of the entry vector pDONRTMP4-P1R was generated, and
the pUp-EF1 was cloned. Subsequently, attB1-hrGFP-attB2 was
amplified carried with attB1 and attB2, and then under ClonaseTM

II Enzyme Mix action, BP action was occurred at the attP1 and
attP2 site of the entry vector pDONRTM221, and the pUp-EF1
was cloned. PDown-tdTomato was also generated using the same
way. Then, as for the construction of target vector, the blasticidin
of pLenti6/block-iT-DEST was replaced by puromycin by using
the enzyme digestion and ligation reaction, and the target vector
pDestpuro was constructed. The pFinal/PGK-BSD-EF1α-hrGFP
was also constructed by the same method after the construction of
expression vectors with LR reaction. The 293FT cells with good
growth state were selected, and the cells (5×106) were inocu-
lated in a 10-mm tissue culture dishes coated with 2 % gelatin,
virus packaging was performed when the cell density reached
90–95 %.
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The 20 ml viral supernatant was collected 48–72 h after ret-
rovirus packaging, removal of cell debris was conducted with a
0.45 μm filter. Then, the lysate was cleared by ultracentrifugation
at 50000 × g at 4 ◦C for 1.5 h in an ultracentrifugation tube. When
there was visible white spot of virus particles sedimentation in the
tube at the bottom of the side wall, the supernatant was discarded
and dissolved with 200 μl precooling PBS, and finally stored
to -80 ◦C for further usage. Virus RNA extraction by TIANamp
viral RNA extraction kit (Tiangen) was performed in accordance
with the manufacture’s protocols. PCR reaction were then per-
formed, followed by the inoculation of the well-growth hESCs
into the prepared 12-well plate MEF layers for cell lines puri-
fication. HO8910 or OVCAR-3 ovarian cancer cells with good
growth state were selected, and inoculated into 12-well plate.
When the ovarian cancer cells were attached to the wall the next
day, cells infected with the virus were selected when the density
at 80–90 %.

The established stable H1 hESCs, with blasticidin resistance
and GFP fluorescence expression, were fused with ovarian can-
cer cells with puromycin resistance and RFP fluorescence ex-
pression, and before fusion the cells were digested by 0.25 %
pancreatin and counted. The ratio of H1 cells and ovarian can-
cer cells was 1:1. All the cells were preserved by slow freezing
method for further usage. The hybrid cells OV-H1, HO-H1 fusion
cell, as well as the parent cells, hESC and OVCAR-3, HO8910
ovarian cancer cells, were further observed for their growth and
apoptosis situations.

Detection of cell growth
Parental cells and the 12th generation hybrid cells were coun-
ted after digested by pancreatin. 1×106 cells were inoculated
in 6 cm culture dishes; each type of cells was inoculated in
21 dishes. Cells of three dishes were collected and counted to
calculate the average value every 24 h for 7 days in total. The
growth curve was constructed according to cell count result, and
the doubling time of cell population was calculated according
to the following formula: TD=tlog 2/log(N/N0). t means the
time from inoculation to detection, N means the total cell amount
detected at t time point, N0 means the inoculated cell mount. The
test was repeated three times for a much stable value collection.

Cell apoptosis detection
Forty-eight hours after fusion, the cells were fixed with 4 %
paraformaldehyde, terminal dexynucleotidyl transferase (TdT)-
mediated dUTP nick end labelling (TUNEL) assay was per-
formed in accordance with the manufacture’s guidelines (Nanjing
KGI Biological Technology Development). A 4 % goats serum
(Beijing Zhongshan Jinqiao Biotechnology) was applied to seal
the samples at room temperature for 10 min, 3 % H2O2 was then
added for 10 min to eliminate the endogenous risk of peroxidase.
Following, the primary antibodies rabbit anti-human caspase-9
(1:1000) was added at 37 ◦C for 1 h under humid conditions;
after washed with buffer solution, mouse anti-rabbit IgG horse-
radish peroxidase-labelled secondary antibody (1:1000) was

Table 1 The sequences for Akt1, p53 and PTEN, as well as
β-actin
U, upstream; D, downstream.

Primer sequences

Akt1 U 5’-ATGAGCGACGTGGCTATTGTGAAG-3’

D 5’-GAGGCCGTCAGCCACAGTCTGGATG-3’

p53 U 5’-TTGGATCCATGTTTTGCCAACTGGCC-3’

D 5’-TTGAATTCAGGCTCCCCTTTCTTGCG-3’

PTEN U 5’-GAGGGAATAAACACCATG-3’

D 5’-AGGGGTAGTGAGTGACACAGTA-3’

β -actin U 5’-CAGAGCCTCGCCTTTGCC-3’

D 5’-GTCGCCCACATAGGAATC-3’

added at 37 ◦C for 30 min under humid conditions, followed by
the other buffer solution washing. Both the primary and second-
ary antibodies were purchased from the Nanjing KGI Biological
Technology Development. Finally, cells apoptosis imaging was
visualized by 3,3′-diaminobenzidine tetrahydrochloride (DAB,
obtained from Fuzhou Maixin Biotechnology Development) col-
our and observed under microscope. Experimental procedures
were repeatedly observed three times.

Real-time fluorescence quantitative polymerase
chain reaction (RT-PCR)
Total RNA was extracted with TRIzol® reagent (Invitrogen).
Primers were synthesized by Takara Biomedicals. The β-actin is
used as internal control. The sequences for Akt1, p53 and PTEN,
as well as β-actin were listed in Table 1. The PCR system (50 μl)
was performed in 25 μl of SYBRR Green Realtime PCR Master
Mix (2×, obtained from Toyobo), 2 μl of each primer, 2 μl of
DNA template and distilled water (15 μl). The PCR procedures
were under the following conditions: an initial denaturation step
(95 ◦C for 15 s) and denaturation (95 ◦C for 5 s), annealing step
(72 ◦C for 10 s) in a total of 40 cycles. Finally, the PCR results
were analysed with the 7700 Sequence Detection System (Ap-
plied Biosystems). β-Actin was used as an internal reference, the
average value of each sample was analysed with three parallel
tubes. The expression of mRNA within groups was detected by
using relative quantitative method. The relative value of mRNA
was expressed using 2− ��CT [��CT = (CTmRNA - CTβ-actin)
experimental group – (CTmRNA – CTβ-actin) control group].
And the triple times repetition test of the same sample indicated
that the FQ-PCR was reproducible.

Western blot detection
Total protein was extracted using a BCA Protein Assay Kit
(Wuhan Boster Biological Engineering). After the adding of 300
ul tissue lysates (Beijing Biosynthesis Biotechnology) for 15 min,
samples were separated by SDS/PAGE system, and transferred to
PVDF membrane with 5 % blocking buffer at 4 ◦C for 3 h. Adding
primary antibodies of goat anti-human Akt1 antibody, rabbit
anti-human p53 and PTEN antibodies (1:1000; Abcam), the
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member was incubated overnight at 4 ◦C, washing three times for
15 min with PBS buffer. Subsequently, horseradish peroxidase-
conjugated goat anti-rabbit IgG (secondary antibody, diluted with
3 % BSA at a ratio of 1:1000) was added, incubating at 37 ◦C
for 1 h and washing three times for 15 min with PBS. All the
primary and secondary antibodies were purchased from Santa
Cruz. Thereafter, samples were coloured with DAB and were
then scanned. All the experimental procedures were repeated for
three times.

In vivo establishment of mouse model
A total of 40 mice were randomly selected, and then the collec-
ted OVCAR-3 cells were subcutaneous inoculated in the right
anterior axillary of each mouse (1×107 cells each). After 5 days
growth, subcutaneous tumour nodules were palpable in each
mouse, and the average diameter of the tumour nodule was ap-
proximately 5 mm after 7 days inoculation.

Thereafter, 7 days after the inoculation of OVCAR-3 cells,
the OV-H1 fusion cell, H1 hESCs and OVCAR-3 ovarian can-
cer were injected into 10 mice (100 μl each) respectively; and
the same volume of PBS were injected in the remaining mice
as the control group. To observe the tumour growth and to cal-
culate the volume of the tumour, the two longest diameter of
the tumour were calculated combined with the formula: V =
1/6πR1

2R2.

TUNEL apoptotic cell detection
The mice were killed at 7 days, 28 days and 35 days after inocu-
lation with the parental and the hybrid cells. The tumour tissues
were fixed with 10 % formalin and embedded in paraffin. The
TUNEL assay for apoptosis detection was made into 6 μl thick
slices according to the protocols of the manufacture.

Statistical analysis
The data were analysed by SPSS 20.0 software, the measurement
data were analysed by t test, which were presented by means +−
S.D., the enumeration data were analysed by chi-squared test,
P < 0.05 was considered as statistically significant.

RESULTS

Lower trend of fusion cell growth observed in OV-H1
cells
The growth of OV-H1 (RFP + GFP) hybrid cells with double
fluorescence expressions were obviously slower than that of
hESCs and OVCRA-3 ovarian cancer cells, with no statistic-
ally difference. The growth of OV-H1 (GFP) hybrid cells with
green fluorescence expression was slower than that of the other
three cells (P < 0.05); the growth of HO-H1 hybrid cells was
slower than that of the two parental cells (P < 0.05) (Figure 1).

Figure 1 Growth curves of hybrid cells after fusion
(A) The growth curve of hybrid cells after fusion of H1 and HO8910 cells.
(B) The growth curve of hybrid cells after fusion of H1 and OVCAR-3 cells.
Note: a, compared with the other cells, P < 0.05. b, compared with the
hESCs and OVCRA-3 ovarian cancer cells, P > 0.05.

p53 and PTEN gene expressions were greatly
suppressed in fusion cells than in parental cells
P53 and PTEN gene expressions in OV-H1 (RFP + GFP)
cells were obviously lower than those in the two parental cells,
which were statistically significant (both P < 0.05). P53 and
PTEN gene expressions in OV-H1 (GFP) cells were obviously
lower than those in the parental cells; however, there was no dif-
ference from H1. P53 expression in HO-H1 cells was higher than
those in the two parental cells, which was significantly differ-
ent among the three types of cells. PTEN expression in HO-H1
cells was higher than that in the H1 cells and lower than that in
the OVCRA-1 cells, which was significantly different among the
three types of cells (Table 2).

Apoptosis signal of the OV-H1 cells was higher than
that of the H1 and OVCAR-3 cells
TUNEL in situ cell apoptosis detection results showed that the
apoptosis signal of the OV-H1 hybrid cells was significantly
higher than that of the of H1 and OVCAR-3 ovarian cancer cells
(Figures 2A–2C). In the experimental group near hESCs, there
were more TUNEL-positive signals in the OV-H1 hybrid cells
and the rest showed few scattered (Figures 2D–2F). The num-
ber of positive cells was counted by eight visual fields (100×,
Figure 2J). Further, caspase-9 apoptosis test results also showed
that the apoptotic signal intensity in the experimental group was



4 c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


hESCs and ovarian cancer cells fusion

Table 2 Comparison of p53 and PTEN gene expressions in fusion cells and parent cells

p53 expression PTEN expression

Group Number (n) positive (n, %) χ2 P positive (n, %) χ2 P

HO-H1 fusion cells 30 5 (16.67 %) 6 (20.00 %)

H1 cells 30 10 (33.33 %) 11 (36.67 %)

OVCRA-3 ovarian cancer cells 30 24 (80.00 %) 5.305 <0.05 25 (83.33 %) 6.398 <0.05

Figure 2 TUNEL apoptotic cell detection
(A–I) The TUNEL in situ cell apoptosis detection results of the apoptosis signal of the OV-H1 hybrid cells, the of hESCs
and OVCAR-3 ovarian cancer cells. (J–K) The number of positive cells.

significantly stronger than that in the control group (Figures 2G–
2I). The number of positive cells was as shown in Figure 2(K)
counted by six visual fields (100×).

Akt1, p53 and PTEN in OV-H1 hybrid cells were
weaker by quantitative RT-PCR
The mRNA expressions of Akt1, p53 and PTEN in the OV-H1
hybrid cells were much weaker than those of the hESCs and
OVCRA-3 ovarian cancer cells, whereas no significant statistical
difference was found between the hESCs and OVCRA-3 ovarian
cancer cells (Figures 3A–2B).

Akt1, p53 and PTEN protein expression detected
by western blot
With β-actin as the reference, the western blot results indicated
that the protein expression of Akt1 in the OV-H1 hybrid cells
was significantly weaker than that in the hESCs and OVCAR-3
ovarian cancer cells. In addition, the protein expression of p53 and
PTEN were both decreased than that in the hESCs and OVCAR-3
ovarian cancer cells. Each test was repeated three times. Results
were shown in Figure 3(C).

In vivo results of tumours growth were inhibited
after inoculation of OV-H1
Compared with 7 days, 28 days and 35 days after inoculation
of OV-H1 hybrid cells, tumour volumes in the experimental
groups was significantly smaller than those of the control group
at 28 days and 35 days, the tumour volume curve was shown
in Figure 4(A). Besides, within the experimental groups, tu-
mour volumes in mice inoculated with OV-H1 hybrid cells was
much smaller than those inoculated with hESCs and OVCAR-3
ovarian cancer cells. In addition, when compared with the tumour
volume 7 days after inoculation, there were obvious difference
when compared with that 28 days and 35 days after inoculation,
showing significantly increase (both P < 0.05).

In vivo results of TUNEL apoptotic cell detection
In 7 days, 28 days and 35 days, the mice were killed, and the
tumour tissue sections were used for TUNEL apoptosis detection.
The results showed that in different time period, the apoptotic
signal of the experimental groups was stronger than that of the
control group, much stronger apoptotic signal was found in OV-
H1 hybrid cells inoculated mouse. Meanwhile, the distribution of
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Figure 3 Quantitative RT-PCR and western blot results
(A) Gel electrophoresis map showing the electrophoresis bands of Akt1,
p53 and PTEN following PCR procedures. (B) The relative mRNA ex-
pressions levels of Akt1, p53 and PTEN were detected by real-time
fluorescence quantitative polymerase chain reaction. (C) The protein
expressions of Akt1, p53 and PTEN were detected by Western blot.
Note: a, compared with the OV-H1 hybrid cells, P < 0.05; b, compared
with the values between hESCs and OVCAR-3 ovarian cancer cells, P >

0.05.

apoptotic signal in tumour tissues gradually dispersed overtime,
as shown in Figures 4(B)–4(G).

DISCUSSION

By cell fusion, previous researchers have found many anti-tumour
genes and acknowledged the function and effect of tumour in-

hibition genes [28–30]. Hybrid cell of cancer cell and somatic
cell is applied to produce monoclonal antibody [31]. The tu-
mour cell fusion in vivo have verified that the hybrid cell of
cancer cell and somatic cell chimeras is a kind of cell with
higher malignancy, which is manifested as the increase in mi-
gration, drug resistance, proliferation rate, and decrease in apop-
totic rate [32–34]. For some cancer cells, the spontaneous fusion
in vivo has higher proliferation ability than the cell fusion in-
duced by PEG, and even the apoptotic rate is lower [35–37].
After cancer cells migrate to other tissues, they can fuse with
the cells in the tissue to generate immunogenicity [38]. After
fusion, adult somatic cells can show the characteristics of stem
cells, that is to say, the cells have potential of self-renewability
and differentiating to many types of cells [39–41]. Cell fusion
has become the important method in multipotential stem cell re-
search and in-depth exploration of somatic cell reprogramming
mechanism.

In the present study, after the fusion of hESCs and OVCAR-
3 cells, we first observed the role of hESCs in the growth of
OVCAR-3 cells in vitro and in vivo. HE staining and cells count
results showed that the growth of OVCAR-3 cells was signi-
ficantly inhibited after the con-fusion with hESCs and thereby
OVCAR-3 cells apoptosis was detected. Following, to confirm the
existence and effect of cells apoptosis, the expression of caspase-9
was also investigated. The apoptotic signal intensity of caspase-
9 in the experimental group was significantly stronger than that
in the control group. As the promoter of the apoptotic pathway
and the Caspases family, caspase-9 plays an important role in the
development of tumours, inactivated caspase-9 has been detected
in several human tissues such as in heart, testis and ovary. Previ-
ous evidence also showed that ovarian cancer cell lines, includ-
ing the OVCAR-3 cells were detected without the expression of
caspase-9, which was in line with the present results. Besides, the
positive signal of caspase-9 after fusion was significantly stronger
than those without fusion, which was in accordance with the res-
ults of TUNEL detection, suggesting that hESCs inhibiting the
growth of OVCAR-3 cells was possibly achieved by the activ-
ation of the Caspases family and induction of OVCAR-3 cells
apoptosis.

In the past decade, people have found that embryo derived
stem cells including MSC, embryonic carcinoma cells and em-
bryonic germ cells which can reprogram adult somatic cells
to have MSC potentials by changing gene expression model,
development status and epigenetics regulation of adult somatic
cells [42–44]. Stem cell is a kind of cell which has self-renewal
and differentiation function [45,46]. Under the specific condi-
tion, stem cell can be induced to express some specific genes,
and differentiated cells can substitute injured cells or correct
some diseases, thus stem cell can be used for cell therapy [47–
49]. The self-renewal and multi-directional differentiation po-
tential can maintain the normal balance by regulation of some
signalling pathways. With respect to the present investigation on
apoptosis which was regulated by multiple factors, the signalling
pathway is one of the critical target. As the upstream signal path-
way of caspase-9, AKT signalling pathway belongs to the phos-
phatidylinositol 3-kinase (PI3K) family that is responsible for the
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Figure 4 In vivo results of tumors growth and cells apoptosis
(A) In vivo results of tumours growth between groups at different time point. Note: a, compared with the OV-H1 hybrid cells,
P < 0.05; b, compared with the values between hESCs and OVCAR-3 ovarian cancer cells, P > 0.05. (B–G) In vivo results
of TUNEL apoptotic cell detection at 7 days, 28 days and 35 days. (B, D and F) The experimental group; (C, E and G) the
control group.
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regulation of cell functions, such as proliferation, differentiation,
apoptosis and glucose transport [50,51]. PI3K/AKT signalling
pathway has been reported to be disordered in a wide range of
human tumour spectrum [52–55]. Western blot and quantitat-
ive RT-PCR results showed that both the protein expression and
mRNA expression of Akt1 following fusion was significantly
weaker than that in the cells without fusion, which in turn high-
lighted that hESCs inhibited the mRNA expression of AKT and
the phosphorylation of AKT protein, and eventually contribute
to the activation of caspase-9 and the apoptosis of OVCAR-3
cells.

Another important result of the present study was that fu-
sion of hESCs and OVCAR-3 ovarian cancer cells could have
an influence in OVCAR-3 cells growth via the exerting of p53
and PTEN effects. P53 serves as a tumour suppressor functioning
significantly in inhibiting tumour angiogenesis [56]. Importantly,
P53 is closely related to the survival and differentiation of stem
cells. hESCs are prone to spontaneous apoptosis or differenti-
ation, not easy to save and culture, and the expression of p53 is
suggested to reduce the apoptosis, differentiation and differenti-
ation rate of hESC helpfully [57]. In addition, PTEN serves as
an antagonist of the PI3K/AKT pathway, and this pathway is an
oncogenic pathway because of its role in cell cycle control and
cell proliferation [58]; additionally, loss of PTEN expression is
significantly related to the activation of the PI3K/AKT pathway
[59]. Hence, PTEN negatively modulates the PI3K/AKT path-
way, and thereby may have a crucial effect on the control of cell
cycle and cell survival [60]. Consequently, loss of PTEN normal
growth regulation, inhibiting inducers of apoptosis and promoting
cell survival by phosphorylation may thereby favoured tumour
formation. In the present study, p53 and PTEN expression were
decreased compared with parental cells after fusion of ovarian
cancer cells and hESCs, which in turn confirmed the success-
ful establishment of new growth model. Importantly, epigenetic
changes that were associated with genes expressions including
p53, PTEN, Akt1 were somewhat confirmed in the present study.
The achievement of epigenetic changes was mainly depend on
histone acetylation and DNA methylation so as to achieve the
goal of preventing and treating tumours [61], to be specific, his-
tone acetylation can activate the transcription of specific genes
which is critical for cells differentiation and proliferation; on the
other hand, DNA methylation is mainly manifested by the de-
crease in the overall methylation level of the genome and the
abnormal increase in the degree of methylation in the local CpG
islands. The latter can lead to the expression of some tumour
suppressor genes and participate in the occurrence and develop-
ment of tumour. In view of the above, either histone acetylation
or DNA methylation, or both might be involved in the process of
epigenetic changes that were associated with p53, PTEN, Akt1
expressions. Due to the restriction of experiment time and costs,
there was no further in-depth research of histone acetylation or
DNA methylation in the present study. However and beyond a
doubt, we quite agree and support the idea that tumour often cor-
related with the in-activation of multiple anti-oncogene, previous
single gene therapy could not inhibit the growth of tumours suc-
cessfully, methylation or deacetylate enzyme inhibitors targeting

the whole genome could help to the recovering of multiple anti-
oncogene expressions, therefore decreased gene mutation and
increased genomic stability rates, so as to provide new targets
for drug development of human tumours [62]. Such important
and interesting topic is definitely planned to be studied in our
following research.

It is reported that the random integration of exogenous gene
may affect the expression model of whole-genome and gene sta-
bility, influencing cell function or increase carcinogenesis risk
[63]. By identifying the cytobiological features of transgenic
cells, it is found that the integration of exogenous gene mediated
by lentivirus does not affect the biological characteristics of stem
cell such as self-renewal and multi-directional differentiation
in vivo and in vitro. In the present study, we prepared pFinal/PGK-
puro-EF1α-tdTomato and pFinal/PGK-BSD- EF1α-hrGFP car-
rier vectors using gateway technology. By the packaging and con-
centration of lentivirus, we obtained virus solution with high titre
and biological safety. After further transduction and screening,
we successfully established four transgenic cell lines carrying
target genes. This indicates that gateway technology combined
with lentivirus transduction vector provides an effective and con-
venient transduction system for human embryonic stem cells and
tumour cells. The comparison of growing speed of hybrid cells
and parent cells after fusion showed that the growth of hybrid
cells derived from ovarian cancer cells was slower than those of
the two parental cells. In the previous research, the cancer cell
fusion in vitro showed that the hybrid cells of cancer cells and
adult somatic cells had higher malignancy [64], manifesting as
the increase in migration, drug resistance, proliferation rate, and
decrease in apoptotic rate.

In conclusion, p53 and PTEN expression were decreased com-
pared with parental cells after fusion of ovarian cancer cells and
hESCs, the growth status was changed, the proliferation rate was
decreased and a new growth model was established. Collectively,
hESCs can inhibit the growth of OVCAR-3 cells in vitro by
suppressing p53 and PTEN expression to inhibit the growth of
tumour achieved by inducing apoptosis of OVCAR-3 cells. Thus,
the change of epigenetics after fusion of ovarian cancer cells and
hESCs may become a novel direction for treatment of ovarian
cancer.
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