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We aimed to build radiomics models based on triple-phase CT images combining clinical
features to predict the risk rating of gastrointestinal stromal tumors (GISTs). A total of 231
patients with pathologically diagnosed GISTs from July 2012 to July 2020 were
categorized into a training data set (82 patients with high risk, 80 patients with low risk)
and a validation data set (35 patients with high risk, 34 patients with low risk) with a ratio of
7:3. Four diagnostic models were constructed by assessing 20 clinical characteristics and
18 radiomic features that were extracted from a lesion mask based on triple-phase CT
images. The receiver operating characteristic (ROC) curves were applied to calculate the
diagnostic performance of these models, and ROC curves of these models were
compared using Delong test in different data sets. The results of ROC analyses showed
that areas under ROC curves (AUC) of model 4 [Clinic + CT value of unenhanced (CTU) +
CT value of arterial phase (CTA) + value of venous phase (CTV)], model 1 (Clinic + CTU),
model 2 (Clinic + CTA), and model 3 (Clinic + CTV) were 0.925, 0.894, 0.909, and 0.914 in
the training set and 0.897, 0.866, 0,892, and 0.892 in the validation set, respectively.
Model 4, model 1, model 2, and model 3 yielded an accuracy of 88.3%, 85.8%, 86.4%,
and 84.6%, a sensitivity of 85.4%, 84.2%, 76.8%, and 78.0%, and a specificity of 91.2%,
87.5%, 96.2%, and 91.2% in the training set and an accuracy of 88.4%, 84.1%, 82.6%,
and 82.6%, a sensitivity of 88.6%, 77.1%, 74.3%, and 85.7%, and a specificity of 88.2%,
91.2%, 91.2%, and 79.4% in the validation set, respectively. There was a significant
difference between model 4 and model 1 in discriminating the risk rating in gastrointestinal
stromal tumors in the training data set (Delong test, p < 0.05). The radiomic models based
on clinical features and triple-phase CT images manifested excellent accuracy for the
discrimination of risk rating of GISTs.
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INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are a common type of
mesenchymal neoplasm of the gastrointestinal tract that arise
from Cajal cells, accounting for 1%–3% of all gastrointestinal
malignancies (1, 2). They occur throughout the gastrointestinal
tract, most commonly in the stomach (60%–70%), small
intestine (20%–25%), followed by duodenum, rectum, colon,
and esophagus (3). Generally, about 18%, 35%, and 47% of
these tumors were considered benign, malignant potential, and
undetermined potential, respectively (4). GISTs are divided into
very-low-, low-, intermediate-, and high-risk groups based on the
reference guide for prognosis defined by the 2008 National
Institutes of Health (NIH) criteria (5, 6). Accurate rating of the
risk of GISTs plays a vital role in the decision-making of
treatment and outcome (7, 8). The postoperative metastasis
and recurrence rates range from 2% to 80% in different risk
rating of GISTs, which mainly depend on tumor size, location,
and mitotic count (9, 10). With early precise diagnosis, the
outcomes and prediction of high-risk GISTs could be
improved due to targeted therapy (3, 11).

Currently, abdominal enhanced CT scan is a useful approach
in the pre-operative evaluation of GISTs by providing valuable
information in relation to the location, size, and blood supply of
the tumor and may have potential to predict malignancy risk (3,
12–14). However, these CT features’ assessment is subjective and
biased, which is susceptible to observer variability. Radiomics
based on CT images is a more quantitative and objective
approach to quantify potential biological features of tumor by
extracting enormous quantitative characteristics based on
tumor’s shape, intensity, size, and texture (15, 16). The
predictive value of radiomics based on CT images for
predicting the malignancy in GISTs has been reported in
previous reports (17–19). Nevertheless, these studies
demonstrated excellent predictive performance for risk rating
of GISTs using either nonenhanced or enhanced CT images (20–
22). So far, to our knowledge, whether the radiomics based on
triple-phase CT images combined with clinical features is more
preferable for predicting the malignancy in GISTs compared
with radiomics based on single-phase CT images has not been
reported. Hence, in this study, we aimed to build and validate
radiomics models based on triple-phase CT images combining
with clinical features for GISTs risk stratification.
MATERIALS AND METHODS

Patients
This study acquired the approval of the institutional ethics
review board of our hospital; written informed consent was
waived due to the retrospective nature of the study. Initially, a
total of 265 patients clinically suspected of primary GISTs were
recruited in a local hospital from July 2012 to July 2020.
The inclusion criteria were as follows: (1) the diagnosis of
GISTs was confirmed postoperative pathology; (2) the patients
finished contrast-enhanced CT scans within 15 days before
Frontiers in Oncology | www.frontiersin.org 2
operation; (3) clinicopathologic data were integrated; and
(4) no treatment prior to surgery. The exclusion criteria
included patients with a previous history of GISIs or known
cancer or tumor size < 1.0 cm or with poor CT image quality,
which may affect target lesion segmentation. Finally, there were
231 patients included in this study. Clinical data were scrutinized
and included age, sex, and symptoms (hematemesis or black
stool, abdominal pain, or discomfort). The details of inclusion
and exclusion criteria are displayed in Figure 1.

CT Examinations and Features
All CT scans including noncontrast CT and contrast-enhanced
CT examinations were completed using one of the three CT
scanners (SOMATOM Emotion16, SIEMENS, Germany;
Definition AS, SIEMENS, Germany; Optima CT680, GE,
USA). For contrast-enhanced CT scanning, a total amount of
80–120 ml of contrast medium was injected intravenously at a
flow rate of 3–4 ml/s by an automatic triggering injector
according to the patient’s weight. After a fast of at least 4 h, all
subjects were asked to intake 500–1000 ml of water over 15 min
preceding CT scanning. The arterial phase and portal venous
phase images were obtained when delaying 25–30 s and 50–70 s
after the injection. The parameters of CT scanning were as
follows: tube voltage 120–130 kV; tube current 210 mA; slice
thickness 1.5 mm; algorithm standard. CT features were
analyzed as follows: CT value of unenhanced (CTU), CT value
of arterial phase (CTA), CT value of venous phase (CTV), long
diameter (LD), short diameter (SD), location, contour, growth
pattern (endophytic, exophytic, and mixed), necrosis,
calcification, surface ulceration, and intratumoral vessel.
Necrosis was defined as unenhanced portion with density
ranging from −20 HU to 20 HU, and the presence of
calcification with the density above 120 HU. Surface ulceration
was described as the endoluminal surface of the lesion showing a
focal tissue defect (23). Furthermore, the longest diameter and
shortest diameter of the lesion, where it appeared largest and
shortest on axial images, were measured, respectively. The CT
image review was retrospectively performed by two skilled
radiologists (JW and ZN) who were blinded to the
clinicopathologic data of all the subjects. Disagreements were
solved by consensus.

Reference Standard and Data Partitioning
According to the NIH criteria, GISTs were divided into very-low-,
low-, intermediate-, and high-risk groups based on the tumor size,
mitotic count, and tumor site. Furthermore, the study population
was classified into two risk grades, varying from a low-malignant
(very low and low risk) group to a high-malignant (intermediate
and high risk) group.

The reference standard was the pathology based on resection
specimens. The total study population was randomly classified
into a training data set (80 patients in the low-malignant group,
82 patients in the high-malignant group) and a validation data
set (34 patients in the low-malignant group, 35 patients in the
high-malignant group) with a ratio of 7:3 according to a
computer-generated seed.
December 2021 | Volume 11 | Article 737302
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Image Processing and Analysis
All the triple-phase CT images were determined using the
homogenization process, including (1) data integration, (2)
data washing (hiding patient information), (3) data
standardization (denoising, unifying window width and
window level), (4) data normalization, and (5) data label after
structuring. The tumor segmentation was finished by two skilled
radiologists, who had 15 (JW) and 15 (ZN) years of experience in
abdominal imaging diagnosis by employing the ITK-SNAP
software (open source, www.itk-snap.org). All the triple-phase
CT images completed the tumor segmentation by the two
experienced radiologists who were blinded to GIST risk rating
before segmentation. Discrepancies between observers were
solved by consensus. In this work, we adopted three-
dimensional (3D) segmentation of the region of interest (ROI)
that was obtained by overlaying all the single two-dimensional
(2D) slices from the ROI with the largest tumor area for each
lesion, which was finished by the above two radiologists.
Quantitative radiomics features were extracted automatically
by employing the software called PyRadiomics (http://www.
radiomics.io/pyradiomics. html), as previously described (24,
25). After normalizing these features using Min-Max
Frontiers in Oncology | www.frontiersin.org 3
Normalization method, the Pearson correlation coefficient
(PCC) was calculated between each pair of features in order to
remove the highly inter-correlated radiomics features (26). If the
absolute correlation coefficient (r) between each pair features was
≥ 0.8, the feature with the largest mean absolute correlation was
excluded (26). Finally, 18 features with the largest PCC were
selected to build the stepwise logistic regression models. All
models were built with the training data set and were validated
on the validation data set. Figure 2 demonstrates our workflow.

Statistical Analysis
The statistical analyses were performed using R software,
(version 3.6.3; http://www.Rproject.org). A two-sample t-test
and chi-square test were performed to compare continuous
variables and qualitative variables, respectively. The prediction
performance of models was assessed on both the training data set
and validation data set, with the area under curve (AUC),
sensitivity, specificity, and accuracy calculated using the “caret”
package (19). Delong test was performed to compare the ROC
curve of the models constructed in different data sets.
Continuous variables were displayed as mean ± standard
deviation (mean ± sd).
FIGURE 1 | The inclusion and exclusion criteria of patients.
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RESULTS

Clinical Characteristics and CT Features
The details of the clinical and demographic characteristics of
GISTs are summarized and compared in Table 1. A total of 231
GISTs consisting of 114 low-malignant and 117 high-malignant
potential were recruited for this study. No significant differences
Frontiers in Oncology | www.frontiersin.org 4
were found in age, sex, CTU, CTA, CTV, location, calcification,
and symptom of tumor between the low-malignant and high-
malignant potential groups in either the training data set or the
validation data set (with all p > 0.05). The LD, SD, contour,
necrosis, surface ulceration, and intratumoral vessel between the
high-malignant group and the low-malignant group were
significantly different in both the training data set and
FIGURE 2 | Flow chart of the proposed workflow. GISTs were divided into a training set and a validation set. According to the NIH criteria, the lesion segmentation
and features extraction were performed. The radiomics models were built based on CT images combining clinical information, and a comparison between models
was also performed.
December 2021 | Volume 11 | Article 737302

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shao et al. Radiomics Discriminate GISTs
validation data set (all p < 0.05). The growth pattern and
symptoms between the high-malignant group and the low-
malignant group were significantly different in the training
data set (with both p < 0.05), while not significantly different
in the validation data set (with both p > 0.05).

Results of Radiomics Signature Model
After dimension reduction, 18 of the 1,243 features that
remained were used to evaluate whether the radiomics model
could distinguish between high-malignant and low-malignant
GISTs. The significant radiomics features include three form
factor features (SD, LD, and contour), three gray-level co-
occurrence matrices (GLCM), three gray-level run length
matrices (GLRLM), seven gray-level dependence matrices
(GLDM), and two gray-level size zone matrices (GLSZM).
Table 2 presents significant features and coefficients of the
four models.

Diagnostic Efficacy of Four Models
The results of ROC analyses showed that areas under ROC
curves (AUC) of model 4 (Clinic + CTU + CTA + CTV), model 1
(Clinic + CTU), model 2 (Clinic + CTA), and model 3 (Clinic +
CTV) were 0.925, 0.894, 0.909, and 0.914 in the training set and
0.897, 0.866, 0,892, and 0.892 in the validation set, respectively
(Figure 3). Model 4, model 1, model 2, and model 3 yielded an
accuracy of 88.3%, 85.8%, 86.4%, and 84.6%, a sensitivity of
Frontiers in Oncology | www.frontiersin.org 5
85.4%, 84.2%, 76.8%, and 78.0%, and a specificity of 91.2%,
87.5%, 96.2%, and 91.2% in the training set and an accuracy of 88.4%,
84.1%, 82.6%, and 82.6%, a sensitivity of 88.6%, 77.1%, 74.3%,
and 85.7%, and a specificity of 88.2%, 91.2%, 91.2%, and 79.4% in
the validation set, respectively (Figure 4 and Table 3).

Delong test was also performed on both training and
validation sets, and the results showed that there was
significant difference between model 4 and model 1 in
discriminating the risk rating in gastrointestinal stromal
tumors in the training data set (p = 0.033). There were no
significant differences between the comparison of other models
on both training and validation sets, indicating that the models
were not overfitting (all p > 0.05) (Table 4).
DISCUSSION

In this retrospective study, we focused on establishing and
validating four radiomics models based on triple-phase CT
images combining clinical features for distinguishing between
low-malignant and high-malignant potential GISTs, which
showed satisfactory discrimination. Our results confirmed the
forecasting ability of radiomic models based on triple-phase CT
images for malignant potential of GISTs, and it may be a
potentially useful approach for guiding clinical remedy
decision-making before operation in a noninvasive way.
TABLE 1 | The clinical characteristics and CT features in the training and validation sets.

Training set Validation set

Low risk
N = 80

High risk
N = 82

p Low risk
N = 34

High risk
N = 35

p

Age 59.14 ± 9.92 58.71 ± 12.84 0.812 61.24 ± 8.41 60.06 ± 10.68 0.613
Sex (Female/Male) 39/41 46/36 0.350 16/18 18/17 0.717
CTU 33.55 ± 9.53 33.55 ± 5.79 1.000 33.78 ± 6.94 35.05 ± 6.21 0.426
CTA 53.00 ± 13.84 56.74 ± 15.07 0.107 53.77 ± 10.90 54.43 ± 13.45 0.823
CTV 66.50 ± 17.41 71.60 ± 18.66 0.079 70.07 ± 15.13 70.24 ± 16.82 0.965
LD (mm) 25.59 ± 10.87 64.24 ± 40.69 0.000 24.24 ± 10.70 59.06 ± 34.09 0.000
SD (mm) 21.29 ± 9.42 49.45 ± 27.56 0.000 20.24 ± 9.60 45.34 ± 20.22 0.000
Location 0.420 0.812
Cardia 4 2 2 1
Fundus 28 22 12 11
Body 38 49 16 20
Antrum 10 9 4 3

Contour <0.001 <0.001
Round 42 11 16 7
Oval 26 15 14 4
Irregular 12 56 4 24

Growth pattern <0.001 0.085
Endophytic 44 18 14 9
Exophytic 26 39 18 18
Mixed 10 25 2 8

Necrosis 17 58 <0.001 4 24 <0.001
Calcification 13 17 0.464 2 7 0.167
Surface ulceration 8 31 <0.001 1 11 0.002
Intratumoral vessel 1 21 <0.001 0 6 0.036
Symptom 0.035 0.194
Hematemesis or black stool 46 31 20 13
Abdominal pain or discomfort 11 20 3 5
December 202
1 | Volume 11 | Article
p-values written in bold manifest a significant difference between the groups.
CTU, CT value of unenhanced; CTA, CT value of arterial phase; CTV, CT value of venous phase; LD, long diameter; SD, short diameter.
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In clinical practice, relative symptoms and subjective CT
features could assist in predicting the risk of GISTs for
operators intuitively. Subjective CT features such as tumor size,
location, contour, hemorrhage, and necrosis could be used to
evaluate the risk of GISTs (3, 7). In our study, tumor size (LD and
SD), contour, necrosis, surface ulceration, and intratumoral
vessel between the high-malignant group and the low-
malignant group were significantly different in both the
Frontiers in Oncology | www.frontiersin.org 6
training data set and the validation data set. Recent research
showed that prediction nomogram consisting of size, cystoid
variation, and mean value had an excellent discrimination in
both training and validation sets in GIST patients (19). Our
results were partly inconsistent with previous reports, which may
result from different clinical settings such as CT scanners,
systems, and parameters (27). These discrepancies between
subjective CT features indicated that results were limited by
A B

FIGURE 3 | The ROC curves of the four models in predicting malignancy potential of GISTs in the training data set (A) and the validation data set (B). AUC, area
under the receiver operating characteristic curve; GIST, gastrointestinal stromal tumors.
TABLE 2 | The significant features and coefficients in the four models.

Model 4 Model 1 Model 2 Model 3

Intercept −3.90 −4.12 5.45 −1.45
SD 14.62 9.76
Contour 1.89 2.43 1.39 1.16
wavelet-HLL_gldm_Large Dependence Emphasis_CTV 7.26
square_gldm_Dependence Non Uniformity Normalized_CTV −5.63
wavelet-LLL_gldm_Dependence Non Uniformity Normalized_CTU −6.88
wavelet-LLL_gldm_Large Dependence Emphasis_CTU 7.42
LD 16.22
wavelet-HLH_glrlm_Long Run Emphasis_CTA 5.22
wavelet-LHH_glrlm_Run Variance_CTA −5.59
wavelet-LLH_glcm_Idmn_CTA −5.51
wavelet-LLH_gldm_Small Dependence Low Gray Level Emphasis_CTA −8.59
wavelet-HHH_glszm_Small Area Emphasis_CTV 2.19
wavelet-LLL_glcm_Idn_CTV −5.50
wavelet-LLL_gldm_Large Dependence Emphasis_CTV −1.05
wavelet-LLL_glrlm_Run Percentage_CTV −6.29
wavelet-LL_glszm_ZoneEntropy_CTV 2.64
square_gldm_Dependence Non Uniformity Normalized_CTV 0.94
Square root_glcm_Idn_CTV 4.37
December 20
21 | Volume 11 | Articl
SD, short diameter; GLDM, gray-level dependence matrix; LD, long diameter; GLRLM, gray-level run length matrix; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone
matrix; Model 4, Clinic + CTU + CTA + CTV; Model 1, Clinic + CTU; Model 2, Clinic + CTA; Model 3, Clinic + CTV; CTU, CT value of unenhanced; CTA, CT value of arterial phase; CTV, CT
value of venous phase.
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reproducibility, which was largely up to subjective experience.
GISTs were divided into four risk ratings based on lesion size,
location, and mitotic of pathology, which was closely associated
with the choice of therapy (10, 28). Previous studies suggested
Frontiers in Oncology | www.frontiersin.org 7
that GISTs smaller than 2 cm could be excised or supervised by
endoscopy, while patients with a larger size should undergo
complete surgical resection to prevent metastasis or
postoperative recurrence (29, 30). However, small GISTs may
TABLE 3 | Diagnostic efficacy of four models in the discrimination between low-risk and high-risk GISTs in both training and validation sets.

Model 4 Model 1 Model 2 Model 3

Training set Validation set Training set Validation set Training set Validation set Training set Validation set

Low
N = 85

High
N = 77

Low
N = 34

High
N = 35

Low
N = 83

High
N = 79

Low
N = 39

High
N = 30

Low
N = 96

High
N = 66

Low
N = 40

High
N = 29

Low
N = 91

High
N = 71

Low
N = 32

High
N = 37

Accuracy 88.3 88.4 85.8 84.1 86.4 82.6 84.6 82.6
Sensitivity 85.4 88.6 84.2 77.1 76.8 74.3 78.0 85.7
Specificity 91.2 88.2 87.5 91.2 96.2 91.2 91.2 79.4
AUC 0.925 0.897 0.894 0.866 0.909 0.892 0.914 0.892
Decembe
r 2021 | Volume 11
 | Article
AUC, area under the receiver operating characteristic curve; Model 4, Clinic + CTU + CTA + CTV; Model 1, Clinic + CTU; Model 2, Clinic + CTA; Model 3, Clinic + CTV; CTU, CT value of
unenhanced; CTA, CT value of arterial phase; CTV, CT value of venous phase.
TABLE 4 | The DeLong test results of the four models.

Cohort Model 1 Model 2 AUC of Model A AUC of Model B p-value

Training Model 4 Model 1 0.925 0.894 0.033
Model 4 Model 2 0.925 0.909 0.280
Model 4 Model 3 0.925 0.914 0.308
Model 1 Model 2 0.894 0.909 0.374
Model 1 Model 3 0.894 0.914 0.190
Model 2 Model 3 0.909 0.914 0.704

Validation Model 4 Model 1 0.897 0.866 0.104
Model 4 Model 2 0.897 0.892 0.878
Model 4 Model 3 0.897 0.892 0.826
Model 1 Model 2 0.866 0.892 0.422
Model 1 Model 3 0.866 0.892 0.319
Model 2 Model 3 0.892 0.892 1.000
AUC, area under the receiver operating characteristic curve; Model 4, Clinic + CTU + CTA + CTV; Model 1, Clinic + CTU; Model 2, Clinic + CTA; Model 3, Clinic + CTV; CTU, CT value of
unenhanced; CTA, CT value of arterial phase; CTV, CT value of venous phase.
A B

FIGURE 4 | The accuracy, sensitivity, and specificity of four models in both training data set (A) and validation data set (B). Color bars indicate radiomics models.
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have aggressive features and remained with a poor outcome,
indicating that tumor size was not sufficient in evaluating the
malignancy of GISTs due to the complexity of their biological
behavior (31). Besides, previous studies have reported that GISTs
with hematemesis or sized ≥ 5 cm tend to undergo recurrence,
suggesting a poor outcome (32, 33). Hence, a more useful
quantitative evaluation approach was required to predict the
risk of GIST recurrence especially for those small tumors
exhibiting high malignancy. In our study, both tumor size (LD
and SD) and contour were significantly different between the
low-malignant and high-malignant potential GISTs in both the
training data set and the validation data set. Consequently,
significant features including tumor size and contour were
selected to establish radiomics models, which could work as a
component for GISTs’ risk rating.

The repeatability of traditional image analysis was not stable,
which was influenced by subjective factors and professional levels.
Therefore, an objective and quantitative radiomics approach
emerged. Radiomics has offered a novel approach to exploit
information encompassed in medical images, which could extract
numerous quantitative features from images and have exhibited to
improve the preoperative prediction of high-malignant potential
GISTs compared with the conventional imaging evaluation
methods (7, 16, 19, 34). Previous studies have demonstrated the
predictive ability of radiomics features obtained from contrast-
enhanced CT for the discrimination of risk rating of GISTs. Ren
et al. developed a prediction nomogram using standard contrast-
enhanced CT images to discriminate low- from high-malignant
potential GISTs with an AUC of 0.935 and 0.933 in the training set
and validation set, respectively (19). The radiomics signature of
Zhang et al. demonstrated considerable results for the risk
stratification of GISTs with an AUC of 0.809 for the validation
cohort with contrast-enhanced CT examination (6). The results of
Zhang et al. showed that non-contract CT-based radiomics
demonstrated equivalent prediction potency for the diagnosis of
high-risk GISTs compared to contrast CT-based radiomics (22).
None of the studies, however, analyzed whether the radiomics based
on triple-phase CT images combined with clinical features is
superior for the prediction of the malignant risk of GISTs. Here,
we established and validated four models based on triple-phase CT
images combining CT features and compared the ROC curves of
these models using Delong test. After dimension reduction, 18 of
the 1,243 features were selected to establish radiomics models that
served as different characteristics of lesions. The significant
radiomics features included three form factor features (SD, LD,
and contour), three GLCMs, three GLRLMs, seven GLDMs, and
two GLSZMs. Among these significant radiomics features, there
were two, six, and nine parameters from the plain, arterial phase,
and venous phase, respectively. Hence, we speculated that radiomics
based on CT images from the arterial phase and venous phase could
provide much more information than plain in the discrimination of
risk rating in GISTs. The GLCM represents how combinations of
discretized intensities of neighboring pixels, or voxels in a 3D
volume, are distributed along one of the image directions. Like
the GLCM, GLRLM also means the distribution of discretized gray
levels in an image or in a stack of images. The GLDMwas defined as
Frontiers in Oncology | www.frontiersin.org 8
an alternative to the GLCM, which aimed to capture the coarseness
of the overall texture and was rotationally invariant. The GLSZM
counts the number of groups (or zones) of linked voxels (35, 36).
Briefly, these significant features represented lesions ’
internal heterogeneity of morphology, density, texture, and
distribution. Heterogeneity was an accepted characteristic of
malignant tumors and believed to be positively relative to
the degree of tumor malignancy, which had vital clinical
significance (37). The results of the Delong test showed that there
was a significant difference between model 4 and model 1 in
discriminating the risk rating in gastrointestinal stromal tumors in
the training data set (p < 0.05), whereas this difference was not
confirmed in the validation data set, which indicated considerable
predictive potential in GISTs. The results of Zhang et al.
demonstrated that the radiomics signature from nonenhanced CT
(NE-RS) had a high AUC of 0.967 and 0.941 on the internal
validation cohort and the external validation cohort for GIST
malignancy prediction, respectively (22). Our NE-RS had a lower
AUC (<0.9) compared to this study in both training and validation
data sets. The underlying reason for this discrepancy might be due
to difference in different clinical settings such as different scanners or
parameters. Moreover, the similarity was that these studies adopted
portal phase CT images to establish and validate radiomics
signature. In short, our results confirmed that NE-RS had
admirable discriminating ability for the prediction of the
malignancy potential of GISTs, which may have important
clinical instructive significance since nonenhanced CT was more
conveniently applied for the preoperative diagnosis in GISTs.

Remarkably, radiomics features in this work were extracted
from 3D images of whole lesion rather than 2D images with the
largest tumor area. Previous studies have confirmed that analyses
using 3D images could supply more ample information about the
lesion than 2D images since all the applicable slices were taken
into consideration, which may enhance the accuracy of
discrimination (17, 38, 39). Hence, radiomics based on 3D
images may more precisely reveal the heterogeneity of lesion
for examining GISTs compared with 2D images.

However, several limitations still existed that should not be
ignored in this present work. First, all data were obtained from a
single center, and a multicenter study needs to be designed for
further evaluation and validation. Second, selective bias could
not be completely avoided due to the retrospective nature of our
study design. Nevertheless, all the patients were consecutively
included. Third, all CT scans including noncontrast CT and
enhanced CT scanning were completed with different CT
scanners, which may lead to some possible confounding
factors. Finally, we did not compare the algorithms of
feature selection and extraction, which could also influence the
model performance.
CONCLUSION

In conclusion, we hereby concluded that radiomic models based
on clinical features and triple-phase CT images manifested
satisfactory performance for the discrimination of low- and
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high-malignant potential GISTs. We stress the potentiality of
radiomics analysis based on clinical features and triple-phase CT
images as a noninvasive technique to achieve an accurate
diagnosis ahead of surgery.
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