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Abstract: Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute
and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer
physical stability, increase virulence, and work as a protective armor against antimicrobial com-
pounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation
through a process called quorum sensing (QS), a rather complex and hierarchical system of com-
munication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In
this study, a combined multi-level computational approach was applied to find possible inhibitors
against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved
FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising
putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations
and MM/GBSA free-energy calculations were performed to confirm the docking predictions and
elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding
free energies of association than the reference molecules (a known antagonist, M64 and a natural
inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.

Keywords: drug repurposing; Pseudomonas aeruginosa; computer-aided drug design (CADD); biofilms;
quorum sensing

1. Introduction

Pseudomonas aeruginosa is a highly adaptable Gram-negative bacterium, responsible
for acute and chronic infections that rapidly evolve to multi-drug resistance to antibiotics,
and is becoming extremely difficult to eradicate, leading to high morbidity and mortality
rates [1,2]. It can be found in planktonic state or as aggregates, called biofilms. This
association of microorganisms is the ultimate way of protection to adverse conditions [3]
and involves a self-produced matrix of extracellular polymeric substances that confers
stability and protection from external stress conditions [4–7].

P. aeruginosa has a mechanism of intracellular communication that controls the pop-
ulation density, expression of genes, and biofilm formation called quorum sensing (QS).
It involves the production, detection, and response to extracellular signaling molecules,
called autoinducers (AIs) [2,8,9]. QS in P. aeruginosa is rather complex and hierarchical.
Until now, for P. aeruginosa, there are four types of signaling systems described. Two are
based on acyl homoserine lactones (LasR and RhlR): one that uses quinolone as signaling
molecule (PQS) and one whose mechanism and targets are still unknown (IQS) [10,11]. All
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these systems communicate with each other to control the direct and indirect expression
of several virulence genes [12]. Details on the intricate web of interactions between these
systems have already been defined extensively by several other groups [1,13–16].

A recent strategy to try to overcome bacterial resistance is to target QS proteins,
inhibiting their activity. In this way, the bacterial virulence is eliminated, but the bacteria
do not die, leading to lower acquired and adaptive resistance [1,17,18]. Targeting the PQS
system may be advantageous because it is specific to P. aeruginosa. By not interfering with
other QS systems, such as las and rhl, there is minimization of potential side effects, as
bacteria that are essential to human health are not affected [19].

Pseudomonas aeruginosa QS regulator (PqsR), also called a multiple virulence factor
regulator (MvfR), is a LysR-like transcriptional regulator protein (LTTRs) [20] common in
many species of bacteria. It has a highly conserved DNA binding domain and a poorly
conserved ligand binding domain, also called a co-inducer or a ligand-binding domain
(CBD). The natural AIs are: 2-Heptyl-3-hydroxy-4(1H)-quinolone (also called the Pseu-
domonas Quinolone Signal, PQS) and, its precursor, 2-heptyl-4-hydroxyquinoline (HHQ).
The synthesis and regulation of these AIs are controlled by the pqsABCDE operon which,
in turn, is regulated by MvfR, creating an auto-regulatory loop. The expression of MvfR,
on the other hand, is controlled by LasR [1,14,20–22].

This protein is not only an important target due to the direct and indirect activation of a
variety of virulence genes, but it has been proven that it is also responsible for the formation
and development of biofilms as well as antibiotic-tolerant persister (AT/P) cells [23]. Thus,
this is an excellent target to control and treat P. aeruginosa infections.

The binding pocket of PqsR/MvfR has two subdomains, defined as Pocked A and
Pocket B. The bicyclic ring of the natural autoinducer fits perfectly into pocket B and the
aliphatic chains interact with residues on pocket A, as represented in Figure 1. It is a
mainly hydrophobic pocket, which is one of the reasons why it is quite a challenging and
high-interest target [24,25].
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(PDB:4JVI).

A review paper [26] was published describing the recent advances in the development
of MvfR antagonists, leading the way to the rational design of new and specific drugs
to treat P. aeruginosa infections. Analyzing all the compounds described, it is clear that
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there are common features and it is even possible to design a pharmacophore model [26].
To sum up, so far, the classes of molecules that have been tested and present inhibitory
activity against MvfR are quinazolinones, quinolinones, benzamide–benzimidazoles, and
hydroxybenzamides [20,23,24,27–30]. However, it is still unknown if these compounds will
work on their own or if it is still necessary to use antibiotics, as there are still no clinical
trials being made on this subject.

In this work, docking and virtual screening experiments were applied to discover
new inhibitors for PqsR/MvfR using the ZINC FDA-approved database as a starting point.
De novo synthesis is a very time-consuming and expensive process, and the search for
new antibiotics has led to disappointing results with the main restricting factor being the
lack of translation of in vitro activity in the live bacterial cells [31]. Drug repurposing
for antimicrobial purposes aims to generate new clinical uses for already-established
drugs with possible antibiotic effects or potentiate it when used in combination with an
antibiotic [31,32].

2. Results and Discussion

The results presented in Table 1 show that the scoring functions (SFs) that can more
effectively reproduce the binding poses of the crystallographic ligands in MvfR are GOLD’s
CHEMPLP and ASP, with an average RMSD of 1.78 and 1.81 Å, respectively. ChemScore
and VINA also gave reasonable results with average RMSD values of 3.00 Å and 3.57 Å,
respectively. The worst results were obtained with LeDock and GoldScore with average
RMSD values of 4.51 Å and 3.27 Å. Within individual scoring values, there were also
significant variations among the different PDB–ligand combinations, arising from the
diversity of molecules considered. QZN, NNQ, HLH, QAE, and Q25 have long aliphatic
tails that are very flexible and hydrophobic, and many of the scoring functions could not
reproduce the exact crystallographic pose and, hence, the high RMSD values. M64 is less
flexible and bulkier, and most scoring functions were able to reproduce the original pose.
Only ChemScore failed this test with a RMSD of 3.48 Å.

Table 1. RMSD of the re-docking for the other targets and their respective crystallographic ligand.

Redocking RMSD (Å)

PDB Code Ligand Vina LeDock CHEMPLP GoldScore ChemScore ASP Average per Target

4JVD NNQ 6.67 3.51 2.16 3.20 1.18 2.68 3.23
4JVI QZN 1.59 3.07 1.33 2.93 3.18 1.85 2.33
6B8A M64 0.34 0.58 0.46 0.63 3.48 1.92 1.24
6Q7U HLH 7.26 5.80 3.71 3.14 2.64 2.11 4.11
6Q7V C11 5.77 6.16 3.49 5.73 3.76 1.77 4.98
6Q7W C20 3.54 4.50 1.99 5.15 3.17 1.71 3.34
6TPR NV5 9.15 5.23 1.54 1.16 4.59 1.35 3.84
6Z07 Q4E 1.22 1.41 0.92 0.87 1.31 1.32 1.18
6Z17 Q4W 1.18 7.25 1.59 4.08 2.32 1.96 3.06
6Z5K QAE 1.43 4.46 1.17 8.13 3.95 1.60 3.46
6YZ3 Q25 1.11 7.67 1.25 0.99 3.46 1.56 2.67

Average by SF 3.57 4.51 1.78 3.27 3.00 1.81

The same tendency is seen when we analyze the remaining data. It is more challenging
for all the scoring functions to reproduce the crystallographic pose in ligands with long,
aliphatic chains.

Upon further analysis, it was clear that the different SF showed a clear tendency in
RMSD values and there were two targets that stood out: 4JVI and 6B8A. In these cases,
the cross-docking scores (Supplementary Table S1) are consistently higher than any other
target. 4JVI seems to accommodate ligands with aliphatic chains better, while 6B8A showed
good scores for different types of ligand structures. The main difference between the two
structures lies in the position of residue Ile186, as seen on Figure 2—a feature that can
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be important to accommodate a variety of ligands in a virtual screening (VS) run. At the
cross-docking stage with structure 4JVI, the SFs were not able to dock M64 in the same
pose as the crystallographic due to the position of Ile186, evidenced by the RMSD values.
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Figure 2. Cartoon representation of the active site residues for 4JVI (cyan), 6B8A (yellow), NNQ
ligand (white) and M64 (yellow). The main difference in these three structures is the position of
residue Ile186 that in 6B8A structure tends to close the binding site, accommodating bulkier ligands.

Based on the results presented, two main structures were chosen (PDB codes: 4JVI
and 6B8A) to continue the experiments, for the validation of the virtual screening (VS)
protocol. Furthermore, at this stage, LeDock and GoldScore SFs were eliminated due to
poor RMSD results.

Docking of the actives vs decoys dataset (2290 compounds) was performed against
only the two PDB structures selected previously (4JVI and 6B8A). At the end of the calcula-
tions, each compound was ranked according to their binding score and the ROC curves
were plotted (Figure 3). The curves show similar results for both targets, with GoldScore
and LeDock being the worst at discriminating between binders and non-binders early on.
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Table 2 summarizes the results obtained for these two targets for all scoring functions
tested. Vina, CHEMPLP, ChemScore, and ASP provided good discriminatory ability
between binders and non-binders, with ChemScore giving the lowest enrichment factor
(EF) 1% for both targets. For 4JVI, Vina, CHEMPLP, and ASP provided the best EF 1% but
then presented TG below 0.25. For 6B8A, Vina and ASP consistently provided the best
results across most of the metrics studied. ASP exhibited an EF of 10%, an AUC above
0.5, and a TG of 0.25, indicating good performance and reproducibility of the protocol.
Ultimately, ASP was the SF chosen to proceed to the VS of the FDA-approved database.

Table 2. Available X-ray structures of MvfR on the PDB and BSD.

4JVI 6B8A

EF 1% AUC% TG RIE BEDROC EF 1% AUC TG RIE BEDROC

Vina 10.23 0.68 0.21 2.34 0.14 10.35 0.63 0.19 2.13 0.13

CHEMPLP 10.40 0.55 0.08 2.22 0.13 5.20 0.54 0.07 2.07 0.12

ChemScore 5.20 0.49 0.005 1.68 0.10 2.60 0.52 0.02 1.65 0.10

ASP 10.40 0.66 0.21 2.39 0.14 10.39 0.66 0.25 2.33 0.14

After performing the virtual screening protocol for the ZINC FDA-approved database,
the molecules present in the top 1% were analyzed in detail, corresponding to 32 com-
pounds. The top 15 molecules identified in the VS stage are listed in Table 3, along with
their respective structure and docking score. A brief description of the pharmaceutical use
of each compound is also provided.

Table 3. Top 15 hits of the FDA-approved drugs database.

Drug Name & Code Description Structure ASP Score

Nilotinib

Bcr-Abl tyrosine kinase
inhibitor (TKI) used in the

treatment of chronic
myelogenous leukemia (CML)
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Table 3. Cont.

Drug Name & Code Description Structure ASP Score

Valrubicin
Chemotherapy drug used to

treat carcinoma in situ
bladder tumors.
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Table 3. Cont.

Drug Name & Code Description Structure ASP Score

Emend
NK1 antagonist to prevent

chemotherapy-induced
nausea and vomiting.
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Venetoclax 2.3 ± 0.2 2.7 ± 0.4 
344.8 ± 

27.0 
70.4 ± 0.02 0.5 ± 0.6 −70.1 ± 0.3 

TYR258 (−4.9), 

ILE186 (−4.3), 

ILE236 (−2.9) 

Indocyanine Green 2.2 ± 0.2 2.3 ± 0.2 
298.9 ± 

28.3 
72.3 ± 0.03 1.1 ± 0.8 −58.6 ± 0.3 

ILE186 (−4.2), 

ILE236 (−3.1), 

TYR258 (−3.1) 

Nilotinib 2.0 ± 0.2 1.7 ± 0.4 
105.2 ± 

23.2 
86.8 ± 0.03 0.1 ± 0.3 −48.1 ± 0.2 

ILE186 (−2.4), 
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ILE236 (−3.4) 

45.05

Mellini and co-workers performed a similar VS study using a library of 1467 FDA-
approved drugs against MvfR [25]. The five top hits were selected (Conivaptan, Ergotamine,
Eltrombopag, Pimozide, and Dutasteride) and tested experimentally in in vitro assays. Only
pimozide presented inhibitory activity toward MvfR. Eltrombopag was also one of the
compounds present in the top 1% of our VS results (rank position nº 19) but, since this, a
different protocol and a different SF were used; thus, it is only logical that different hits
were obtained. Among the collection of compounds selected, the protocol was able to place
two antibiotics in the top 15 results which reinforces the virtual screening methodology
even further.

The subsequent stage of the study involved performing the 100 ns of MD simulations
for each complex with 6B8A, followed by MM/GBSA calculations. As reference, a MD
simulation of NNQ in complex with 6B8A was also performed. NNQ is one of the natural
agonists of MvfR. The first antagonist with activity against MvfR and M64 was also used
as reference.
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The stability of the complexes was accessed by RMSD calculations for the Cα of the
protein and ligands as well (supporting information for more detail). As presented in
Table 4, all the MvfR–ligand complexes displayed low protein and ligand RMSD values
throughout the simulations meaning that they are indeed stable.

Table 4. Average protein RMSD values (Å), average ligand RMSD (Å), average MvfR–ligand complex
SASA (Å2), percentage of SASA for the buried ligand, and average number of ligand hydrogen
bonds, obtained from the MD simulations of MvfR–FDA complexes. ∆G binding energy determined
using MM/GBSA and per-residue decomposition, calculated for the last 90 ns of the simulation.
Compounds are ordered by increasing ∆Gbind (kcal/mol).

ID Average Protein
RMSd (Å)

Average
Ligand RMSD SASA (Å2)

Percentage of
Potential

Ligand SASA
Buried (%)

Average
Number H

Bonds

∆Gbind
(kcal/mol)

Main
Contributors

(kcal/mol)

Venetoclax 2.3 ± 0.2 2.7 ± 0.4 344.8 ± 27.0 70.4 ± 0.02 0.5 ± 0.6 −70.1 ± 0.3
TYR258 (−4.9),
ILE186 (−4.3),
ILE236 (−2.9)

Indocyanine
Green 2.2 ± 0.2 2.3 ± 0.2 298.9 ± 28.3 72.3 ± 0.03 1.1 ± 0.8 −58.6 ± 0.3

ILE186 (−4.2),
ILE236 (−3.1),
TYR258 (−3.1)

Nilotinib 2.0 ± 0.2 1.7 ± 0.4 105.2 ± 23.2 86.8 ± 0.03 0.1 ± 0.3 −48.1 ± 0.2
ILE186 (−2.4),
LEU208 (−2.1),
ILE236 (−3.4)

Cabozantinib 2.3 ± 0.3 1.6 ± 0.4 135.3 ± 40.5 82.3 ± 0.1 0.03 ± 0.2 −44.6 ± 0.2
ILE236 (−3.2),
ILE186 (−2.4),
LEU208 (−2.3)

Montelukast 2.2 ± 0.2 2.2 ± 0.4 228.8 ± 35.6 73.8 ± 0.04 0.04 ± 0.2 −43.2 ± 0.2
ILE236 (−2.8),
LEU207 (−2.4),
ILE263 (−2.0)

Cefoperazone 2.6 ± 0,3 2.9 ± 1.2 289.5 ± 41.4 66.7 ± 0.04 1.0 ± 0.9 −42.4 ± 0.4
ARG209 (−3.2),
ILE236 (−2.5),
LEU208 (−2.3)

Valrubicin 2.4 ± 0.4 3.3 ± 0.3 276.7 ± 31.4 70.6 ± 0.03 0.04 ± 0.2 −41.1 ± 0.2
LEU207 (−4.2),
ILE236 (−2.9),
TYR258 (−3.9)

Lomitapide 2.3 ± 0.3 3.8 ± 0.4 323.4 ± 81.6 65.6 ± 0.1 0.1 ± 0.3 −40.6 ± 0.3
ILE186 (−2.3),
LEU208 (−1.9),
ILE236 (−2.5)

M64
(antagonist) 2.2 ± 0.2 1.2 ± 0.2 90.4 ± 19.3 86.3 ± 0.03 0.1 ± 0.2 −39.0 ± 0.1

IlE236 (−3.2),
ILE186 (−1.7),
TYR258 (−1.7)

Emend 2.3 ± 0.4 1.5 ± 0.2 130.2 ± 25.8 80.7 ± 0.04 0.4 ± 0.5 −38.9 ± 0.2
ILE236 (−3.5),

LEU207 (−109),
TYR258 (−1.7)

Pazopanib 2.3 ± 0.2 1.9 ± 0.5 203.6 ± 40.5 69.4 ± 0.1 0.7 ± 0.8 −37.7 ± 0.3
LEU208 (−3.7),
ILE236 (−3.1),
SER196 (−2.0)

lapatinib 2.5 ± 0.4 2.8 ± 0.9 249.0 ± 56.7 69.6 ± 0.1 0.5 ± 0.7 −35.4 ± 0.3
LEU207 (−2.1),
ILE236 (−2.9),
ILE263 (−1.8)

Ravicti 2.1 ± 0.2 3.3 ± 0.7 263.8 ± 50.0 69.3 ± 0.1 0.03 ± 0.2 −34.5 ± 0.3
LEU207 (−2.6),
ILE236 (−2.6),
ILE263 (−1.7)

Cefsulodin 2.3 ± 0.2 1.6 ± 0.4 235.4 ± 39.9 66.5 ± 0.1 0.9 ± 0.8 −27.4 ± 0.3
LEU207 (−3.5),
ILE236 (−2.2),
LEU208 (−2.1)

NNQ
(natural
inducer)

2.3 ± 0.3 1.6 ± 0.4 154.8 ± 53.7 71.6 ± 0.1 0.1 ± 0.3 −26.1 ± 0.3 LEU208 (−1.7),
ILE236 (−1.5)



Antibiotics 2022, 11, 185 9 of 22

Table 4. Cont.

ID Average Protein
RMSd (Å)

Average
Ligand RMSD SASA (Å2)

Percentage of
Potential

Ligand SASA
Buried (%)

Average
Number H

Bonds

∆Gbind
(kcal/mol)

Main
Contributors

(kcal/mol)

Isavuconazonium 2.4 ± 0.2 2.7 ± 0.5 522.5 ± 47.4 42.7 ± 0.1 0.04 ± 0.2 −25.0 ± 0.1
TYR258 (−3.4),
ILE186 (−2.6),
LEU189 (−1.1)

Methotrexate 2.8 ± 0.4 2.4 ± 0.4 312.6 ± 69.2 53.8 ± 0.1 0.7 ± 0.8 −22.8 ± 0.3
ILE186 (−4.1),
TYR258 (−3.4),
ARG209 (−2.7)

Smaller average SASA values and a higher percentage of average buried ligand
area indicate that the ligand is less exposed to the solvent, more shielded by the pocket,
also suggesting greater stability. Of all the compounds simulated, isavuconazonium and
methotrexate are these more exposed to the solvent (522.5 ± 47.4 Å2; 42.7 ± 0.1% and
312.6 ± 69.2 Å2; 53.8 ± 0.1%, respectively). The reference compound M64 exhibits the
lowest SASA and higher percentage of potential ligand SASA buried (90.4 ± 19.3 Å2;
86.3 ± 0.03%), mainly because of the π–π interaction with Tyr258 and the ring portion of
M64. The position of this residue and the position of Ile186 seem to be important for the
“closing” or “opening” of pocket A, as seen on Figure 4.
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Figure 4. 6B8A–M64 interaction map.

Of the 15 FDA compounds studied, eight presented better binding free energies than the ref-
erence, M64 (−39.0 ± 0.1 kcal/mol). These were venetoclax (−70.1 ± 0.3 kcal/mol), indocyanine
green (−58.6± 0.3 kcal/mol), nilotinib (−48.1± 0.2 kcal/mol), cabozantinib (−44.6 ± 0.2 kcal/mol),
montelukast (−43.2 ± 0.2 kcal/mol), cefoperazone (−42.4 ± 0.4 kcal/mol), valrubicin
(−41.1 ± 0.2 kcal/mol), and lomitapide (−40.6 ± 0.3 kcal/mol). The compounds high-
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lighted as of potential therapeutic interest to target QS consider the SASA, % of buried
ligand, and binding free-energy values, narrowing the selection to the top five (venetoclax,
indocyanine green, nilotinib, cabozantinib, and montelukast).

Figure 5 compares the results from the MM/GBSA calculations and the GOLD
ASP scores. The graph indicates that all the compounds selected present a higher affin-
ity toward MvfR than the reference ligand, with venetoclax (−70.1 ± 5.7 kcal/mol for
MM/GBSA), showing the highest affinity of all the molecules in the set. Isavucona-
zonium (−25.0 ± 0.1 kcal/mol), methotrexate (−22.8 ± 0.3 kcal/mol), and cafsulodin
(−27.4 ± 0.3 kcal/mol) were the compounds with the lowest binding affinity, as previously
mentioned. There is a clear tendency in terms of LogP values, with the most promising
drugs showing higher LogP values. This can be an important aspect to consider because
these compounds need to cross the bacterial cell wall to reach their specific target. The
molecular weight of all the molecules selected is above 500 g/mol.
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Figure 5. Graph comparing the free-energy calculation results using MM/GBSA with the GOLD ASP
scores. The reference ligands are NNQ, one of MvfR auto-inducer molecules, and M64, an antagonist.
Blue-colored ligands indicate a higher LogP than those colored in pink. The size of the marker is a
representation of the molecular weight.

When the free-energy values obtained using MM/GBSA were decomposed, the con-
tribution of each residue was analyzed. There are three main residues that contribute to an
increased affinity in all MvfR–ligand complexes: Ile186, Ile236, and Ile263. The contribu-
tions of Val170, Leu207, Leu208, and Tyr258 does not exist for all the complexes, but their
presence benefits the interaction for nilotinib, valrubicin, venetoclax, isavuconazonium,
montelukast, and cefoperazone (Figure 6). Lapatinib also interacts strongly with Val211
and cefoperazone with Arg209 (data not shown in Figure 6).
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Figure 6. Per-residue decomposition of the free-energy calculations using MM/GBSA for the fifteenth
selected FDA compounds.

When comparing these residues with the main residues interacting with NNQ (blue
line), there was an increase in the number of interacting residues (in the NNQ case the
interacting residues are only Leu208 and Ile236). This means that the association between
these 15 selected FDA molecules is stronger than the interaction with its autoinducer. This
might be explained by the fact that NNQs has a big aliphatic chain and the interactions in
the binding pocket are mainly due to hydrophobic effects.

In Figures 7 and 8, the interaction maps of the five selected FDA-approved compounds
are depicted. Venetoclax is stabilized through hydrophobic interactions with residues
Leu207, Tyr258, and Ile236. It can form hydrogen bond interactions with His184. It is a big
molecule and occupies the total area of pocket B and pocket A, and also induces a shift in
the position of Tyr258, opening pocket A even more.

Indocyanine green is mainly stabilized through hydrophobic interactions with residues
Ile186, Leu207, and Ile236. It can form π–π interactions with Tyr258 and the oxygen atoms
of the sulfate group form a salt bridge with Arg209. Indocyanine green causes a shift in the
position of Tyr258 and Ile186, inducing the opening of pocket A.

Nilotinib is stabilized by hydrophobic interactions with residues Val170, Ile186, Leu208,
Ile236, and Tyr258. Tyr258 also forms a hydrogen bond with nilotinib. It also induces a
shift in the position of Tyr258 and Ile186, causing an opening of the binding pocket.

Cabozantinib is stabilized by hydrophobic interactions with residues Val170, Ile208,
Ile236, and Tyr258. It induces a big shift in the position of Tyr258, forming a π–π interaction
and closing pocket A at its extremity.

Montelukast is stabilized through hydrophobic interactions with residues Ile186,
Leu189, Leu207, Ile236, and Tyr258. This is the only compound that induces a significative
shift in the position of Ile186, closing pocket A, but leaving one of the aliphatic arms of
montelukast outside.
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3. Materials and Methods
3.1. Structure Identification and Analysis

The Protein Databank [45] and the Biofilms Structural Database [46] were explored to
find molecular structures of P. aeruginosa PqsR/MvfR. A total of 12 X-ray structures were
identified. Details are summarized in Table 5.

Structures 4JVC, 4JVD, and 4JVI (2013) [20] were the first to present the MvfR lig-
and binding domain in the apo form and in complex with its native agonist 2-nonyl-4-
hydroxyquinoline or NNQ (4JVC and 4JVD, respectively). The authors have shown that
the structure of this binding pocket is unusually large, in which a native AQ agonist is
stabilized entirely by hydrophobic interactions [20]. They also presented a structure with
an analogous to NNQ in the binding pocket (4JVI), i.e., the compound 3-amino-7-chloro-2-
nonylquinazolin-4-one (QZN).

The PDB structure 6B8A (2018) presents the X-ray structure of the MvfR ligand-binding
domain (LBD) in complex with one potent benzamide–benzimidazole (BB) inhibitor, i.e.,
2-[(5-nitro-1H-benzimidazol-2-yl)sulfanyl]-N-(4-phenoxyphenyl)acetamide (or M64) [23].
The authors were able to demonstrate that this is a competitive inhibitor that binds in
the same hydrophobic MvfR pocket as the natural inducers. The subtle conformational
difference in the first three (4JVC, 4JVD, 4JVI) and fourth (6B8A) structures is mainly due
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to rearrangements in residues 181 to 191, in the presence of the natural inducers versus the
inhibitor M64. This inhibitor, combined with sub-therapeutic doses of ciprofloxacin, was
the first to show in vivo activity when tested in the treatment of a mouse lung infection
model [28].

Table 5. Available X-ray structures of MvfR on the PDB and BSD.

PDB Code Protein Resolution (Å) Ligand Strain References

4JVC Ligand-Binding Domain 2.50

UCBPP-PA14 [20]4JVD Ligand-Binding Domain 2.95 NNQ

4JVI Ligand-Binding Domain 2.90 QZN

6B8A Ligand-Binding Domain 2.65 M64 PAO1 [23]

6Q7U Ligand-Binding Domain 3.15 HLH

PAO1 [22]6Q7V Ligand-Binding Domain 2.56 HLK

6Q7W Ligand-Binding Domain 2.82 HLQ

6TPR Ligand-Binding Domain 3.20 NV5 UCBPP-PA14 [47]

6Z07 Ligand-Binding Domain 2.95 Q4E

UCBPP-PA14 [48]
6Z17 Ligand-Binding Domain 3.15 Q4W

6Z5K Ligand-Binding Domain 3.20 QAE

6YZ3 Ligand-Binding Domain 3.00 Q25

6Q7U, 6Q7V, and 6Q7W are structures of the LBD of MvfR in complex with 2-heptyl-4-
quinolone or HHQ (6Q7U) and 2-aminopyridine derivatives, N-(4-(4-fluorophenyl)methyl)-
6-(trifluoromethyl)pyridine-2,4-diamine or compound 11 (6Q7V), and N-(4-[3-(4-fluorophe
nyl)propyl]-6-(trifluoromethyl)pyridine-2,4-diamine or compound 20 (6Q7W). These deriva-
tives were described by the Hartmann group as novel lead-like structure for the design of
MvfR antagonists [22].

6TPR presented the MvfR LBD structure bound to another possible antagonist found
through the optimization of a bacterial cell-based reporter assay hit. Soukarieh and co-
workers were able to confirm that 2-[(5-methyl-[1,2,4]triazino[5,6-b]indol-3-yl)sulfanyl]-
N-(4-pyridin-2-yloxyphenyl)ethanamide (or NV5) did reduce the biosynthesis of the
alkylquinolone AIs even though it was unable to potentiate the effect of ciprofloxacin
when combined [47].

6Z07, 6Z17, 6Z5K, and 6YZ3 are structures of the LBD of MvfR bound to four different
thiazole-containing quinazolinones capable of inhibiting it. Grossman and his team were
able to understand that the four ligands occupied the binding pocket in a similar manner to
the AIs and that increasing the length of the aliphatic chain improved potency. For this rea-
son, ligands 6-chloro-3((2-pentylthiazol-4-yl)methyl)quinazolin-4(3H)-one (or QAE) bound
to 6Z5K and 6-chloro-3((2-hexylthiazol-4-yl)methyl)quinazolin-4(3H)-one (or Q25) bound
to 6YZ3 were the ones that attenuated the production of the MvfR-regulated virulence
factor pyocyanin while also showing low cytotoxicity in the in vitro assays [48].

A schematic representation of the workflow used is presented in Figure 9.
Initially, all the PDB structures of the proteins were analyzed, aligned, and treated

using Pymol 2.3.0. Crystallographic waters were removed, and ligands were extracted and
saved in separate files. All the structures were aligned so that the docking coordinates
and conditions were the same for each structure in the re-docking and cross-docking
experiments. After that, Gasteiger charges and polar hydrogens were assigned to the
proteins using AutoDockTools [49].

The OpenBabel software [50] was used to prepare the ligands for docking. The chemical
structures of the crystallographic ligands used in the validation stage are listed in Figure 10.
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3.2. Protein–Ligand Docking Protocol Validation

Three docking software alternatives and six scoring functions (SFs) have been used for
this study: Autodock Vina [51], LeDock, and Gold [52] (CHEMPLP, GoldScore, ChemScore,
and ASP). The goal in testing all these different SFs is to find out which one works best for
this specific target. The characteristics of the binding pocket and ligands in study have a
big impact on the docking results [53,54].

To ensure reproducibility, the docking conditions were kept consistent for every
software and every target. The parameters adjusted were the size of the docking box, the
binding site definition, the number of runs, and search efficiency.

To validate the protocol, re-docking was performed by removing the crystallographic
ligands and docking them again. This allows the user to evaluate the ability of the docking
software to reproduce the geometry and orientation of the crystallographic pose. This was
evaluated through the calculation of the root mean square deviation (RMSD) between the
heavy atoms of the crystallographic and docked poses. Cross docking was also performed
as a measure of validation. The goal here is to evaluate the robustness of different tar-
get structures and how they can accommodate different ligands. For cross docking, all
the X-ray ligand structures isolated from the twelve PDB structures of this target were
“docked” into the different X-ray structures. The RMSDs in both cases were calculated
using DockRMSD [55].

The scoring functions used employ different metrics and scales. A good result is the
one that presents a good score (depending on the SF used as different SFs use different
metrics, it can be a high positive score—GOLD CHEMPLP, ASP, ChemScore, and GoldScore,
or a more negative score—Vina, LeDock) and a RMSD below 2 Å.
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3.3. Virtual Screening Protocol Optimization

The virtual screening protocol must be validated with benchmark datasets to ensure
that it provides reliable results in the subsequent VS stage. This active versus decoy protocol
is essential to validate the virtual screening conditions and evaluate the ability of each
scoring function to discriminate between real binders and non-binders. A perfect scoring
function would be capable of finding all the true binders early on and rank them higher
than the decoys; however, that is not always the case due to the simplifications of the
scoring functions. Virtual screening is meant to be fast as we want to screen large databases
of compounds and that comes with a cost in accuracy [56]. So, special care was dedicated
to improving the protocol’s ability in maximizing the number of known binders among
the top solutions. For that, a PqsR/MvfR-specific virtual screening training library was
prepared to evaluate and optimize the ability of the protocol in discriminating between
known binders and non-binders.

After an initial query in the ChEMBL [57] and BindingDB [58] databases, 29 ligands
were found to have reported experimental activity against MvfR. These 29 MVfR antago-
nists were first described by the Hartmann group in 2012 and 2013 using a ligand-based
drug design approach [29] and fragment identification approach using surface plasmon
resonance screening, respectively [24]. After going through the literature, an additional
list of 11 manually curated active ligands was created [30,59–61]. Only the ligands that
presented activity toward PqsR/MvfR were selected (i.e., compounds with IC50 values),
raising the total of active molecules in the test set to 40.

Using the DUD-E [62] decoy generator, based on the ligands previously mentioned,
a set of 50 decoys for each ligand was created. Decoys are molecules that resemble the
ligands in their physical properties but are chemically and topologically different so that
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they are likely non-binders. This approach is useful to validate our scoring functions and
build a benchmarking dataset. The total number of decoys generated was 2250, as 5 of the
active molecules are present in two different protonated forms. As previously mentioned,
both active molecules and decoys were prepared for docking using OpenBabel [50] and
converted into pdbqt or mol2, depending on the specific docking software considered. A
database of 2295 compounds was finally created and made ready for docking.

The six scoring functions were evaluated, and the metrics were calculated using a
web-based application, Screening Explorer [63], as well as Excel. The metrics used for
the evaluation of the VS results were the enrichment factor at 1%, receiver-operating
characteristic (ROC) curves and the respective area under the curve (AUC), Boltzmann-
enhanced discrimination of ROC (BEDROC), the robust initial enhancement (RIE), and
total gain (TG). TG quantifies the discrimination of actives over decoys attributable to
score variations. TG values over 0.25, combined with an AUC over 0.5, indicate a good
performance and reproducibility from the VS protocol [63].

3.4. Virtual Screening for Drug Repurposing

After careful validation of the docking and virtual screening protocols, virtual screen-
ing (VS) experiments with the PqsR/MvfR target 6B8A were conducted using the ZINC
FDA database of compounds to evaluate a possible drug repurposing strategy. For this
stage, only the best scoring function and the X-ray structure that yield better discrimination
of actives and decoys in the validation stages were selected.

The FDA-approved drugs library used was a subset of the ZINC [64] library, a free
database of commercially available compounds for virtual screening. ZINC contains over
230 million purchasable compounds. At the time of the VS experiments, the FDA-approved
drugs dataset had 3207 compounds that were all docked against the target.

The top 15 compounds identified in the VS were selected to be further studied by
molecular dynamics simulations and free-energy calculations.

3.5. Molecular Dynamics Simulations

Molecular dynamic simulations are useful to validate the docking and VS predictions
and provide insight into the protein–ligand interactions. It allows the study of the physical
evolution of the system through time and is a valuable tool in the interpolation between
theory and experiments [65–67]. The fifteen MvfR–ligand complexes were treated with the
Leap module of Amber18 [68]. The MvfR protein was treated with the ff14SB force field [69].
All the FDA compounds were parameterized with Gaussian16 [70] using ANTECHAMBER,
with RESP HF/6-31G(d) charges calculated with Gaussian16 and the general AMBER force
field (GAFF) [71]. As control, two of the crystallographic ligands were used, i.e., NNQ as
the natural agonist and M64 as an antagonist.

Sodium counter-ions were added to neutralize the overall charge in the system. The
protein–ligand complexes were embedded into a box of TIP3P water molecules, whose
edges were placed at least 12 Å away from each complex atom. Periodic boundaries were
applied, and the long-range electrostatic interactions were calculated using the particle
mesh Ewald summation method. The cut-off value for the short-range electrostatic and
Lennard–Jones interactions was set at 10.0 Å. The hydrogen bonds were constrained using
the SHAKE algorithm. A time step of 2 fs was used.

Four minimization steps were performed to remove clashed and applied in the follow-
ing order: one water molecule (2500 steps); two hydrogens atoms (2500 steps); three side
chains of all the amino acid residues (2500 steps); and four full systems (10,000 steps). After
minimization, a molecular dynamics equilibration procedure was applied and divided into
two stages: in the first stage (50 ps), the systems were gradually heated to 298 K using a
Langevin thermostat at constant volume (NVT ensemble); in the second stage (50 ps), the
density of the systems was further equilibrated at 298 K. Finally, the production phase was
run for a total of 100 ns in an NPT ensemble at a pressure of 1 bar and a temperature of
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298 K. This overall procedure has been previously used with success in the treatment of
several biomolecular systems [72–75].

The molecular dynamic (MD) trajectories were analyzed using VMD [76] and the
cpptraj tool [77].

3.6. Free-Energy Calculations

To estimate the binding free energies of the ligands toward MvfR, the molecular
mechanics—generalized born surface area (MM-GBSA) method [78] was applied using
the MM/PBSA.py script available in AMBER [79]. The calculations considered the last
90 ns of the MD simulation of every complex, using an interval of 10 frames, representing a
total of 1800 frames per complex. For the MM/GBSA calculations, a salt concentration of
0.100 mol dm−3 was used.

The free-energy decomposition option was used to obtain information about the local
interactions of the complex. Using per-residue decomposition, the contribution of each
residue to the total free energy was estimated. This approach has been used with success in
the study of several other systems, including quorum sensing inhibitors [72,73,80–82].

For the MvfR–FDA complexes with the top five binding free energies, two addi-
tional MD simulation replicas were performed per complex. MM-GBSA binding free
energies were calculated, together with the additional MD simulations properties (average
RMSd, SASA, number of hydrogen bonds), confirming the overall tendencies obtained
(Suppelmentary Table S2).

4. Conclusions

A docking protocol was optimized for P. aeruginosa MfvR using the crystallographic
ligands as validation tools in the reproducibility of the pose generated by the docking
software. The VS protocol was adjusted based on known MfvR active ligands to obtain the
best discriminatory ability between real binders and non-binders, and it was applied to a
database of 3207 FDA-approved compounds.

The results obtained using the optimized VS protocol were further analyzed by MD
simulations followed by free-energy calculations using the MM/GBSA method. This
resulted in confirming five FDA-approved compounds with a high probability of exhibiting
activity as P. aeruginosa QS inhibitors: venetoclax, indocyanine green, nilotinib, cabozantinib,
and montelukast. Throughout the MD simulations, it was possible to observe shifts in
the position of two residues that might be key in the activation mechanism of MvfR, i.e.,
Ile186 and Tyr258. π–π interactions with Tyr258 seem to have a crucial role in protein
ligand affinity. In addition to the identification of this new potential application for drug
repurposing of these molecules and demonstrating their mode of interaction, the protocol
here described and validated can now be applied to large libraries of drug-like compounds
to highlight new promising candidates for P. aeruginosa QS inhibitors. This study also
highlighted the key role in molecular recognition played by residues Ile186 and Tyr258, a
feature that can be taken into consideration in future rational drug design and optimization
efforts targeting this important QS protein to develop new anti-biofilm molecules.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics11020185/s1, Table S1: Cross-docking scores obtained with the six scoring func-
tions tested. Table S2. Summary of the MD simulations results on the replicas performed for the top 5
MvfR–FDA complexes.
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