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Abstract. Hepatocellular carcinoma (HCC) is among the 
most common types of cancer that threat the public health 
worldwide. N6‑methyladenosine (m6A) RNA methylation 
is associated with cancer initiation and progression, and is 
dynamically regulated by m6A RNA methylation‑associated 
genes. However, little is known about the expression status 
and the prognostic value of m6A‑associated genes in HCC. 
The present study aimed to identify the expression profiling 
pattern and clinical significance of m6A‑associated genes 
in HCC. Consensus clustering analysis was performed to 
identify the clusters of HCC with different clinical outcomes. 
A prognostic signature built by the least absolute shrinkage 
and selection operator Cox regression model was utilized to 
discover subtypes associated with different clinical outcomes 
of patients with HCC in the discovery cohort from The Cancer 
Genome Atlas. The differences between subgroups were char‑
acterized in terms of epigenetic dysregulation and somatic 
mutation frequencies. The International Cancer Genome 

Consortium cohort and two independent cohorts from the 
meta‑Gene Expression Omnibus database were used for 
external validation. Most of the m6A‑associated genes were 
upregulated and involved in the prognosis and malignancy 
of HCC. A four‑gene prognostic signature revealed two HCC 
subtypes (namely, high‑ and low‑risk group) that was associ‑
ated with different clinical outcomes. Patients in the high‑risk 
group were accompanied with increased epigenetic silencing 
and significant mutations in TP53 and FLG, while ALB was 
frequently mutated in the low‑risk group. In conclusion, an 
m6A‑based signature was constructed to predict the prognosis 
of patients with HCC, which may provide a tool for reliable 
prognosis assessment for clinicians, and aid clinical treatment 
decision‑making.

Introduction

According to the International Agency for Research on 
Cancer, hepatocellular carcinoma (HCC) is the second 
leading cause of tumor‑associated death worldwide (1). HCC 
commonly develops in patients with chronic hepatitis, such 
as viral hepatitis (2). Various treatments for HCC, including 
resection, transplantation and interventional therapy, have 
undergone immense progress over the last decades, but 
the prognosis of HCC remains poor in patients at the late 
stage (3). Additionally, the high rate of postsurgical recur‑
rence and metastasis (50‑70% at 5 years) represents a major 
challenge, as this disease is highly refractory to conventional 
chemotherapy and radiation (4). Currently, the Barcelona 
Clinic Liver Cancer (BCLC) staging classification is the 
most extensively used classification system for HCC, which 
can be applied for the assessment of patient prognosis and 
the selection of appropriate therapies (5). However, it has 
been reported that patients with HCC with the same BCLC 
stage may include various tumor subtypes, such as nodular or 
infiltrating tumors, thus resulting in differences in treatment 
responses and survival (6). Therefore, it is critical to identify 
novel and reliable prognostic molecular signatures in HCC 
from basic and clinical research.

N6‑methyladenosine (m6A), methylated at the N6 position 
of adenosine, is the most abundant epigenetic and evolutionarily 
conserved modification of mRNAs and non‑coding RNAs in 
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mammals (7‑10). In total RNA, 0.1‑0.4% of adenosines are 
modified by m6A methylation (11). m6A methylation affects 
almost every aspect of RNA metabolism, including abundance, 
alternative splicing, stability, nuclear export, decay and transla‑
tion (12‑14), thus negatively regulating protein expression in a 
post‑translational manner. The identification of m6A adenosine 
methyltransferases (‘writers’), demethylases (‘erasers’) and 
binding proteins (‘readers’) revealed that m6A modification 
is reversible (15). Increasing evidence has indicated that the 
m6A modification may be involved in various physiological 
processes and diseases, including circadian rhythms, stem 
cell differentiation and maternal‑to‑zygotic transition (16), as 
well as the carcinogenesis of several types of tumor, including 
cervical cancer (17), prostate cancer (18), breast cancer (19), 
pancreatic cancer (20) and HCC (21). The characterization for 
m6A sparked a renewed interest in this particular RNA modifi‑
cation. However, its expression pattern, as well as its prognostic 
value, has not been fully elucidated in HCC.

In the present study, the m6A patterns were estimated 
based on the 20 widely reported m6A RNA regulators and 
were systematically characterized for the potential subtypes 
in a multiomics view, including somatic mutations and DNA 
methylation.

Materials and methods

Public data source. TCGA‑ Liver hepatocellular carcinoma 
(LIHC) cohort data, including RNA sequencing, mutation and 
clinical data, were downloaded from The National Cancer 
Institute Genomic Data Commons (https://portal.gdc.cancer.
gov/). Maftools v2.4.12 (22) was utilized to infer significant 
cancer mutated genes using default parameters. Illumina 
Human Methylation 450 Beadchip (450K array; Illumina, Inc.) 
was used to measure the DNA methylation data. For a gene 
with >1 probe mapping to its promoter, the median β value was 
considered. MethylMix v2.18.0 (23) was used to identify the 
expression of genes associated with methylation events. The 
International Cancer Genome Consortium (ICGC; https://icgc.
org) Japan cohort with 203 patients with HCC and the meta‑Gene 
Expression Omnibus (GEO) cohorts [GSE14520 (24) and 
GSE76427 (25); www.ncbi.nlm.nih.gov/geo] with 336 patients 
with HCC were utilized as the validation cohorts. In addition, 
validation of the translation of m6A‑associated genes was 
performed using the Human Protein Atlas (HPA) database 
(version 19.2; http://www.proteinatlas.org).

Protein‑protein interaction (PPI) network construction and 
correlation analysis. The PPI network among m6A RNA 
methylation regulators was constructed using Cytoscape 
v3.6.1 (www.cytoscape.org). Spearman correlation analysis 
was employed to reveal the correlation among different m6A 
RNA methylation regulators.

Consensus clustering analysis. To identify m6A patterns and 
classify patients for further analysis, patients with HCC in 
TCGA cohort were grouped using the ConsensusClusterPlus 
v1.52.0 (26) package, which was repeated 1,000 times 
to ensure the stability of classification. The optimal K 
value was determined according to consensus matrices, 
Consensus Cumulative Distribution Function and Delta Area. 

Kaplan‑Meier analysis (27) with log‑rank test was performed 
to compare the survival of patients between clusters.

Screening of prognostic signatures and key prognostic genes. 
Univariate Cox proportional hazards regression was used to 
assess the independent m6A RNA methylation regulators, whose 
expression levels were significantly associated with the survival 
of patients. Hazard ratios (HRs) were used to identify protective 
(HR<1) or risk‑associated genes (HR>1). LASSO‑penalized 
Cox regression analysis performed using the glmnet v3.0‑2 
package (https://cran.r‑project.org/package=glmnet) was used 
to achieve variable shrinkage and selection of key independent 
m6A RNA methylation regulators (28). An optimal model was 
determined based on a linear combination of the expression 
profiles of independent prognostic m6A RNA methylation regu‑
lators, weighted by the estimated regression coefficient derived 
from the LASSO Cox regression model coefficients multiplied 
with its mRNA expression level. The following formula was 
used to calculate the risk score of each patient: Risk score= 
∑ X J x coef J, where coef J is the coefficient, and X J is the 
relative expression level of each gene standardized by Z‑score. 
Subsequently, patients with HCC from TCGA were divided 
into high‑ and low‑risk groups, according to the optimal cut‑off 
value of risk scores obtained from the survminer v0.4.6 package 
(https://cran.r‑project.org/package=survminer). Cox regression 
analysis was used to evaluate the association between risk 
score and disease‑free survival (DFS) or overall survival (OS), 
in which age, sex, Tumor‑Node‑Metastasis (TNM) stage (29), 
Neoplasm_cancer_status and grade were used as covariates. 
Neoplasm_cancer_status is a statement about the progression 
(or not) of the original disease, whereas ‘normal’ is a statement 
that there was no disease to begin with. The Kaplan‑Meier 
survival analysis with log‑rank test and receiver operating 
characteristic (ROC) curve analysis were used to validate the 
multigene prognostic signature.

Gene Set Enrichment Analysis (GSEA). GSEA was 
performed to detect the significantly different signaling 
pathways in the set of expressed genes between the high‑ 
and low‑risk groups in the enrichment of the MSigDB 
Collection (c2.all.v7. 0. Symbols; https://www.gsea‑msigdb.
org/gsea/msigdb/collections.jsp#C2). Gene set permuta‑
tions were performed 1,000 times for each analysis. The 
Benjamini‑Hochberg method was used to correct the P‑values 
for multiple testing. The normalized enrichment score (NES), 
nominal P‑value and false discovery rate (FDR) q‑value indi‑
cated the significance of the association between gene sets 
and signaling pathways. |NES|>1, FDR≤0.25 and P<0.05 were 
considered to indicate a statistically significant difference.

Statistical analysis. Data analysis was performed using 
R v3.6 software (https://cran.r‑project.org/src/base/R‑3/). All 
statistical tests were two‑sided. The Wilcoxon signed‑rank test 
and Mann‑Whitney U test were used for paired and unpaired 
samples, respectively, when the population with non‑normal 
distribution or uneven variance. Cox regression analysis was 
performed to identify whether the final prognostic model was 
independent of traditional clinical features (including age, sex, 
TNM stage and histological grade). The Kaplan‑Meier survival 
analysis with log‑rank test and ROC curve analysis were used 
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to assess the predictive ability of the prognostic model. P<0.05 
was considered to indicate a statistically significant difference.

Results

Landscape of m6A RNA methylation regulators in HCC. 
The mRNA expression levels of the known m6A‑associated 
regulators were analyzed in TCGA cohort, including m6A 
‘writers’, such as METTL3, METTL4, WTAP, ZC3H13, 

RBM15, RBM15B and VIRMA, m6A ‘readers’, such as 
YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, 
HNRNPC, HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3 
and RBMX, and m6A ‘erasers’, such as FTO and ALKBH5. 
Compared with normal liver tissues, patients with HCC 
generally exhibited a higher proportion of m6A genes, except 
ZC3H13 (Fig. 1A and B). Furthermore, the expression levels 
of these aberrant m6A‑associated genes were validated in the 
HPA database (Fig. S1). Notably, METTL3, WTAP, RBM15B, 

Figure 1. Landscape of m6A RNA methylation regulators in HCC. (A) Boxplot shows the median expression of 20 m6A RNA methylated regulatory factors in HCC 
samples compared with the control ones. ***P<0.001. (B) Expression heat map of 20 m6A RNA methylated regulatory factors between tumor and normal control 
samples in The Cancer Genome Atlas‑LIHC cohort. HCC, hepatocellular carcinoma; m6A, N6‑methyladenosine; LIHC, Liver HCC.
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YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, IGF2BP1, 
IGF2BP2 and IGF2BP3 were absent from the HPA database. 
Overall, these data confirmed the highly significant dysregula‑
tion of several m6A‑associated regulators in human HCC. The 
associations between each individual m6A RNA methylation 
regulator and the pathological features of HCC were further 
investigated. Patients with G1/G2 pathological grade were 
divided into the low (L) grade group, and patients with G3/G4 
stage were divided into the high (H) grade group. The expres‑
sion levels of HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, 
IGF2BP3, RBM15B, RBM15, RBMX, METTL4, VIRMA, 

YTHDC1, METTL3, YTHDF1 and YTHDF2 were higher 
in the H group compared with in the L group. Patients with 
tumor (T)1/T2 stage were divided into the L stage group, and 
patients with T3/T4 stage were divided into the H stage group. 
The expression levels of HNRNPA2B1, METTL4, RBM15B, 
RBMX, YTHDC1, YTHDF3, METTL3, YTHDF1 and 
YTHDF2 were higher in the H group compared with in the 
L group. In summary, the expression levels of HNRNPA2B1, 
METTL3, METTL4, RBMX, YTHDF1 and YTHDF2 were 
significantly increased as the pathological grade and T‑stage 
increased (Figs. 2 and S2).

Figure 2. Association between m6A RNA methylation regulators and pathological grade/T stage. Expression levels of (A) METTL3, (B) YTHDF1 and 
(C) YTHDF2 in HCC with different pathological grades. Patients with G1/G2 pathological grade were divided into the L group, and patients with G3/G4 
grade were divided into the H group. Expression levels of (D) METTL3, (E) YTHDF1 and (F) YTHDF2 in HCC with different T stages. Patients with T1/T2 
stage were divided into the L group, and patients with T3/T4 stage were divided into the H group. m6A, N6‑methyladenosine; HCC, hepatocellular carcinoma; 
T stage, tumor stage; H, high; L, low.
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Fig. 3 shows that the majority of m6A RNA methylation 
regulators was positively correlated with each other, and the 
correlation between HNRNPC and RBMX was the most 
significant. Moreover, the PPI network depicted a comprehen‑
sive landscape of the interactions of m6A RNA methylation 
regulators and the writers, including WTAP, VIRMA and 
METTL4, ranked first according to the degree of connec‑
tivity (Fig. S3). The correlation coefficients between WTAP 
and IGF2BP3, YTHDF2, METTL3 and YTHDF1 were 0.47, 
0.65, 0.50 and 0.58, respectively. The correlation coefficients 
between VIRMA and IGF2BP3, YTHDF2, METTL3 and 
YTHDF1 were 0.37, 0.47, 0.52 and 0.44, respectively. The 
correlation coefficients between METTL14 and IGF2BP3, 
YTHDF2, METTL3 and YTHDF1 were 0.41, 0.57, 0.60 
and 0.63, respectively (Fig. 3).

Association between m6A regulators and HCC prognosis. 
Consensus Clustering is a method that provides quantitative 
evidence for determining the number and membership of 
possible clusters within a dataset, and to assess the stability 
of the discovered clusters (30). The expression similarity of 
m6A regulators and clustering stability was assessed using 
the ConsensusClusterPlus package. The cohort of patients 
with HCC was divided into three clusters, namely cluster 1, 
cluster 2 and cluster 3 (Fig. 4A‑C). Fig. 4A shows the 

heatmaps of the consensus matrices for k=3. Fig. 4B shows 
the cumulative distribution functions of the consensus matrix 
for each k, estimated by a histogram of 100 bins. Fig. 4C 
shows the relative change in area under the CDF curve 
comparing k and k‑1. For k=2, there is no k‑1, so the total area 
under the curve rather than the relative increase is plotted. 
The patients were divided into three clusters and there was 
no significant difference in the number of samples in each 
cluster. Notably, survival analysis revealed that cluster 1 was 
significantly associated with an improved DFS and cluster 2 
with a poor DFS, while cluster 3 was characterized by an 
intermediate prognosis (Fig. 4D). Additionally, a favorable 
prognostic trend for OS was observed, although not statisti‑
cally significant (data not shown), partly due to the limitation 
of the cohort size.

Construction and validation of the m6A‑based HCC prognosis 
signature. Subsequently, the possible prognostic power of 
m6A RNA methylation regulators in HCC was analyzed by 
performing univariate Cox regression analysis. The results 
demonstrated that HNRNPA2B1, HNRNPC, IGF2BP3, 
METTL3, METTL4, RBM15, RBM15B, RBMX, VIRMA, 
WTAP, YTHDC1, YTHDC2, YTHDF1 and YTHDF2 
were significantly associated with DFS, and HNRNPA2B1, 
IGF2BP3, METTL3, WTAP, YTHDF1 and YTHDF2 were 

Figure 3. Correlation of the 20 N6‑methyladenosine modification regulators estimated using Spearman's correlation analysis. The greater the absolute value of 
the correlation coefficient, the stronger the linear correlation. The color and size of the circles represent the characteristics of correlation. The larger the circle 
and the darker the color, the stronger the correlation. Blue represents a positive correlation, while red represents a negative correlation.
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significantly associated with OS. Increased expression levels 
of HNRNPA2B1, IGF2BP3, METTL3, WTAP, YTHDF1 and 
YTHDF2 indicated poorer OS and DFS rates in patients with 
HCC (Fig. S4). Applying the LASSO analysis, in which the 
selected m6A RNA methylation regulators were required to 
appear 900 times out of 1,000 repetitions, four m6A RNA 
methylation regulators, namely IGF2BP3, YTHDF1, YTHDF2 
and METTL3, were selected. The distribution of the risk score 
was different among different clusters (Mann‑Whitney U test; 
P=0.0013; data not shown), and cluster 2, which was associ‑
ated with a poorer DFS (Fig. 4D), had the highest risk score. 
To further investigate the prognostic role of the four‑gene risk 
signature, patients with HCC were assigned into groups based 
on high‑ or low‑risk scores using the cut‑off value obtained 
using the survminer package, and it was observed that the 
high‑risk group had a shorter DFS rate compared with the 
low‑risk group (Fig. 5A). The AUC values of 1, 2 and 3 years 

were 0.783, 0.720 and 0.701, respectively (Fig. 5C). The efficacy 
of the classifier was further evaluated using OS, and the results 
were similar to those for DFS (Fig. 5B). The AUC values 
of 1, 2 and 3 years were 0.745, 0.785 and 0.794, respectively 
(Fig. 5D). Similarly, patients with HCC in the meta‑GEO and 
ICGC cohorts were divided into high‑ and low‑risk groups, the 
high‑risk group of the meta‑GEO cohort exhibited worse OS 
and DFS rates compared with the low‑risk group (Fig. S5A‑D), 
and the high‑risk group of the ICGC cohort (recurrence time 
was not collected) exhibited worse OS rates compared with 
the low‑risk group (Fig. S5E and F).

m6A‑based prognosis classifier and clinicopathological 
characteristics in patients with HCC. The heat map in 
Fig. 6A shows the expression levels of the four selected m6A 
RNA methylation regulators and the clinicopathological 
variables in the high‑ and low‑risk groups. There was no 

Figure 4. Differential DFS of The Cancer Genome Atlas‑LIHC patients in the three different clusters. (A) At k=3, the correlation between groups. The k 
represents the consensus matrices. (B) Consensus clustering CDF for k=2‑10. (C) Relative change in area under CDF curve for k=2‑10. (D) Differential DFS of 
patients with HCC in the three clusters. HCC, hepatocellular carcinoma; LIHC, Liver HCC; CDF, cumulative distribution function; DFS, disease‑free survival.
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marked difference between the two groups regarding sex and 
age. Similar to their association with prognosis, the low‑risk 
group, with lower expression levels of the four genes, was 
significantly associated with lower T stage and pathological 
grade (Fig. 6B and C). Univariate and multivariate Cox 
regression analyses were performed to evaluate whether the 
prognostic signature‑based risk score was an independent 
factor for prognosis. When the m6A signature was evaluated 
as a continuous variable with the Cox regression model, the 
univariate and multivariate analyses revealed that the stage 
and risk score were significantly associated with OS (Table I). 

These results suggested that the risk signature may be a risk 
factor for HCC and may independently predict the prognosis 
of patients with HCC.

Differential biological signaling pathways, somatic mutation 
landscape and methylation‑driven genes between the HCC 
risk score subtypes. To further identify the potential biological 
processes of the risk score subtypes, GSEA comparing the 
high‑ and low‑risk groups was performed. The results revealed 
that the samples in the high‑risk group were enriched in ‘regu‑
lation of transcription’ and ‘immune system development’, 

Figure 5. Kaplan‑Meier curves for (A) DFS and (B) OS. Receiver operating characteristic curves for (C) DFS and (D) OS in high‑ and low‑risk groups. 
DFS, disease‑free survival; OS, overall survival; AUC, area under the curve; m6A, N6‑methyladenosine.



ZHU et al:  m6A‑REGULATED PROGNOSTIC SIGNATURES IN HCC8

while the samples in the low‑risk group were enriched in ‘lipid 
biosynthetic process’ (Fig. 7).

To identify the associations between the distributions of 
somatic alterations and the HCC risk score subtypes, 526 
genes were identified with shared mutations between the 
high‑ and low‑risk groups. Specifically, a missense muta‑
tion in TP53 and FLG was predominantly observed in the 

high‑risk group, while the mutation frequency of ALB was 
higher in the low‑risk group compared with in the high‑risk 
group (Fig. 8).

Methylation‑driven genes are genes with different degree 
of methylation and expression between different groups. 
After downloading and processing the methylation data, 
569 methylation‑driven genes associated with risk score 

Figure 6. Characteristics of risk signature subtypes. (A) Heat map showing the clinical characteristics of the high‑ and low‑risk groups. Patients were divided 
into high‑ and low‑risk groups according to the optimal cut‑off value of risk scores. (B and C) Significant differences were observed for (B) pathological grade 
and (C) T stage between the high‑ and low‑risk groups. T stage, tumor stage; DFS, disease‑free survival; TNM, Tumor‑Node‑Metastasis; H, high; L, low.
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subtypes were screened via the MethylMix R package 
(Table II). Among these genes, 461 genes (81.02%) were 
hypomethylated and the remaining 108 genes (18.98%) were 
hypermethylated.

Discussion

The occurrence and development of HCC is a multi‑step 
complex process involved with genetic or epigenetic 
factors (31,32). Therefore, elucidating the underlying molecular 
events accounting for the tumorigenesis, diagnosis and precise 
individual therapy of HCC remain the greatest challenges. 
Previous studies have demonstrated that m6A affects the 
epigenetic regulation of RNA, including mRNA stability (33), 
alternative splicing (34) and microRNA biogenesis (35), which 
in turn regulate gene expression. The dysregulation of m6A 
genes affects the pathogenesis of a variety of human diseases, 
including obesity, neuronal disorders and immunological 
diseases, as well as promoting the initiation, expansion and 
progression of malignancies, including HCC (21,36,37). 
Previous studies (38‑40) on mRNA m6A modification have 
associated the methylation levels of m6A with the intracel‑
lular writing and erasing genes, while the regulatory functions 
of methylation sites in biological processes is performed by 
protein molecules that read gene expression (41). Therefore, 
in tumors, both m6A‑associated genes and protein expression 
levels may become potential diagnostic markers for tumor 
molecular diagnosis and potential targets for molecular 
targeted therapies.

The abnormal methylation of m6A mRNA has exhibited 
prognostic value in multiple types of tumor, such as cervical 
cancer (42), acute myeloid leukemia (43) and pancreatic 
cancer (44). Considering the importance of m6A modification 
in HCC, it can be reasonably speculated that m6A‑associated 
genes may have broad prospects in the prognostic evaluation 
of HCC, and that using a multigene signature generated using 
various algorithms may improve the prognostic prediction in 
patients with HCC compared with using a single molecule.

The risk model created in the present study consisted of 
four m6A‑associated genes, and the risk score was an indepen‑
dent prognostic marker according to the multivariate analysis. 
In terms of validity and reliability, the four‑gene signature 
performed well even in the external validation datasets. 
Furthermore, the high‑ and low‑risk HCC groups presented 
with different significantly mutated genes, of which TP53 
was markedly mutated in the high‑risk HCC group compared 
with in the low‑risk group. The association between the TP53 

Table I. Univariate and multivariate regression analysis of the association between the risk score and clinicopathological features 
with overall survival.

 Univariate analysis Multivariate analysis
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Factor HR P‑value 95% CI HR P‑value 95% CI

Age (≥60 vs. <60 years) 1.11 0.492 0.83‑1.48 1.24 0.177 0.91‑1.68
Sex (male vs. female) 0.91 0.531 0.67‑1.23 0.98 0.920 0.71‑1.37
Pathological grade 1.10 0.543 0.81‑1.48 0.95 0.767 0.69‑1.32
(G3/G4 vs. G1/G2)
Risk score (high vs. low) 3.00 <0.001 2.01‑4.47 2.51 <0.001 1.59‑3.97
Tumor stage (III/IV vs. I/II) 2.08 <0.001 1.49‑2.89 1.79 0.001 1.26‑2.54

HR, hazard ratio; TNM, Tumor‑Node‑Metastasis.
 

Table II. Methylation‑driven genes associated with risk score 
subtypes of hepatocellular carcinoma.

A, Top 10 hypermethylated genes

Gene logFC

FMO3 0.558359143
RBP5 0.550688961
AKR7L 0.546025322
SLC2A2 0.527909372
SLC27A2 0.451295029
CFHR5 0.428486584
CD14 0.416272718
ACADL 0.411132983
SERPINC1 0.410346926
APOC3 0.401360659

B, Top 10 hypomethylated genes

Gene logFC

SP5 ‑0.684538772
BMP4 ‑0.677013955
FOXD3 ‑0.641820658
EVI2A ‑0.600077451
ZNF702P ‑0.570013961
FOXE1 ‑0.560776731
LRFN4 ‑0.545665424
AIM2 ‑0.545136870
LTC4S ‑0.499335824
TMEFF1 ‑0.495389988

FC, fold‑change.
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Figure 8. Genetic alteration between the risk score subtypes. Oncoprint shows variant mutated genes associated with risk score subtypes.

Figure 7. Differential signaling pathways between the hepatocellular carcinoma risk score subtypes. The gene set ‘regulation of transcription’ and ‘immune 
system development’ were enriched in the high‑risk group, while ‘lipid biosynthetic process’ was enriched in the risk‑low group.
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signaling pathway and YTHDF2 expression has been previ‑
ously reported (45), suggesting that the high‑risk HCC group 
with increased TP53 mutations may be more likely to be 
involved in the activation of cancer signaling pathways. In 
addition, the identified METTL3/RDM1/TP53/ERK signaling 
pathway (46) may help to clarify the potential association of 
TP53 mutation and the risk signature in the present study. In 
the present study, integrative analysis by mRNA expression 
and promoter CpG islands methylation manifested a broad 
spectrum of gene silencing in the high‑risk HCC group 
compared with that in the low‑risk HCC group. These data 
may provide a new perspective to study the mechanism of 
m6A modulation.

Signaling pathways involved in the regulation of transcrip‑
tion, immune system development and lipid biosynthesis were 
differentially enriched in the phenotypes of the risk score in the 
present study. IGF2BPs (including IGF2BP1/2/3) promote the 
stability and storage of their target mRNAs (such as MYC) in 
an m6A‑dependent manner under normal and stress conditions, 
and therefore affect gene expression output (47). Moreover, the 
K homology domains of IGF2BPs are required for their recogni‑
tion of m6A and are critical for their oncogenic functions (48). 
YTHDF2 mainly regulates mRNA stability (49), and acts as a 
tumor‑inhibiting factor in HCC (50,51). YTHDF2 deficiency 
promotes HCC growth, vasculature remodeling and metastasis 
via a potential mechanism that involves the reprogramming of 
the epi‑transcriptome under hypoxia (50,52). Although the four 
genes in the current gene signature have not been reported to be 
associated with dyslipidemia, YTHDC2 may bind to the mRNA 
of lipogenic genes, including sterol regulatory element‑binding 
protein 1c, fatty acid synthase, stearoyl‑CoA desaturase 1 and 
acetyl‑CoA carboxylase 1, to decrease their mRNA stability and 
inhibit gene expression (53). RNA m6A modification regulates 
anti‑tumor immunity response via YTHDF1, which regulates 
tumorigenicity and cancer stem cell‑like activity in HCC (48). 
Transcripts encoding lysosomal proteases are marked by m6A 
and recognized by YTHDF1; binding of YTHDF1 to these 
transcripts increases the translation of lysosomal cathepsins in 
dendritic cells, and inhibition of cathepsins markedly enhances 
cross‑presentation of wild‑type dendritic cells (54). Furthermore, 
the therapeutic efficacy of programmed death‑ligand 1 checkpoint 
blockade is enhanced in Ythdf1‑/‑ mice, implicating YTHDF1 as 
a potential therapeutic target in anticancer immunotherapy (54).

The present study presents some limitations. Firstly, although 
several independent external validations were performed in the 
present study, it was difficult to consider all variations among 
patients from different geographical regions, since tissues and 
data were retrospectively collected from publicly available 
databases. In addition, other key clinical pathological features, 
such as surgical procedures, the number of lymph nodes and 
α‑fetoprotein levels, were not included. Secondly, the mecha‑
nism and association between the risk score subtypes and 
single nucleotide polymorphisms and DNA methylation require 
further study. Thirdly, IGF2BP3, YTHDF2, METTL3 and 
YTHDF1 were indicated to be associated with HCC. However, 
the mechanism underlying the higher prognostic efficiency of 
the combination of these molecules, as determined from three 
independent cohorts, remains unclear. Finally, the expression 
levels and prognostic role of these four genes require further 
validation by well‑designed, prospective, multicenter studies.

Overall, the present study comprehensively analyzed the 
associations between the mRNA expression levels of m6A 
regulators with the initiation, development and prognosis of 
HCC. Notably, a robust four‑gene prognostic signature that 
was significantly associated with the OS of patients with HCC 
was constructed and validated in independent HCC cohorts, 
suggesting that the present prognostic signature may act as a 
promising biomarker for predicting the prognosis of patients 
with HCC. Additionally, it may serve as a prognostic classifier 
for clinical decision‑making for the accurate prognosis predic‑
tion, treatment and follow‑up scheduling.
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