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Prediction of Links and Weights in 
Networks by Reliable Routes
Jing Zhao1, Lili Miao2, Jian Yang1, Haiyang Fang1, Qian-Ming Zhang2, Min Nie2, 
Petter Holme3 & Tao Zhou2,4

Link prediction aims to uncover missing links or predict the emergence of future relationships 
from the current network structure. Plenty of algorithms have been developed for link prediction 
in unweighted networks, but only a few have been extended to weighted networks. In this paper, 
we present what we call a “reliable-route method” to extend unweighted local similarity indices to 
weighted ones. Using these indices, we can predict both the existence of links and their weights. 
Experiments on various real-world networks suggest that our reliable-route weighted resource-
allocation index performs noticeably better than others with respect to weight prediction. For 
existence prediction it is either the highest or very close to the highest. Further analysis shows a 
strong positive correlation between the clustering coefficient and prediction accuracy. Finally, we 
apply our method to the prediction of missing protein-protein interactions and their confidence 
scores from known PPI networks. Once again, our reliable-route method shows the highest accuracy.

Assume a link is missing from a network, link prediction aims to rank the best candidates of the ver-
tex pairs for this missing link. Alternatively, assuming a network grows by links being added to it, link 
prediction can predict the next vertex pair to be connected by a link1. Thus, link prediction does not 
only help to find missing data in empirical networks, but also complements our understanding of the 
evolution processes of networks2–4. It has been an active subtopic of network science, in both more the-
oretical and applied directions. In general, topological features of the network and node attributes can be 
combined in the prediction algorithm. For example, in their work on predicting citations based on the 
citation networks, Popescul and Ungar considered not only topological characteristics of the network, 
but also the node attributes, such as authors, journal names and contents of the papers5. However, in 
many cases, it is difficult to get accurate information about the attributes of the nodes. For example, in 
online social networks, the information about users could either be inaccessible due to privacy policies 
or false. Therefore, many algorithms only use topological features. Some methods make use of functional 
outputs (of gene-regulatory networks)6 or address the slightly different problem of predicting link direc-
tions instead of link existence7.

There are two main classes of topology-based methods—similarity-based and likelihood-based meth-
ods1. A similarity-based algorithm assigns a similarity score for each pair of nodes and the unconnected 
node pair with higher score is supposed to have a higher probability of having a link. Authors have 
used local, global or quasi-local information to compute such similarity scores8–12. Likelihood-based 
algorithms presuppose some organizing principles of the network formation process and estimate the 
likelihood of any non-observed link under that assumption. Two popular algorithms of this type are the 
hierarchical structure model (HSM)13 and the stochastic block model (SBM)14–17.

Most previous studies in link prediction focus on unweighted networks. In recent years, a few works 
tried to extend the prediction algorithms from unweighted networks to weighted networks, typically 
by generalizing an unweighted similarity index to weighted networks18–23. Some strategies have been 
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proposed to enhance the precision of weighted indices. For example, to emphasize the contributions 
of weak links18, to consider the authority of nodes24, or to integrate multiple indices19,25. However, 
few studies considered prediction of weights, which, in addition to the prediction of the existence of 
links, could be very valuable, perhaps especially so in biological networks. For example, protein-protein 
interactions (PPI) are identified from different types of experiments such as affinity chromatography26, 
co-immunoprecipitation27, GST pull-down28 and yeast two-hybrid29, with widely varying resolutions and 
accuracies. Data from such experiments varies much between different databases and authors. Some 
efforts have been made to integrate PPI data from different resources and then assign a confidence score 
to each pair of proteins30,31, resulting in a weighted PPI network. In predicting missing PPIs from such 
a network, predicting of confidence score of an interaction (i.e., the link weight) would be as important 
as predicting the existence of interaction. Lately, Aicher et al.32 proposed a likelihood-based algorithm 
which uses the weighted stochastic block model (WSBM) to predict the existence and weights of links 
in weighted networks.

In this study, we try to predict missing links and their weights using local similarity measures. Inspired 
by the solution of the most reliable route problem in communication networks33, we propose a method to 
generalize unweighted similarity indices. Assuming that the similarity index between two unconnected 
nodes reflects their interaction strength, and using the linear correlation between similarity scores and 
link weights in empirical networks, we set weights of missing links proportional to the similarity scores. 
We analyze our algorithm by measuring the accuracy of the weight prediction as the Pearson correlation 
coefficient and root mean-squared error (RMSE). We evaluate our method on seven empirical networks 
and identify the topological features that mostly affect the prediction accuracy. Finally, we apply the 
algorithm to predict protein-protein interactions in two human PPI networks and validate our output 
against another comprehensive PPI database.

Materials and Methods
Metrics. In this paper, we assume that weights are nonnegative, symmetric similarity weights measur-
ing similarities or affinities between nodes. Often, larger similarity weights indicate closer relationships 
between nodes; hence such weights are positively correlated with the existence likelihoods of links. For 
example, weight of a collaboration network is the number of co-authored publications between two sci-
entists, which is statistically correlated to the possibility that these two scientists will collaborate in the 
future34–36. In a protein-protein interaction network, weight is typically a confidence score of the interac-
tion, representing the probability that the interaction occurs37. In a collaborative network of e-commerce 
users, weight characterizes the co-purchases between two users, which reflects the extent that the two 
users have similar shopping interests and thus may co-purchase more products in the future38. On the 
contrary, dissimilarity weights measure differences or distances between nodes. For instance, the weight 
of a road network can be Euclidean distance between neighbored intersections. For weight prediction on 
such networks our method would not perform well.

Given such a network G(V, E, W), where V, E and W are sets of nodes, links and weights, respectively, 
we want to find out its missing links (or links that may appear in the future) and predict their weights as 
well. To do this, for each pair of nodes without a link x, y∈ V, we assign a similarity score Sxy to quantify 
the existence likelihood of the link (x, y). Then all unlinked pairs are ranked in the descending order of 
their scores, so that the links on the top can be considered as the ones with highest existence likelihoods.

To test the algorithm’s accuracy, we randomly divide the link set E into a training set ET and a test 
set EV, such that ET∪EV =  E and ET∩EV =  φ. We use two metrics, precision and AUC (the area under 
the receiver operating characteristic curve), for the accuracy measurement. Precision is the ratio of real 
missing links to predicted links. To be precise, if the top L links are considered predicted links while Lr 
of which appear in the test set, the precision is Lr/L. AUC is a metric in the receiver operating charac-
teristics (ROC) analysis39. Taking the top L links as predicted links, a ROC curve is obtained by plotting 
true positive rates (TPR) versus false positive rates (FPR) for varying L values. Good curves lie closer to 
the top left corner and the worst case is a diagonal line that represents a strategy of random guessing. 
Thus the total area under the ROC-curve (AUC) can measure the performance of the algorithm. Here we 
applied a simplified method to compute AUC value1. Specifically, at each time we randomly pick a miss-
ing link and a nonexistent link to compare their scores, if among n independent comparisons, there are 
n’ times the missing link having a higher score and n” times they have the same score, the AUC value is

=
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Different division of training and test set could result in different prediction accuracy. For the same 
network, the larger the training set, the smaller the test set. Usually, larger training set includes more 
information which makes the prediction easier. On the other hand, larger test set suggests higher back-
ground expectation of linkages. To make unbiased comparison between precisions under different sizes 
of training sets, we compute the odds ratio (OR) as follows40:
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OR(A) represents the likelihood that a pair of nodes is linked given the result of a specific link pre-
diction algorithm A. P(L|A) represents the probability of linkage between a pair of nodes conditioned 
on the result of algorithm A, i.e., the precision of algorithm A; and P(∼ L|A) is the probability that a pair 
of nodes is not linked under the condition A. P(L) is the unconditional probability of linkage between 
a pair of nodes, which is the fraction of test set in the edges of the complement graph of the training 
set. According to Bayesian statistics, OR(A) is the likelihood of the linkage conditioned on the result of 
algorithm A and corrected for background expectations of linkages. Odds ratios greater than one indicate 
that algorithm A tends to link the node pairs, with higher values indicating more confident linkages.

According to our assumption, the score Sxy reflects the existence likelihood of a link between nodes x 
and y, while the weight wxy measures pairwise similarity between x and y. Thus it is natural to assume that 
the similarity scores are proportional to the weights. To validate this hypothesis, we calculated the Pearson 
correlation coefficients between the vectors of similarity scores and actual link weights for the links in 
the test set and conducted statistical significance test. We obtained all the Pearson correlation coefficients 
larger than zero with all p-values less than 0.05, suggesting the linear correlation between similarity scores 
and link weights. Therefore, we can adjust the similarity scores to predict link weights. Specifically, denote 
the weighted adjacency matrix corresponding to ET and EV by WT and WV, where WT is known and WV 
will be predicted. SV are the similarity scores for links in EV. Next, we need to define a weight prediction 
function F(WT) so that the difference between F(WT) and WV can be as small as possible.

Considering the above-mentioned linear correlation, we set F (WT) =  λ·SV, where   λ is a scaling coef-
ficient, which can be determined by solving the following optimization problem:

λ ⋅ − , ( )λ
S Wmin 3V V F

where ||.||F denotes the Frobenius norm, defined as the square root of the sum of the squares of the 
matrix’s elements41. We measure the accuracy of weight prediction by the Pearson correlation coefficient 
and the root mean-squared error (RMSE) between the vectors of predicted and known weights for links 
in EV.

Similarity Indices. This study focuses on local similarity indices, which are designed based on the 
assumption that two nodes are more likely to have a link if they have many common neighbors. The 
assumption is supported by earlier empirical study on the evolvement of social networks42. Refs.1,8–10 sys-
tematically compare local similarity indices in unweighted networks and find that the so called Common 
Neighbors (CN), Adamic-Adar (AA) and Resource Allocation (RA) indices perform best. Thus we focus 
on these three measures whose definitions are as follows.

(i) CN index. The CN index simply counts the number of common neighbors between nodes x and y as:

∩Γ Γ= ( ) ( ) , ( )s x y 4xy

where Γ (x) is the set of neighbors of node x and |.| denotes cardinality of the set.

(ii) AA index43. This index depresses the contribution of the high-degree common neighbors by assign-
ing larger weight to less-connected neighbors:
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where kz is the degree of node z.
(iii) RA index9,44. Similarly to AA index, RA index punishes the high-degree common neighbors, but to 

a higher extent, as
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Previous studies extended similarity indices from unweighted networks to weighted networks by 
introducing the sum of weights of the two links (z, x) and (z, y), where z runs over all common neigh-
bors of nodes x and y, as18,22:

(i) Weighted CN index (WCN):
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(ii) Weighted AA index (WAA):
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(iii) Weighted RA index (WRA):
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Here, Sz denotes the strength of node z, namely the sum of weights of its associated links, as
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The most reliable route problem on a communication network asks for the most reliable route to 
transmit data packages from a source node to a destination node, which maximizes the probability that 
a package can reach the destination without being corrupted enroute. In this case, the communication 
network is represented as a weighted network, in which the weight of a link is the probability that this 
link is safe for data transmission. Usually, the reliability of each link is considered as independent. Thus 
the reliability of a route is the joint probability that all links along this route are intact, which is the 
product of the link weights33. Figure. 1 shows a simple example, where the route A-D-E-F-B is the most 
reliable route from A to B.

Assuming that weights of existing links are independent, it is reasonable to measure the similarity of 
a pair of unconnected nodes by the product of weights of local paths connecting them. Therefore, we 
define the so-called reliable-route weighted similarity indices as follows (Fig. 2 provides a straightforward 
explanation for this group of similarity indices):

(i) Reliable-route weighted CN index (rWCN):
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(ii) Reliable-route weighted AA index (rWAA):
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(iii) Reliable-route weighted RA index (rWRA):

Figure 1. An illustration of a small communication network in which the weight of a link is its 
reliability. There are three routes from A to B in this simple communication network (A-D-E-F-B, A-C-F-B 
and A-G-B), in which the product of weights along links of the route A-D-E-F-B is the largest. Therefore, 
the most reliable route from A to B is A-D-E-F-B, whose reliability is about 0.58.
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Since the weights in our work are analogous to link-existence probabilities, for networks whose 
weights do not lie in the range [0,1], before calculating reliable-route weighted similarity indices, we 
first normalize their weights by mapping to (0,1) through

′ = , ( )−w e 14w
1

where w and w’ denote the original and regulated weights, respectively. Since Eq.  (14) is a one-to-one 
mapping, it is easy to extract the original weight w from the weight w’.

Data Description. We use seven empirical weighted networks for this study, as follows.

(i) hsaPPI: a high-confidence protein-protein interaction network of human constructed from experi-
mental biochemical co-fractionation data with overlap information derived from curated public data-
bases and literature searches, in which the weight denotes the interaction confidence score30.

(ii) Cel: the updated version of the neural network of C. elegans, in which nodes are neurons, edges 
are synaptic contacts between neurons, and the weight of a link represents the number of synapses 
between the corresponding neuron pair45.

(iii) CGScience: the network of coauthorships between scientists publishing in computational geome-
try till February 2002, in which the link weight corresponds to the number of coauthored publica-
tions between two scientists. (See Pajek Datasets: http://vlado.fmf.uni-lj.si/pub/networks/data/collab/
geom.htm.)

(iv) Lesmis: the network of co-appearances of characters in Victor Hugo’s novel “Les Miserables”, in which 
the data on co-appearances were taken from46. Nodes represent characters and links connect any pair 
of characters that appear in the same chapter of the book. The link weights are the number of such 
co-appearances. (See Mark Newman’s network datasets: http://www-personal.umich.edu/~mejn/
netdata/.)

(v) String: weighted human gene-association network constructed from the version 9.05 of the database 
STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)47. STRING integrates both 
physical interactions and functional associations from numerous sources and associated each link 
with a probabilistic confidence score.

(vi) Corum: a protein-protein interaction network of component proteins in human protein complexes 
collected by the database CORUM (Comprehensive Resource of Mammalian protein complexes)48. 

Figure 2. Visualized explanation of the reliable-route similarity scores of node pair (A,B) for two 
example networks (a) and (b). In network (a), under the condition that the existence likelihoods of links 
(A,C) and (C,B) are 0.9 and 0.1, respectively, the probability that A and B make a connection with the help 
of C (which may eventually result in a link between A and B) is the joint probability that (A,C) and (C,B) 
co-exist, i.e., 0.09. Although networks (a) and (b) have the same most reliable route A-C-B between A and 
B, network (b) has two other alternative routes A-D-B and A-E-B, constituting a parallel system. Thus the 
contributions of all independent route between A and B should be summed up to the similarity of (A,B). 
In addition, in network (b), connecting with many nodes other than A and B, node E’s contribution to the 
existence likelihood of link (A,B) should be smaller than that of nodes C and D. Contributions associated 
with such high-degree common neighbors are depressed in the rWAA and rWRA indices.

http://vlado.fmf.uni-lj.si/pub/networks/data/collab/geom.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/collab/geom.htm
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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We downloaded the database CORUM in June of 2013, whose core data include 1343 complexes 
and 2314 component proteins. In this network, two proteins are linked if they appear in the same 
complex. The weights represent the number of shared complexes.

(vii) String_Corum: a sub-network of String constructed by extracting the proteins in CORUM and 
their links from the network String.

See Table  1 for the basic topological measures of these networks. In Cel, CGScience, Lesmis and 
Corum, weights stand for the numbers of synapses, co-authors, co-appearances and shared complexes, 
respectively. As mentioned above, we will transform the weight w in these four networks to the range 
(0,1) by Eq. (14) before prediction.

Results
Accuracy of link and weight predictions. For each of the seven networks, we randomly split its 
links into a training and a test set, which contain 90% and 10% of the links, respectively. When calculat-
ing precision for link existence prediction, we set L equal to the size of the test set. Repeating this pro-
cess 30 times, we obtained the average precision and AUC for link prediction as presented in Fig. 3a,b, 
respectively.

Figures 3a,b show that the best prediction results are achieved by weighted similarity indices, includ-
ing WAA, rWAA, WRA and rWRA. This result suggests that for the class of weighted networks whose 
weights are defined by similarity between nodes, link weight is a very important indicator for measuring 
proximity between nodes. Thus, the accuracy of link predictions could be improved by taking weights 
of links into consideration. It can be seen that the weighted RA series perform best overall, which is 
consistent with the good performance of RA index in unweighted networks1. Especially, precisions and 
AUCs of rWRA method are either the highest or very close to the highest, showing the advantage of the 
reliable-route-based indices in link prediction.

We calculate Pearson correlation coefficients between the vectors of similarity scores and actual (nor-
malized) weights for the links in the test set. As shown in Fig.  3(c), all the Pearson correlation coeffi-
cients are larger than zero (all the p-values are smaller than 0.05), suggesting the statistically significant 
positive linear correlation between similarity scores and link weights in all these cases. Since larger 
correlation coefficient indicates a more reliable dependence between weights and similarities and thus 
we can directly use Pearson correlation coefficients as the accuracy metric for weights. One can observe 
that all the highest accuracies in weight prediction are achieved by reliable-route weighted similarity 
indices, notably the rWRA index.

We also measure the accuracy of weight prediction by the root mean-squared error (RMSE) between 
the vectors of predicted and actual weights for links in the test set through solving the optimization prob-
lem defined in Eq. (3). The results are shown in Fig. 3(d). Similar to the Pearson correlation coefficients, 
the reliable-route weighted indices, especially the rWRA index, perform the best in weight prediction. 
Notably, both the metrics of Fig. 3c,d are in favor of rWRA.

Robustness Analysis on the Size of Training Set. The accuracies for link and weight predictions 
for varying sizes of training sets (from 40% to 90%) are shown in Fig. 4 and 5, respectively. Each value 
of the accuracy is obtained by averaging over 30 implementations with independently random network 

hsaPPI Cel CGScience Lesmis String Corum
String 

Corum

|V| 2821 281 7343 77 16886 2314 2270

|E| 13880 2402 11898 254 1520927 34148 153788

< k> 9.84 17.1 5.29 6.59 180.14 29.51 135.49

<S> 8.469 9.57 2.55 3.94 68.43 13.22 58.15

C 0.169 0.346 0.486 0.573 0.301 0.747 0.371

CW 0.167 0.291 0.535 0.602 0.231 0.795 0.278

< d> 4.5 2.32 5.32 2.64 2.49 4.34 2.1

r 0.362 –0.136 0.243 –0.165 –0.0198 0.703 –0.0225

H 3.28 1.64 4.71 1.83 2.8 3.35 4.05

Table 1.  Basic topological features of the networks we study. |V| and |E| are the number of nodes and 
links. 〈 k〉  and 〈 S〉  are the average degree and strength. C and CW are the unweighted49 and weighted50 
versions of clustering coefficient, respectively (see definitions in Eqs. (15) and (16)). 〈 d〉  denotes the average 
distance, r indicates the assortativity coefficient [44], and H is the degree heterogeneity, defined as 〈k2〉/〈k2〉.
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Figure 3. Accuracy of link and weight prediction for seven empirical weighted networks, where training 
and test set contain 90% and 10% of the original links, respectively. For each network, the star highlights 
the best prediction.

Figure 4. Precisions for link prediction under different approaches with different sizes of training sets  
(f symbolizes the fraction of links in training set). 
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divisions of the training set and test set. The number of predicted links, L, is always set as being equal 
to the size of the test set.

According to Fig. 4, with varying sizes of training set, prediction accuracies by reliable-route weighted 
indices (especially rWRA), are either the best or very close to the best. As for the accuracy of weight 
prediction, Fig. 5 shows that all the highest accuracies are achieved by reliable-route indices (especially 
rWRA) for different sizes of training set. These comparisons suggest the robust of our algorithms in both 
link and weight prediction.

Usually, larger training set contains more information which could make the prediction easier. 
However, Fig.  4 shows that the precisions do not always increase with the size of training set. This is 
caused by different prior linkage expectations of different sizes of test sets. Thus we correct the back-
ground expectation of linkages using the odds ratio defined in equation (2). As shown in Fig. 6, thecon-
fidence of link prediction increases with the size of training set.

Topological Analysis. In most cases, including weights can improve the prediction accuracy in our 
empirical data sets, however, networks CGScience and Lesmis are notable exceptions. For example, look-
ing at Fig. 3(c) and Fig. 5, for the prediction accuracy of link weights on CGScience and Lesmis, WAA 
and rWAA are significantly lower than those of AA.

The AA index weighs nodes according to the logarithm of their degree (thus suppressing the role of 
hubs). When generalizing to weighted indices, instead of dividing log kz, such common neighbors are 
punished by dividing log(1 + Sz). However, the average node strength values of networks CGScience and 
Lesmis are very small (see Table 1 and Fig. 7(a), implying that the contributions of high-degree common 
neighbors of these networks may not get enough inhibition in WAA and rWAA indices. In contrast to 
punishment to high-degree common neighbors, log kz smaller than 1 could be considered as a reward 
in AA index because in this case node z only links to the node pairs under consideration. Similarly, in 
WAA and rWAA indices, log(1 + Sz) smaller than 1 is a reward to the common neighbor z. When node 
strength is very small, the common neighbors punished in AA index are rewarded in WAA and rWAA 
indices, thus decreasing the prediction accuracy of WAA and rWAA methods. In Fig. 7(b) we show the 
percentages of such nodes in each network. It can be seen that this percentage is quite high in networks 
CGScience and Lesmis. Therefore, the low prediction accuracies in these two networks by WAA and 
rWAA might be caused by this aspect of node strength.

It can be seen that networks Corum and Lesmis get much higher prediction accuracies than other 
networks, which may be because of that these networks contains a plenty of cliques, as indicated by their 
large clustering coefficients for both unweighted and weighted versions (see Table 1), defined respectively 
as49,50:

Figure 5. Pearson correlation coefficient (r) for weight prediction under different approaches with 
different sizes of training sets (f symbolizes the fraction of links in training set). 
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Figure 6. Log odds ratios for link prediction precisions under different approaches with different sizes 
of training sets (f symbolizes the fraction of links in training set) .

Figure 7. Network topologies features that may influence prediction accuracy. (a) Average node strength 
of networks; (b) Percentage of nodes punished by AA but rewarded by WAA and rWAA; (c) Correlation 
between accuracy of link or weight prediction and clustering coefficient (C) or weighted clustering 
coefficient (Cw).
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where wij represents the weight of link (i,j). The clustering coefficient of a network is the average clus-
tering coefficient over all nodes. Since the current local indices only takes into account common neigh-
borhoods of two nodes, it is straightforward to infer that the larger the clustering coefficient, the more 
accurate the prediction. From this respective, the poorer prediction performance on networks hsaPPI, 
String and Cel may largely own to their lower clustering. Indeed, as shown in Fig.  7(c), accuracies of 
link and weight predictions (i.e., precisions in Fig. 3(a) and Pearson correlation coefficients in Fig. 3(c)) 
both exhibit a strongly positive correlation with the clustering coefficients. Especially, link prediction 
performance of AA and RA series shows a significantly higher dependence on clustering coefficient; 
meanwhile the weighted clustering coefficient gives a better characterization than the unweighted ver-
sion. This indicates that depressing high-degree common neighbors could make triadic closure49 play 
more powerful role in link prediction task. As for weight prediction, the lower correlation extents of 
similarity scores by WAA, rWAA with clustering coefficients are caused by the special node strength 
feature of some networks, as we pointed out above.

However, weight prediction accuracy measured by RMSE does not show statistically significant 
dependence on clustering coefficient.

Weight normalization functions. In our algorithm, we use a negative exponential function defined 
in Eq.  (14) to normalize the weights of four networks whose weights are not in the area [0,1]. This is 
due to the feature of this function and the weights of four networks. With the growth of the positive 
independent variable w, the function in Eq. (14) grows quickly at first, then slows and finally levels off, 
approaching maximum upper limit 1. Similar to logistic function, this function can be applied to model 
saturation growth, such as biological population and product market growth. In the four networks, the 
link possibility exhibits a saturation growth with weights. For example, link weight of the CGScience 
network represents the number of co-authored publications between two scientists. In case two scientists 
co-authored enough papers, regardless the number is 50 or 100, the probability that they collaborate in 
the future is almost 1. Hence Eq. (14) could be fit for modeling linkage probability from weights of such 
networks.

To verify the effectiveness of Eq. (14), we also normalize the weights by logistic function ′ =
+ −w e

1
1 w , 

linear function ′ =
( )

w w
wmax

 (max (w) is the maximum weight of the network), as well as negative expo-

nential function ′ = −w e
k
w  with different parameter k, respectively. Then for each of the four networks, 

we conducted link and weight prediction on the network with four types of weight, i.e., original weight, 
linearly normalized weight, logistic function normalized weight and exponential function normalized 
weight, respectively. Here we set the training set contain 90% links and L equal to the size of the test set. 
We repeat the computation for 30 times; average the prediction accuracies and show values of precision 
and Pearson correlation coefficient in Fig. 8 and 9. Figure. 8 shows that in most cases, weights normalized 
by logistic and exponential functions result in significantly higher precisions than the other two types of 
weights. We think this is because these two types of functions could model inherent linkage likelihood 
of node pairs from original weights of networks. In addition, the performance of exponential function 
with parameter k is robust when k varies between 0.1 and 1, further supporting the rationality and effec-
tive of our normalization method. Fig. 9 shows that for all the weight types, rWRA always performances 
best in weight prediction, confirming the robustness of this algorithm.

We also notice that for some weight types, such as weights normalized by linear function, exponential 
function with some specific parameters k, prediction accuracies by WAA and WAAr, especially weight 
prediction, are rather poor. We think the reason is the same as we discussed in the last section.

Predicting protein-protein interactions. In cells, a protein usually collaborates with other proteins 
to carry out a particular cellular task. In other words, the other proteins that it interacts with often mod-
ulate its function and activity. Protein–protein interactions (PPIs) refer to such physical contacts between 
different proteins. Much of our knowledge of PPIs has been obtained by high-throughput experimental 
techniques such as affinity chromatography26 and yeast two hybrid29, as well as by manual curation of 
experiments on individual systems51. However, the currently known experimental results only reveal the 
tip of an iceberg of the actual existence of PPI links. For example, it is estimated that experimentally 
confirmed human protein-protein interactions account for only 0.3% of the actual existence52. Revealing 
the unknown part of these networks by experimental methods requires a lot of manpower, material and 
time. Therefore, it is highly desirable for developing computational methods for the prediction of largely 
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unknown PPIs. A variety of computational approaches have been developed for the genome-wide infer-
ence of PPIs, which are based on similarity of protein biological attributes, such as sequence homology, 
gene co-expression, protein three-dimensional structural information, and phylogenetic profiles53,54. Here 
we investigate to what extent the topology-based link prediction methods could be applied in practice.

Of the empirical networks we study, hsaPPI and Corum are high-confidence protein-protein inter-
action networks of human beings, in which hsaPPI is constructed from the experimental biochemical 
co-fractionation data which overlap with information from curated public databases and literatures, 
while Corum represents experimentally derived co-complex memberships. The network String is con-
structed from the database STRING47, which is a comprehensive and reliable PPI database. Taking net-
works hsaPPI and Corum as input respectively, we predict the existence of protein-protein interactions 
and the confidence scores, and then use the network String to validate our predictions. That is, in this 
case, our training set includes total links in the input network, while the test set consists of overlapped 
links between String and the unconnected node pairs of the input network. When calculating precision 
for link existence prediction, we set L as 10% of the links in the input network.

Figure. 10(a) shows how many top L links predicted by the nine similarity indices that overlap with 
links in the String network. We compare the situations of actual links and unconnected node pairs of 
the input networks. First, note the small overlap of unlinked node pairs compared to the number of 
links in the input network, compared to these the overlap with String links is much (~8 times) larger. 
This is consistent with the high reliability of the STRING database. The top L predicted links have 
very large percentage of overlaps with String links, which is comparable with that of the actual links. 
Remarkably, the top L links predicted by methods of CN and AA series for network hsaPPI have even 
much higher percentage of overlap with String links than the actual links in the network. These results 
suggest high accuracy of these methods in practical prediction for PPIs. In addition, the highest preci-
sions are achieved by rWCN and rWRA methods in network hsaPPI and Corum, respectively, confirm-
ing the good performance of reliable-route method.

Figure 8. Precisions by weighted similarity indices for four networks under different weight 
normalizations, where the exponential function takes different parameter k, training and test set contain 
90% and 10% of the original links, respectively. 
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Figure 9. Pearson correlation coefficient (r) values by weighted similarity indices for four networks 
under different weight normalizations, where the exponential function takes different parameter k, 
training and test set contain 90% and 10% of the original links, respectively. 

Figure 10. Validation of link and weight prediction for networks hsaPPI and Corum in the String 
network. (a) Percentages of top L predicted links in the String network, in comparison with those of actual 
links and unconnected node pairs in the input networks. (b) Pearson correlation coefficients between 
similarity scores and corresponding weights in the String network, in comparison with that between weights 
of common links in the String network and the input network.
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Taking test set as that includes overlapped links between String and the unconnected node pairs of the 
input network, we then calculate Pearson correlation coefficients between the vectors of similarity scores 
and weights for the links in the test set. Statistical tests get all of the p-values smaller than 0.05, indicat-
ing statistically significant linear correlation between similarity scores of unconnected node pairs and 
weights of corresponding links in the String network. This suggests that the topological based methods 
are potentially applicable in the practical prediction of confidence scores for PPIs. Figure. 10(b) shows 
that the highest extents of positive correlation are achieved by rWRA method in both input networks, 
further confirming the good performance of reliable-route based method in weight prediction.

Discussion and conclusion. This work aims to predict missing links and their weights using only 
local information, based on the assumption that two nodes are more likely to have a link if they have 
many common neighbors. We propose a “reliable-route method” to generalize local similarity indices 
from unweighted to weighted networks. Our experiments on real networks show that the resource allo-
cation indices perform overall best both in link and weight prediction. In addition, we find that the accu-
racy of both link and weight prediction is positive correlated with the clustering coefficient, supporting 
the assumption underpinning the method of local similarity indices. Moreover, our results suggest that 
the WAA and rWAA indices may not suitable in networks with very small average node strength.

The prediction accuracy could be affected by the network background. For example, there are four 
networks whose nodes are human proteins. The network hsaPPI only includes high-confidence physical 
interactions between proteins. This is thus the sparsest network among the four. In comparison, the net-
work Corum was constructed to represent theoretical links between component proteins of experimentally 
validated protein complexes, which represents a specific class of high-confidence protein-protein interac-
tions, i.e., co-complex memberships. This network is a projection of a bipartite network between protein 
and complexes, and is therefore the most regularly organized and densely connected. The network String 
comprises functionally associated pairs, including physical interactions, co-expression, co-localization, 
forming complex, and participating same biological process. In fact, the database STRING is constructed 
by integrating data from different experiments, curated databases and literature mining. Therefore, String 
is the noisiest one and its links are built up by different organizing principles, which is usually not easy 
for link prediction algorithms. Due to the different backgrounds and corresponding structure features of 
these networks, when we use a part of link in the current network to predict the other part by repeatedly 
random sampling processes, prediction accuracies for hsaPPI and String are relatively poor while Corum 
is highest. However, as a practical application, when predicting missing PPIs in the current network, we 
use all links of hsaPPI and Corum as training set and String as test set. Due to its high extent of sparsity, 
hsaPPI exist much more missing links than Corum. This could be the reason that hsaPPI gets much 
higher prediction accuracy than Corum in this situation.

For most networks, there is significantly large improvement from the worst to the best accuracy for 
both link and weight prediction. However, networks Cel and hsaPPI are exceptions. The precisions of 
link prediction for these two networks are the lowest among all the networks, and there are very small 
increases from the worst to the best precisions. It would be interesting to investigate whether this is 
caused by an inherent feature of these networks, or the algorithm.

Although we discuss the weight of networks as if it is restricted to the probability of link existence, 
our method could be applied to a broader set of weighted networks where the weight represents some 
kind of “transitive” interaction strength. That is, if the indirect connection strength is strong (via paths 
of two or more links), then the direct connection strength (link weight) is probably also strong (which 
is the assumption behind some similarity measures1).
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