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Quantitative Systems Pharmacology Modeling of Acid
Sphingomyelinase Deficiency and the Enzyme
Replacement Therapy Olipudase Alfa Is an Innovative
Tool for Linking Pathophysiology and Pharmacology
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Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations,
including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality.
Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the
non-neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the
clinical development of olipudase alfa. The model is multiscale and mechanistic, linking the enzymatic deficiency driving the
disease to molecular-level, cellular-level, and organ-level effects. Model development was informed by natural history, and
preclinical and clinical studies. By considering patient-specific pharmacokinetic (PK) profiles and indicators of disease
severity, the model describes pharmacodynamic (PD) and clinical end points for individual patients. The ASMD QSP model
provides a platform for quantitatively assessing systemic pharmacological effects in adult and pediatric patients, and
explaining variability within and across these patient populations, thereby supporting the extrapolation of treatment response
from adults to pediatrics.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� QSP is an emerging field and models have been

developed across several therapeutic areas. However,

rare diseases like ASMD remain a new frontier for QSP

and present a unique challenge due to the clinical het-

erogeneity of these diseases, incomplete biological

knowledge, and the small, variable patient populations.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study examined how QSP modeling can be

applied to support drug development for a rare disease

with heterogeneous clinical manifestations, and how the

model could be used to provide insight into clinically

relevant scenarios.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� This study presents the first QSP model for ASMD
and its response to ERT. This study demonstrates that
the QSP approach can successfully describe patient-
specific responses across multiple clinical end points
and PD markers, and can provide mechanistic insight
into clinically observed patient variability.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� This study demonstrates that QSP modeling is a ver-
satile and powerful tool to address specific challenges
associated with clinical development in the rare disease
therapeutic area.

Acid sphingomyelinase deficiency (ASMD), historically

known as Niemann-Pick disease types A and B, is a rare

lysosomal storage disorder caused by mutations in the

gene SMPD1, which encodes the enzyme acid sphingo-

myelinase (ASM). ASM catalyzes the conversion of sphin-

gomyelin, a major constituent of cell membranes, to

ceramide. The reduced functional ASM leads to accumula-

tion of sphingomyelin in multiple cell types, including cells

of the monocyte-macrophage lineage and hepatocytes.1,2

The consequent cell and tissue damage affects multiple

organ systems, and causes heterogeneous disease mani-

festations, including, but not limited to, hepatosplenome-

galy, infiltrative lung disease, hematological abnormalities,

and dyslipidemia.1

ASMD is a serious and potentially fatal disease. It is asso-
ciated with a spectrum of disease subtypes, ranging from
the severe infantile neurovisceral phenotype (Niemann-Pick
type A) to the chronic visceral form (Niemann-Pick type B),
with an intermediate chronic neurovisceral phenotype
(Niemann-Pick type A/B, Niemann-Pick B variant).3–5 The
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infantile neurovisceral form is typically fatal by the age of 3
years. Patients with the chronic visceral phenotype may
have a normal lifespan, or may experience early mortality
due to disease complications, including hepatic and pulmo-
nary disease.6 The prevalence of ASMD is estimated at 0.4–
0.6 per 100,000 births.3 There is currently no approved
treatment for the disease, and only supportive care for man-
agement of symptoms is possible.

Olipudase alfa (recombinant human acid sphingomyelinase)
is an enzyme replacement therapy (ERT) under development
for the treatment of the non-neurological manifestations of
ASMD. By supplementing the deficient functional enzyme,
ERTs for lysosomal storage diseases can clear the accumu-
lated substrate and alleviate disease symptoms.7 A recent
phase Ib trial of olipudase alfa included five adults and demon-
strated improvements in multiple clinically relevant end points,
including spleen volume, infiltrative lung disease, and in levels
of stored sphingomyelin over 26 weeks of treatment.2,8 The
ongoing, long-term trial demonstrated that these patients con-
tinue to show clinical improvements in hepatosplenomegaly,
infiltrative lung disease, and lipid profiles through 30 months of
treatment.9 A phase II/III adult trial (ClinicalTrials.gov Identifier:
NCT02004691; clinicaltrialsregister.eu EudraCT number:
2015-000371-26) and phase I/II pediatric trial (ClinicalTrials.
gov Identifier: NCT02292654; clinicaltrialsregister.eu EudraCT
Number: 2014–003198-40) for olipudase alfa are currently
ongoing. The primary objective of this phase II/III study is
efficacy on spleen volume and hemoglobin (Hb)-adjusted %
predicted diffusion capacity of the lungs for carbon monoxide
(Hb-adjusted % predicted DLco).

To support the clinical development of olipudase alfa, we
developed a quantitative systems pharmacology (QSP)
model describing ASMD and the pharmacological effects of
olipudase alfa. QSP is a mechanistic modeling approach to
describe and simulate the system-wide and multiscale path-
ophysiology of a disease and response to pharmacological
intervention.10 The QSP model incorporates the drivers of
disease at the molecular level (e.g., deficient enzymatic
activity and substrate accumulation) and the consequent
effects at the cellular level (e.g., aberrant macrophage
function) and at the organ level (e.g., organomegaly and
impaired organ function). Hence, the model applications
include providing a mechanistic basis and support for the
dose, for pharmacological effects on biomarkers and the
translation of these effects at an organ level (linking bio-
marker effects to clinical end points), as well as for evaluat-
ing different dosing regimens and simulating the effects of
treatment on the overall disease burden through the relative
pharmacological impact on multiple organs. It also provides
a framework for understanding and evaluating the variability
within and across different patient populations, including
adult and pediatric patients.

QSP modeling has previously been applied in a number of
therapeutic areas, including cardiovascular,11,12 respira-
tory,13 and neurological14 diseases, as well as diabetes15 and
cancer.16 However, QSP modeling largely remains a new
frontier for the lysosomal storage diseases. Although prior
modeling studies have assessed the evolution of storage dis-
eases based on residual enzyme activity levels17 and the
dynamics of pathways related to ASMD, such as sphingolipid

metabolism,18–20 these models have focused on behavior at

the molecular level. The QSP approach links representations

of molecular-level dynamics to other submodels describing

different biological scales, enabling assessment of therapeu-

tic effects and of different sources of variability on the entire

system.
Here, we describe the development, calibration, and quali-

fication of a QSP model for ASMD, with a focus on application

to pediatric extrapolation and drug development. We show

that the model can replicate the time course of disease devel-

opment observed in the natural history of ASMD, and the

response to treatment with olipudase alfa observed in clinical

trials. We also demonstrate the capabilities of the QSP model

in helping to understand variability among patients and in

predicting the outcomes of novel clinically relevant scenarios.

METHODS
Data sources
Due to the mechanistic and multiscale nature of the ASMD

QSP model, a diverse set of data sources was used to

develop and calibrate the model (Table 1). These include

natural history studies,6,21 in vitro cell line data, preclinical

studies in the ASM knockout (ASMKO) mouse, and data

from completed and ongoing clinical trials.2,8,9,22

Description of model structure
The ASMD QSP model consists of four submodels: a phar-

macokinetic (PK) submodel, a molecular-level submodel, a

cellular-level submodel, and an organ-level submodel

(Figure 1). The model describes four key outputs related to

the clinical assessment of ASMD severity and the response

to treatment with olipudase alfa: plasma ceramide and plasma

lysosphingomyelin from the molecular level, and spleen volume

and Hb-adjusted % predicted DLco from the organ level. Cer-

amide is central to the mechanism of action of olipudase alfa

and is a safety biomarker.8,23 Lysosphingomyelin is substantially

elevated in ASMD and is a disease biomarker.24,25 Spleen vol-

ume and Hb-adjusted % predicted DLco are key clinical end

points because splenomegaly and interstitial lung disease are

prominent clinical features of the disease.
Overall, the model is a system of 52 ordinary differen-

tial equations using generalized mass action expressions,

including Michaelis-Menten and Hill kinetics (Supplemen-

tary Material).
The PK submodel is a reduced physiologically based

pharmacokinetic (PBPK) model, based on the full model

published in ref. 26. The reduced model focuses on the

three organ compartments associated with prominent mani-

festations of ASMD: the spleen, lung, and liver. The

reduced model also includes the plasma and lymph node

compartments, as well as organs upon which the liver is

dependent. The biodistribution of olipudase alfa across

compartments predicted by this submodel serves as input

to the molecular level of the model.
Figure 1 shows the molecular-level submodel. The pro-

cesses described occur in each cell type (i.e., hepatocytes and

splenic and alveolar macrophages), and are represented sep-

arately for each cell type. Differentiating these cell types allows

us to appropriately represent local tissue biology in the model,
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such as differences in ceramide production between hepato-
cytes and splenic macrophages, and facilitates linkage to the
organ-level submodel. Molecular-level processes are sepa-
rated into those occurring within lysosomal or extralysosomal
compartments. Within the lysosome, the model describes the
production of ceramide from sphingomyelin, catalyzed both by
endogenous residual ASM and exogenously administered oli-
pudase alfa. The input to this level of the model is the drug con-
centration within each organ compartment, which drives the
latter reaction. The production of lysosphingomyelin, another
product of sphingomyelin, is also represented within the lyso-
some. This reaction is thought to be catalyzed by one or more
of the ceramidases (e.g., acid ceramidase). In addition, the
production of both ceramide and lysosphingomyelin outside
the lysosome, catalyzed by other endogenous enzymes (e.g.,
neutral sphingomyelinases), is represented. This submodel
also describes the metabolism of both ceramide and lysos-
phingomyelin to untracked sink products in the extralysosomal
space, and the export of both species into the plasma.

The cellular level of the model is described as algebraic
empirical Hill function expressions representing the normality
of splenic and alveolar macrophage behaviors. The rationale
for this approach is that disease status in both the spleen and
the lung in ASMD are linked to the presence of “foamy” mac-
rophages (i.e., those with substantial sphingomyelin accumu-
lation).6,27–29 The input to this level of the model is the
amount of accumulated sphingomyelin in each macrophage
type, which is an output of the molecular-level submodel. As
these amounts increase in untreated ASMD, splenic and
alveolar macrophage functions decline. Treatment with olipu-
dase alfa clears accumulated sphingomyelin, leading to
improvement in macrophage function. The degree of func-
tionality of each type of macrophage is the output of the
cellular-level submodel, and an input to the organ-level
submodel.

The organ-level submodel is separated into models of
spleen volume and Hb-adjusted % predicted DLco. Because
the biology regulating the processes of splenomegaly and
decreased lung function is complex and not yet fully under-
stood, these processes are described empirically. Natural
history data were used to assess the long-term behavior of
these clinical end points in untreated patients with ASMD and

to help develop the model equations.21 The rates of disease

development in both organs are based on the splenic and

alveolar macrophage functionalities, respectively, as defined

in the cellular level of the model. Both submodels also include

terms describing the restoration of the organ towards normal

volume (spleen) or function (lung), which are reliant on the

macrophage functionalities and the degrees of intracellular

sphingomyelin accumulation.

Parameterization and calibration
In the ASMD QSP model, many parameters were obtained

from the literature or from nonclinical data. Examples of

these fixed parameters include enzyme kinetics rates, aver-

age cell volumes, and most parameters related to the

PBPK model.26 Some of these fixed parameters (e.g., vol-

umes for the PBPK model), are assigned separately for

adults and for different pediatric age cohorts due to scaling

considerations. Other parameters were estimated based on

literature values, preclinical data, or clinical data, but were

not varied among subjects. Examples of this second cate-

gory include the reflection coefficients in the PBPK model,

which were initially calibrated to nonclinical biodistribution

data from ASMKO mice and then translated to a human

model, and rate constants for unmeasured or lumped pro-

cesses, such as the intracellular metabolism of ceramide to

its products.
The third category consists of parameters that were

allowed to vary among subjects, and that were used to cali-

brate the model to individual-level clinical data. Examples

include the residual endogenous ASM activity and the rate

of ASMD-associated spleen enlargement. Parameters in

this category were selected based on prior clinical knowl-

edge (e.g., residual endogenous ASM activity is known to

vary both among patients and among cell types from the

same patient) as well as analytical techniques for model

assessment. These include local sensitivity analysis with

respect to the molecular-level and organ-level outputs and

the system structure-based Linear-in-Flux-Expressions

methodology.30 This category of parameters was further

subdivided into those related to the PK model, the

molecular-level submodel, and the organ-level spleen and

lung submodels.

Table 1 Overview of data sources used to develop and calibrate the QSP model

Data source Model level Description

Preclinical studies

(ASMKO mouse)22

PBPK � Estimation of PK and biodistribution parameters from ASMKO

PBPK model, which were then scaled to human PBPK model

Natural history study

(59 adult and pediatric patients,

from 1 year to up to 11 years

of assessment)20

Organ � Estimation of disease progression rates in lungs and spleen

Phase Ia

(11 adult patients)21

PBPK � Dose response and calibration of human PK model

Phase Ib

(5 adult patients)8
PBPK, molecular, organ � Calibration of end points in molecular-level and organ-level models

Literature Molecular, cellular, organ � Rates of enzyme kinetics and uptake and clearance processes

� Sphingomyelin accumulation amounts and rates

� Cellular and intracellular compartment volumes

ASMKO, acid sphingomyelinase knockout mice; PBPK, physiologically based pharmacokinetic; PK, pharmacokinetic; QSP, quantitative systems pharmacology.
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Figure 1 (upper panel) Overview of the structure of the quantitative systems pharmacology (QSP) model for acid sphingomyelinase
deficiency (ASMD) and the response to olipudase alfa. (lower panel) Enhanced view of molecular level of model, describing the pro-
duction of sphingomyelin (SM), its conversion to ceramide by endogenous ASM and olipudase alfa (rhASM), and to lysosphingomyelin
(lyso-SM) by deacylases such as acid ceramidase, the intracellular metabolism of both ceramide and lysosphingomyelin, and the
export of these biomarker species into the plasma. All reactions are described in all three cell types, except SM uptake via phagocyto-
sis is limited to the splenic and alveolar macrophages. DLco, diffusing capacity of the lung for carbon monoxide; PBPK, physiologically-
based pharmacokinetics.
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The model was calibrated to adult clinical trial data,8,9,22

and parameters were optimized separately for each submo-
del. Both global (e.g., covariance matrix adaptation evolution
strategy (CMA-ES) and local (e.g., Levenberg-Marquardt with
a multiple initialization strategy) optimization approaches were
tested. Estimated parameters were evaluated in terms of bio-
logical plausibility, coefficient of variation, and 95% confidence
intervals. Alternative optimization solutions were also evalu-
ated using clustering to gain insight into individual-level and
population-level variability.

Qualification scenarios
Model qualification was approached through comparisons of
model-predicted trends against those observed in natural his-
tory21 and preclinical23 data. As an additional qualification
step, the model was used to simulate two scenarios assess-
ing (i) differential response to alternative dosing regimens for
patients with varying disease severity, and (ii) steady-state
exposure-responses in the spleen and the lung in a virtual
ASMD population. These predictions were also consistent
with trends observed in clinical and preclinical data. These
scenarios illustrate the capabilities of the model in predicting
the outcomes to novel questions of interest that are not read-
ily addressed in the clinic or experimentally.

The virtual population for scenario (ii) was generated
through variation of the subject-specific parameters spanning
the PK, molecular, and organ levels. One thousand virtual
patients were generated by sampling from a multivariate log-
normal distribution. Mean values for each parameter and the
covariance matrix were obtained from the set of all individual
calibrations to data from patients in the phase Ib study and its
long-term extension.

Implementation. The model was implemented in MATLAB
(The MathWorks, Natick, MA) and in C through the Multiple
Interfaces Solver Toolkit.31

RESULTS
Model calibration – molecular level
The molecular-level submodel was calibrated to clinical
measurements of plasma ceramide and plasma lysosphingo-
myelin. The model captures individual-specific responses for
both biomarkers, reproducing both different pretreatment lev-
els and dynamics over the course of treatment. The model
represents both short-term (i.e., transient, following each
infusion) and longer-term (i.e., over multiple infusions)
responses in plasma ceramide to olipudase alfa across the
five adult patients (Figure 2). The short-term response is
mechanistically explained by the clearance of sphingomyelin
accumulated in the lysosome by each infusion of olipudase
alfa. This lysosomal sphingomyelin is rapidly converted to
ceramide, which is then exported from the cell, resulting in a
peak in plasma ceramide. The clearance of the lysosomal
sphingomyelin enables excess sphingomyelin stored in extra-
lysosomal reservoirs, such as the plasma membrane, to tran-
sit into the lysosome for degradation. Repetitions of this cycle
over multiple infusions of olipudase alfa leads to the debulk-
ing of accumulated cellular sphingomyelin, which is reflected
in the long-term decrease in plasma ceramide trough levels.
Export of ceramide to the plasma is described primarily

through hepatocytes, based on the predominant distribution

of ceramide in very low-density lipoprotein and low-density

lipoprotein.32 Model predictions of the clearance of liver

sphingomyelin over time were also verified against clinical

measurements (Supplementary Figure S1).
The model represents the long-term responses in plasma

lysosphingomyelin for the five adult patients in the phase Ib

study (Figure 2). Lysosphingomyelin levels decrease as

the accumulated sphingomyelin is cleared from both lyso-

somal and extralysosomal intracellular compartments

through multiple infusions of olipudase alfa. Export of lysos-

phingomyelin to the plasma is described from all organs,

based on its distribution within very low-density lipoprotein,

low-density lipoprotein, and high-density lipoprotein.33

Model calibration – organ level
The organ-level submodel was calibrated to clinical meas-

urements of spleen volume and Hb-adjusted % predicted

DLco (Figure 3). Improvements in both clinical end points

over the course of the phase Ib study and its long-term

extension are clinically meaningful.8,9 The model captures

the individual-specific improvement in spleen volume and

Hb-adjusted % predicted DLco, recapitulating the data well

even across varying initial severities in the two clinical

manifestations.

Qualification scenarios
The model was applied to two qualification scenarios to

illustrate its capabilities, including investigation of questions

not readily amenable to direct clinical or experimental

assessment.
The first scenario (Figure 4) examines how two virtual

patients with ASMD with varying disease severities at treat-

ment initiation will respond to alternative theoretical maxi-

mum doses (3 mg/kg vs. 1 mg/kg). The 1 mg/kg dose is

not under clinical consideration, and is simulated here only

as an exploratory assessment. The model predictions high-

light how the differences in response are both subject-

specific and end-point-specific. The right-most column plots

the same temporal predictions as a trajectory representa-

tion. For each virtual patient, the sequence of vectors rep-

resents the direction and magnitude of change in the

spleen volume (vertical axis) and Hb-adjusted % predicted

DLco (horizontal axis) at multiple intermediate time points

(e.g., 0.5 year, 1 year, 5 years, etc.) over 15 years of simu-

lated treatment. In terms of spleen volume, for the virtual

patient with milder disease at onset (bottom row), there is

almost no long-term effect predicted between the two maxi-

mum doses. In comparison, an offset of approximately 4

multiples of normal (MN) between the two dosing regimens

is predicted for the more severe patient (top row). This indi-

cates that reducing the dose can limit the amount of

improvement that can be achieved, and, depending on

patient disease severity, this difference may potentially be

clinically significant.
A similar offset is seen for the Hb-adjusted % predicted

DLco response for the more severe virtual patient. This

trend is in agreement with data from the ASMKO mouse

showing that clearance of sphingomyelin from the

spleen23 and lungs34 is dependent on the administered
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dose. Interestingly, for the virtual patient with milder dis-
ease, an offset is predicted in the Hb-adjusted % pre-
dicted DLco response between the two maintenance
doses, even though there was no such difference in the
spleen for the same virtual patient. This is supported by

ASMKO mice data showing reduced sphingomyelin clear-
ance in the lung compared to the spleen for the same
dose ranges,23,35 indicating that the lung response may
be more sensitive to a dose reduction. These patterns
emphasize that representing the differential pharmacology

Figure 2 (upper panel) Calibration of the molecular-level submodel to plasma ceramide clinical data from the phase Ib study. The
model describes both the short-term and long-term trends in plasma ceramide (normal range: 1.8–6.5 lg/mL) over time and across
increasing doses (0.1–3 mg/kg). (lower panel) Calibration of the molecular-level submodel to plasma lysosphingomyelin clinical data
from the phase Ib study. The model describes the long-term improvement in plasma lysosphingomyelin (normal range: <10 ng/mL)
due to olipudase alfa treatment.
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across organs is important for capturing interindividual
variability in response. The modular structure of the QSP
model (i.e., separate molecular-level submodels evaluated
for splenic and alveolar macrophages, which in turn drive

separate organ submodels) enables and facilitates such
analyses.

Figure 5 describes the second qualification scenario.
This builds upon the previous scenario, which examined

Figure 3 (upper panel) Calibration of the organ-level submodel to spleen volume (in multiples of normal (MN)) clinical data from the
phase 1b study and its long-term extension. The model describes the long-term improvement of spleen volume due to olipudase alfa
treatment. (lower panel) Calibration of the organ-level submodel to lung function clinical data in terms of hemoglobin (Hb)-adjusted %
predicted diffusing capacity of the lung for carbon monoxide (DLco) from the phase Ib study and its long-term extension. The model
describes the long-term improvement of lung function due to olipudase alfa treatment.
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two virtual patients, by using 1,000 virtual patients with
ASMD to investigate long-term exposure-responses in
terms of spleen volume and Hb-adjusted % predicted DLco.
For each virtual patient, treatment with a maximum dose of
0.6 mg/kg or 3 mg/kg of olipudase alfa was simulated over
a period of 15 years. The 0.6-mg/kg dose is not under clini-
cal consideration, and was simulated only as an exploratory
assessment. In the left panel, each dot in the scatterplot
represents one virtual patient. The location of a virtual
patient on the axis represents their disease severity in
terms of spleen volume and Hb-adjusted % predicted DLco,
with those in the upper left quadrant having the most
severe disease in both end points. For this assessment, vir-
tual patients with spleen volume >15 MN and Hb-adjusted
% predicted DLco �50% at steady-state before treatment
were considered. Black dots represent the virtual patients
prior to treatment. Blue and red dots represent the same
virtual patients after receiving maximum doses of 0.6 mg/
kg (blue) or 3 mg/kg (red) over a 15-year period. At the
0.6-mg/kg dose, most virtual patients shift downward, indi-
cating improvement in spleen volume, with little overlap
with the pretreatment distribution. They also shift rightward,
indicating improvement in Hb-adjusted % predicted DLco,
but not to the same extent; most do not improve beyond
80%. At the 3-mg/kg dose, more substantial improvement
is seen in both organs, with many virtual patients approach-
ing normal spleen volume and 100% Hb-adjusted % pre-
dicted DLco at the lower right corner of the axes.

The right panel represents treatment responses in terms of
the individual trajectories of 25 randomly selected virtual

patients administered maximum doses of 0.6 mg/kg (blue) or

3 mg/kg (red). For each individual virtual patient, the response

trajectory is represented by a sequence of vectors describing

the change in spleen volume (vertical axis) and Hb-adjusted %

predicted DLco (horizontal axis) at multiple intermediate time

points (e.g., 0.5 year, 1 year, 5 years, etc.) over 15 years of sim-

ulated treatment. For both doses, the virtual patients’

trajectories indicate large improvements first, particularly in the

spleen – the initial vectors in the trajectories, toward the top left

of the figure, have large magnitudes. This is followed by more

gradual and long-term improvements, particularly in the lungs.

For the 3-mg/kg dose, larger improvements (i.e., longer vectors)

persist for more time during the simulated treatment period.

Overall, these trends are in agreement with data observed in

ASMKO mice that ERT response is dose dependent23 and

higher systemic ERT doses are necessary to observe clear-

ance from the lungs compared to the spleen.35 This scenario

illustrates how the semimechanistic structure of the QSP model

enables understanding of the relationship among different end

points and how treatment affects different aspects of the dis-

ease burden. It also provides an example of how interindividual

mechanistic differences can be propagated among levels of the

model to help understand population-level variability.

DISCUSSION

We have presented the first QSP model for ASMD and its

response to the ERT olipudase alfa. The model provides a

semimechanistic and system-level description of the disease

Figure 4 Predicted differential responses in the spleen and lung for alternative olipudase alfa maintenance doses (3 mg/kg in solid
blue vs. 1 mg/kg in dashed red) for virtual patients with varying disease severities at onset. The left and center columns show the tem-
poral predictions of treatment response over 15 years of treatment, whereas the right column shows the response trajectory
representations.
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process and therapeutic response. It successfully replicates
both treatment-na€ıve disease development patterns and clini-
cal response trends on two pharmacodynamic (PD) bio-
markers and two clinical end points. Model performance has
been demonstrated on data from five adult patients from the
phase Ib clinical trial of olipudase alfa and its ongoing long-
term extension. As illustrated by the qualification scenarios,
the model can quantitatively address specific questions about
differential patient responses and the propagation of variabil-
ity across multiple biological levels.

Over the past several years, QSP models have been
developed for numerous therapeutic areas. However, rare
diseases, including lysosomal storage diseases like ASMD,
are a new direction for QSP modeling. QSP provides valu-
able insight into the specific challenges associated with this
therapeutic area, including consideration of pharmacologi-
cal responses across multiple heterogeneous end points
and, critically, mechanism-based assessment of variability
within small patient populations.

In particular, an ongoing application of the ASMD QSP
model is to support the extrapolation of olipudase alfa to the
pediatric population. Modeling and simulation is becoming an
increasingly important tool in pediatric drug development,
and has been encouraged by regulatory agencies.36–40 In
particular, the key role of mechanistic modeling approaches
(e.g., QSP) as a complement to empirical approaches (e.g.,
PK/PD modeling) during pediatric extrapolation has been
recognized and recommended.41 QSP provides a unique and
useful mechanism-based perspective for evaluating disease
and response similarity and the potential factors affecting pro-
gression and intervention response in pediatrics compared
with adult patients.

To facilitate pediatric extrapolation, the QSP approach lever-
ages the concept that similarity in outputs results from

similarity in underlying processes (disease similarity). For
example, upon calibration of the model to clinical response
data from individual patients in the adult and pediatric cohorts,
model-predicted distributions of clinical and PD end points
within and between cohorts can be directly assessed. In addi-
tion, the distributions of sensitive parameters governing these
outputs can be compared to help understand any observed
variability. Moreover, model outputs and parameters can be
postprocessed to better understand patterns of variability
within the patient population, and to quantify uncertainty. In
this regard, the mechanistic framework also provides an
opportunity for representing disease progression within the
context of normal pediatric development, including scaling of
appropriate physiological parameters. Evaluating within-cohort
and between-cohort distributions at these different levels (e.g.,
output and parameter) enables the system-level assessment
of response similarity between adult and pediatric patients.

The model will continue to be updated and refined as addi-
tional data become available from ongoing adult and pediatric
clinical trials, in order to test model performance for new
patients based on their baseline disease characteristics and
age, improve the assessment of patient variability, and ame-
liorate uncertainty in the model. However, it is important to
acknowledge the inherent data limitations within the rare dis-
eases. In addition, several directions are being explored
for expanding the model. One important consideration is
integrating knowledge regarding the complex relationship
between ASMD genotypes and phenotypes.42,43 By interpret-
ing genotypes in terms of patterns of pathway-driven disease
development, the model can more directly attribute the diver-
sity in the ASMD population and assist in patient stratification.
A second direction is the mechanistic representation of rele-
vant aspects of the inflammatory response. The sphingolipid
metabolism pathway contains highly bioactive molecules,

Figure 5 Predicted treatment response in spleen volume and Hb-adjusted % predicted diffusing capacity of the lung for carbon monox-
ide (DLco) in a virtual acid sphingomyelinase deficiency (ASMD) patient population with pretreatment spleen volume >15 multiples of
normal (MN) and pretreatment hemoglobin (Hb)-adjusted % predicted DLco �50%. The left panel shows a scatterplot comparing vir-
tual patients before treatment (black) with the same virtual patients after receiving 15 years of treatment at a maximum dose of
0.6 mg/kg (blue) or 3 mg/kg (red). The right panel shows the individual response trajectories of a subset of these virtual patients.
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including ceramide and sphingosine-1 phosphate, which are

important regulators of the inflammatory response.44,45 As

additional data become available, this will facilitate more

mechanistic descriptions of splenomegaly and pulmonary

function impairment, including tissue damage1 and feedback

between the organ submodels and the PBPK model. Descrip-

tion of other clinical manifestations, including liver disease, is

a third key direction. To enable these model development

goals, it is necessary to leverage additional diverse data sour-

ces, including preclinical and patient registry data, to supple-

ment clinical data.
Overall, the ASMD QSP model provides a mechanistic

basis for understanding the variability in the ASMD patient

population, both within and between the adult and pediatric

populations. The results shown demonstrate that the model

recapitulates responses observed in completed and ongoing

clinical trials. The qualification scenarios illustrate how the

model can help address relevant questions associated with

the clinical development of olipudase alfa, and, hence, sup-

port decision making. Ongoing model development will further

extend these capabilities, with the ultimate goal of helping to

improve outcomes for patients with non-neurological manifes-

tations of ASMD.
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