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a b s t r a c t 

Model-based Bayesian inference from high-content data obtained on live specimens is a burgeoning field with 

demonstrated applications to neuroscience. In parallel, computer vision methods for extracting the calcium 

signaling information from imaging data have advanced in application to neuronal physiology. Here, we are 

describing in detail a method we have recently developed to study calcium dynamics in astrocytes, which 

combines computer vision with model-based Bayesian learning to deduce the most likely molecular kinetic 

parameters underlying the observed calcium activity. As reported in the companion experimental study, this 

method allowed us to identify the key molecular changes downstream of a multi-gene deletion modeling the 

human 22q11.2 deletion syndrome, the most common human microdeletion and the genetic factor with the 

highest penetrance for schizophrenia. 

• Methodological details are laid out, from our imaging approach to our adaptation of the VBA-CaBBI algorithm 

previously developed primarily for brain functional imaging data. 
• The analytical pipeline is suited for further applications to glial cells and adaptable to other cell types 

exhibiting complex calcium dynamics. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Method name: Bayesian inference of molecular kinetic parameters from astrocyte calcium imaging data 

Keywords: Schizophrenia, 22q11.2 deletion syndrome, Glia, Model-based inference, Li-Rinzel model, Calcium dynamics, Calcium 

signaling, VBA, MIN1PIPE 

Article history: Received 21 June 2022; Accepted 15 August 2022; Available online 23 August 2022 

DOI of original article: 10.1016/j.neulet.2022.136711 
∗ Corresponding author. 

E-mail address: whofmann@buffalo.edu (W.A. Hofmann). 

https://doi.org/10.1016/j.mex.2022.101825 

2215-0161/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.mex.2022.101825
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2022.101825&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neulet.2022.136711
mailto:whofmann@buffalo.edu
https://doi.org/10.1016/j.mex.2022.101825
http://creativecommons.org/licenses/by/4.0/


2 I.V. Maly and W.A. Hofmann / MethodsX 9 (2022) 101825 

 

 

 

 

 

 

 

 

 

Specifications Table 

Subject area Neuroscience 

More specific subject area Computational neuroscience 

Protocol name Bayesian inference from intracellular calcium imaging data 

Reagents/tools GCaMP6 associated adenovirus vector (SignaGen; Frederick, MD) 

DMi8 microscope (Leica, Wetzlar, Germany) 

MATLAB software (Mathworks, Natick, MA) 

MIN1PIPE software package (Lu et al., 2018) 

VBA software package (Daunizeau et al., 2014) 

CaBBI software package (Rahmati et al., 2016) 

Experimental design Primary astrocytes are isolated from neonate mice, subcultured, and transduced with a 

fluorescent calcium indicator protein. Intracellular calcium activity is recorded with a 

microscope and individual temporal profiles are extracted from the video data using the 

MIN1PIPE algorithm. The profiles are fed into the Bayesian inference package 

(CaBBI-VBA) modified to utilize a calcium kinetic model suited to astrocytes. 

Trial registration N/A 

Ethics The animal procedures were approved by the University at Buffalo Institutional Animal 

Care and Use Committee and are consistent with the recommendations of the American 

Veterinary Medical Association. 

Value of the Protocol • Allows to dissect complex calcium imaging data in terms of the underlying molecular 

kinetics 
• Minimal human supervision once a suitable kinetic model is specified 
• Adaptable to study complex genetic and pathophysiological conditions 

Description of protocol: 

Background 

Studies of calcium signaling in brain cells, including astrocytes, primarily involve the expression 

and imaging of fluorescent calcium indicator proteins [2 , 6 , 17] . Our approach to analyzing the

dynamics of intracellular calcium in astrocytes is based on making suitable modifications to the 

previously developed Bayesian method for analyzing calcium dynamics in neurons, known as CaBBI 

(calcium biophysical Bayesian inference, Ref. [15] ). This approach is supplemented by adding a

computer-vision step to automatically extract the temporal profiles of calcium indicator fluorescence 

in individual cells from the imaging data, using MIN1PIPE [9] , an algorithm previously developed for

neuronal applications. 

Method details 

Cell culture and treatment 

The Df1 / + mouse line, a transgenic model of the human 22q11.2 deletion [8 , 14] , was maintained on

the C57BL/6 J genetic background as previously described [18] . Df1 / + mice were kindly provided by Dr.

Stanislav S. Zakharenko, St. Jude Children’s Research Hospital (Memphis, TN). Primary cultures were 

derived from cortices of neonate hemizygous Df1 mice ( Df1 / + ) and their wild-type ( + / + ) littermates

(control) as previously described [16] . Specifically, the cortices were triturated, digested with trypsin 

(Thermo Fisher, Waltham, MA), and seeded in flasks (Corning, Corning, NY) coated with polylysine 

(Thermo Fisher). 

After 1 week in culture, the cells were immunomagnetically purified using the Miltenyi Biotech 

(Auburn, CA) anti-ACSA2 astrocyte purification kit according to the manufacturer’s protocol, as 

described previously [1 , 5] . Purified cells were maintained in ScienCell (Carlsbad, CA) complete

astrocyte medium-animal. Two weeks later, the cells were transduced with adeno-associated viral 

vectors (AAV; multiplicity of infection of 10 0,0 0 0) expressing the fluorescent intracellular calcium

indicator fusion protein, GCaMP6m (SignaGen; Frederick, MD) [2] in accordance with the supplier’s 

protocol. Specifically, the vector particles were added to the cell culture medium at the specified

concentration, and 2 days were allowed for expression before imaging. 
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For imaging, cells were grown in Labtek (Grand Rapids, MI) optical glass-bottom chambers coated

ith polylysine (Thermo Fisher, Waltham, MA). Prior to imaging, the medium was exchanged for

anks balanced salt solution with calcium (1.26 mM), magnesium (0.89 mM), and d -glucose (5.6 mM;

hermo Fisher), and the culture was allowed to equilibrate for 40 min. In the experiments with

hapsigargin (Thermo Fisher), the inhibitor was added to the medium at 200 pM on the microscope

tage. 

icroscopy 

Video recording was performed on a Leica DMi8 inverted fluorescence microscope equipped with

n environmental control chamber for live-cell imaging. The light-emitting diode excitation power

as set to 1% and attenuated by 85% using a neutral density filter to minimize light exposure.

OIs (from which the individual fluorescence time traces were extracted) were defined automatically

y MIN1PIPE as spatially disjoint, temporally uncorrelated areas of strong fluorescence variation

hroughout the entire astrocyte. Images were acquired in a rapid time-lapse fashion (1 Hz) over 3 min

ith the excitation shutter closed between frames using Leica LAS X software and a monochrome

ooled camera (Leica DFC90 0 0GTC). A field of view was selected blindly and the culture was imaged

n a predetermined geometrical pattern around the first field, using the computerized stage control.

ach field of view was recorded once, and a field diaphragm was used to restrict excitation light

xposure to the area being imaged. 

mage analysis 

Imaging data were analyzed in MATLAB R2020b software (MathWorks, Natick, MA). The computer

ision algorithm in the MIN1PIPE package (default settings, version v3 alpha; https://github.com/

inghaoLu/MIN1PIPE/releases/tag/v3.0.0 ) was used to automatically identify individual active regions

n the image sequences and extract fluorescence time courses from them [9] . MIN1PIPE accepts

aw calcium fluorescence videos, removes the background, finds separated ROIs and outputs

econvolved calcium fluorescence traces. The algorithm contains an enhancing module, which

inimizes fluctuations and background unevenness, and a signal extraction module that identifies

he ROIs and corresponding calcium traces without the need to specify unknown parameters a priori.

IN1PIPE extracts signals in two steps: the step known as “seeds-cleansing,” to detect the set of

eal ROIs, followed by a version of constrained nonnegative matrix factorization (CNMF) applied

patiotemporally to separate ROIs. Thus, first, an over-complete set of seed ROIs is generated at

andom, which contains all potential ROI centers and thus includes a large number of false positives.

his set is coarsely culled by applying a two-component Gaussian mixture model (GMM) to the peak-

alley difference in the corresponding fluorescence traces, with the components being the real and

alse-positive populations. The remaining false positives are removed using recurrent neural networks

RNNs) trained offline. ROIs are further culled by preserving only the ones with maximum intensity

mong those that are spatiotemporally close. At the second step, CNMF is applied iteratively to

pdate the outlines of ROIs and the deconvolved temporal traces. The unique feature of the CNMF

lgorithm in MIN1PIPE is that it operates on the original image intensity data at each iteration of

pdating the outlines and traces. This is especially important in the present application to astrocytes,

ere information beyond the mere timing of the spikes is of first importance. It also allows the

ptimization to be parallelized in MIN1PIPE, which makes the run times on wide fields such as

btainable in vitro manageable. The structural element size for the morphological opening operation

as set according to the image scale (13 μm/10 pixels). 

inetic inference 

verview of the method 

Kinetic parameters of the cell calcium system that are most likely, given the fluorescence time

ourses, were inferred using a suitably modified CaBBI module [15] for the VBA package [3] , which

https://github.com/JinghaoLu/MIN1PIPE/releases/tag/v3.0.0
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implements a variational Bayesian approach [4] . CaBBI infers the cellular kinetics controlling the

intracellular calcium concentration from fluorescent calcium indicator time series. VBA describes a 

specific application with a generative model that consists of evolution and observation functions: 

the former captures the intrinsic dynamics of the system in question and the latter quantitatively

maps these onto the measurement readout from the experiment. In a specific application, the VBA

functionality is called by a MATLAB script specific to the problem, which also specifies the evolution

and observation functions to be used. The CaBBI module supplies this script and the functions that

are specific to calcium kinetics in neural cells. 

The original CaBBI operates with kinetic models for action potential-driven calcium kinetics in 

neurons [15] . To apply the same method to astrocytes, the kinetic models were replaced by the Li-

Rinzel model for intracellular calcium kinetics [7 , 11] (see also, e.g., [12] ). This model considers the

exchange of calcium ions between cytosolic and endoplasmic pools and incorporates the kinetics 

of SERCA, the inositol trisphosphate receptor (InsPR), and ligand-independent calcium leak from the 

endoplasmic reticulum (ER). InsPR kinetics capture the intrinsic inactivation, potentiation by cytosolic 

calcium, and activation by inositol triphosphate (IP3). In addition, the Li-Rinzel model considers the 

production and degradation kinetics of IP3, the former being dependent on the cytosolic calcium 

concentration. We coded this model as an evolution function for use in the VBA-CaBBI environment.

All parameters were held at their previously validated values (see [12] ) or varied around these values

as prior means in the Bayesian inversion procedure. Specifically, the parameters that could be directly

affected by the expression levels of the relevant proteins (extensive parameters) were varied: the rate

constants of each of the calcium fluxes listed above and of the production and degradation of IP3.

Finally, to account for the properties of GCaMP6m, the value of the dissociation constant in the CaBBI

observation function was set to 167 nM [2] . 

In sum, the Bayesian inference approach to calcium kinetics in astrocytes that is presented here is

implemented by running CaBBI with a new evolution function in the MATLAB environment with the

VBA toolbox installed. The new function encodes the kinetic equations described below. 

Kinetic model 

Our implementation of the kinetic model for spontaneous intracellular calcium variations in 

astrocytes follows Nadkarni and Jung’s [12 , 13] application of the Li-Rinzel model [7] that is used

as the basic template in most models to study astrocytes [11] . Specifically, the following differential

equations are solved: 

dC cs 

dt 
= J c − J s + J l , 

dq 

dt 
= a 2 d 2 

p + d 1 
p + d 2 

( 1 − q ) − a 2 C CS q, 

dp 

dt 
= − 1 

τ
( p − p 0 ) + v p 

C CS + 0 . 2 k p 

C CS + k p 
. (1) 

Here, C CS is the concentration of the calcium ion in the cytosol, q is the InsPR recovery variable,

and p is the concentration of IP3. The model is closed by the following conservation relationship: 

C ER = 

1 

c 1 
[ C 0 ( 1 + c 1 ) − C CS ] , (2) 

where C ER is the concentration of calcium in the ER, C 0 is the total concentration of calcium ion in

cell, and c 1 is the volume ratio between the ER and the cytosol. The fluxes through InsPR ( J c ) and

SERCA ( J s ) and the leak flux ( J l ) are defined as follows: 

J c = v 1 
(

p 

p + d 1 

)3 ( C CS 

C CS + d 5 

)3 

q 3 ( C ER − C CS ) , 

J s = v s 
C 2 

CS 

C 2 
CS 

+ k 2 s 

, 
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Table 1 

Model parameter values. 

Parameter Value 

v s 0.9 μM/s ∗

C 0 2 μM 

v 2 0.11 s –1 ∗

k s 0.1 μM 

∗

a 2 0.2 

d 1 0.13 

d 2 1.049 

d 5 0.08234 

v 1 6 s –1 ∗

c 1 0.185 

τ 7.14, s ∗

p 0 0.16 μM 

v p 0.13 μM/s ∗

k p 1.1 

∗ Varied in the model 

inversion. 
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J l = v 2 ( C ER − C CS ) . (3)

The values [12 , 13] of the parameters in the above expressions Eqs. (1) –( (3) ) are given in Table 1 . 

bservation model 

The cytosolic calcium concentration from the intracellular calcium kinetics model ( C CS , Eq. (1) )

s used to predict the calcium indicator fluorescence level. The CaBBI [15] approach to this task is

ncapsulated in the following observation function: 

g ( C CS ) = κF 
C CS 

C CS + K d 

+ d F . (4)

Here, K d is the dissociation constant of the indicator (set to 167 nM for our experimental

onditions, see above), and κF and d F are the scale and translation parameters that are determinable in

he model inversion and account for the conditions specific to each observation (gain and background

evels). The output of the observation function is evaluated directly against the recorded fluorescence

n the model inversion. See the next section for the algorithm of determining the observation function

arameters from data. 

ayesian model inversion 

In the VBA [3] approach to approximate Bayesian inversion for biological time series models,

idden states ( x ) of the system are updated at each time point, t , using the deterministic evolution

unction f (kinetic model, above) and an assumption of additive noise: 

x t+1 = f ( x t , θ ) + ηt . (5)

A similar approach is taken to the predictions of the observable, y , using the observation function

 : 

y t = g ( x t , ϕ ) + ε t . (6)

In these expressions Eqs. (5) , ( (6) ), θ and ϕ are the parameters of the respective function, whereas

and ε are mean-zero Gaussian variables. Specifically, we have 

ηt ∼ N 

[
0 , ( αY x ) 

−1 
]
, 

ε t ∼ N 

[
0 , ( σY x ) 

−1 
]
, 

(7)
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with Y being the corresponding inverse covariance matrices. In our case, y corresponds to the recorded

fluorescence, while x is the set of dependent variables in the cell kinetic model ( C CS , q, p ). Appropriate

accuracy of the kinetic model integration between time points t must be ensured, and this is achieved

with the use of the “microtime” resolution setting as detailed below. Together, the evolution and

observation models Eqs. (5) , ( (6) ) comprise the generative model, m . 

The generative model inversion, given the data, is based on the variational Bayesian approach and

Laplace approximation [3] . Given m and y t , we aim to infer the moments of the posterior distributions

p ( υ| y t , m) on υ = ( x t , ϕ, θ , α, σ ). The conditional mean μ and covariance � are updated iteratively

by optimizing F ( Q, y t ), termed free energy, with respect to Q ( υ), the approximate posterior density.

The method assumes that Q can be represented as a product of the marginal posterior densities. The

Laplace (Gaussian) approximation is used for each of these, except for the precision parameters α and

σ , which are modeled with gamma distributions. So, for the underlying kinetic parameters of interest,

we have 

Q ( θi ) ≈ N 

(
μθi 

, �θi 

)
. (8) 

F ( Q, y t ) constitutes the lower bound on the logarithm of the model evidence. It is computed as

the difference of the log-evidence and the Kullback-Leibler divergence of the approximate from true 

posterior density: 

F ( Q, y t ) = ln p ( y t | m ) − D KL [ Q ( υ) ‖ p ( υ| y t , m ) ] . (9) 

A version of the Gauss-Newton method is used for the iterative stepping, and a predefined limited

number of subsequent observation time points is used to update the hidden states at the given time

point instead of the full time series. Full computational details and references for the VBA method can

be found in the cited work [3] . 

Software versions and settings 

MATLAB R2020b (MathWorks, Natick MA) was used with VBA v1.9.2 ( https://github.com/ 

MBB- team/VBA- toolbox/releases/tag/v1.9.2 ) and CaBBI distributed as part of the same. Default 

parameter settings were used. Microtime resolution was selected as the method of integration of 

the underlying dynamical system (the Li-Rinzel model), whereby the integration step was 0.1 s, i.e.,

ten times smaller than the image acquisition interval. This ensures stability of time integration in

the stepping procedure that is part of VBA, taking into account the comparative stiffness of the

dynamic system of intracellular calcium kinetics. In VBA, the microtime regime allows integration 

of the underlying dynamic system with a different (smaller) time step than the one used to

approximate the data in the Bayesian inversion. Thus, the time step in the integration of the kinetic

model can be selected independently of the optimal experimental data acquisition interval. In the 

present application, this capability is essential, since integration of stiff systems requires small time 

increments. 

Priors 

In the VBA-CaBBI environment, the evolution parameter priors are Gaussian. The priors used are

specified in Table 2 . In accordance with the approach described above, the prior means of the kinetic

parameters were equal to their values in the Li-Rinzel model. The other prior means and variances

( Table 2 ) were either left at the values selected in the referenced version of CaBBI or—where the

parameters such as the initial conditions were new—set to the correct order of magnitude according

to the Li-Rinzel model (means) and CaBBI (analogous variances). 

Non-negativity of the variable parameters was ensured through the transformation approach, as 

used in VBA and CaBBI. Specifically, the physical parameter was represented as a product of a

constant equal to the parameter’s physical prior mean and an exponential factor whose exponent 

was the variable parameter in the computational inversion. Where this is the case, the logarithmic

transformation is noted in Table 2 . The dimensional prior mean value given in the table in these

https://github.com/MBB-team/VBA-toolbox/releases/tag/v1.9.2
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Table 2 

Priors. 

Parameter Mean Variance (on the exponent, where noted) 

[Ca 2 + ] t = 0 , cytosolic 0.1 μM 0.05 μM 

2 

InsPR recovery variable at t = 0 0.5 0.2 

[IP3] t = 0 0.5 μM 0.2 μM 

2 

SERCA V max (v s ) 0.9 μM/s 2 (exp) 

InsPR k ( v 1 ) 6 s –1 2 (exp) 

ER leak k ( v 2 ) 0.11 s –1 2 (exp) 

IP3 τ (lifetime) 7.14 s 2 (exp) 

IP3 synthesis k ( v p ) 0.13 μM/s 2 (exp) 

SERCA K m ( k s ) 0.1 μM 2 (exp) 
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nstances is the physical prior mean, whereas the corresponding computational inversion parameter

ad a zero prior mean and the dimensionless prior variance given in the table. 

The use of the exponential transformation results in a different form of distribution in the

arameter space compared with what might be achieved with non-transformed parameters. Any

nfluence of this transformation on the efficiency of optimization may be of interest in future

evelopment of the application of the Bayesian method to intracellular calcium. In general, the

onlinearity of the underlying kinetics results in very complex distributions in the parameter space,

s can be seen in the cited prior work that used a different (non-variational) optimization method

19] . Any effect of the additional skew introduced by the exponential transformation will have to be

iewed on this background, which makes it unlikely to be a controlling factor. 

onvergence criteria 

Individual GCaMP6m fluorescence traces constituted the datasets for independently run VBA

nversions (one inversion per trace), resulting in inference of parameter sets characterizing the

ndividual active regions. Each inversion was run for a maximum of 100 iterations using the default

inimum increment on the free energy function (0.02). Runs returning a positive state noise precision

yperparameter were accepted. While not censored by fit of the data in the classical sense, it was

nformally verified that such runs resulted in an adequate fit ( R 2 > 90%). Informal analysis also

howed that there was wide separation of the so-defined successful from unsuccessful runs in any

imension commonly used to evaluate data fit, and that the unsuccessful runs could be attributed

o the comparative stiffness of the Li-Rinzel model and the relatively rapid stepping scheme selected

or reasons of overall computational efficiency. The data (fluorescence traces) causing the rejected

nversion runs were excluded from the analysis. In each experimental group, it was formally verified

hat the rejection rate did not exceed 5% (usually amounting to 0–3%). 

escriptive statistics and group comparisons 

Posterior mean values of parameters estimated from fluorescence traces were treated in the

requentist framework as parameter sets characterizing the corresponding individual regions. This

pproach, employed in a Bayesian single-cell study [19] , emulates standard handling of direct

xperimental cell measurements. Summary statistics were compiled across the active regions from

he same experimental group. Group means and standard deviations calculated in this manner are

resented for descriptive purposes ( Table 3 ). Statistical significance of group differences was evaluated

sing the Kolmogorov-Smirnov test on the distributions of the given parameter among the active

OIs of control and Df1 / + astrocytes. This allowed us to identify SERCA V max and ER leak k as the

arameters that were significantly altered in the Df1/ + astrocytes, as a first application [10] of the

escribed method. Experiments with the SERCA inhibitor thapsigargin, which affects both parameters

ue to the reverse flux through SERCA being one of the mechanisms of ER leak, were conducted

10] to confirm the power of the method to selectively detect changes in these parameters ( Table 3 ). 
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Table 3 

Summary statistics of individual posterior means. 

Parameter 

Untreated wild type Deletion Thapsigargin 

average SE average SE average SE 

SERCA V max , μM/s 1.57 0.02 1.34 0.01 1.26 0.02 

InsPR k , s –1 13.9 0.1 13.3 0.1 11.9 0.3 

ER leak k , s –1 0.108 0.001 0.090 0.001 0.084 0.002 

IP3 τ (lifetime), s 34.0 0.2 33.5 0.1 32.1 0.4 

IP3 synthesis k , μM/s 0.00782 0.0 0 0 02 0.00796 0.0 0 0 02 0.00775 0.0 0 0 06 

SERCA K m , μM 0.0118 0.0 0 01 0.0127 0.0 0 01 0.0123 0.0 0 02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

To date, the described method has enabled detection of the critical differences between the wild-

type and transgenic astrocytes in the mouse model of 22q11.2 syndrome in the accompanying article

[10] . In the present implementation, both the biophysical characteristics of the employed indicator and

the simplification of not considering the finite time of its fluorescence decay in the computational

analysis have been methodological choices tuned for the study of intracellular kinetics on a multi-

second time scale. Future applications of this method will be able to characterize the intracellular

calcium kinetics at a higher temporal resolution using calcium indicators with faster fluorescence 

decay as well as introducing a decay term in the observation function. Furthermore, the demonstrated

[10] use of kinetic inference from time series data supplied by a computer vision algorithm that

is capable of handling noisy in vivo images establishes an analytical pipeline suitable for future

in vivo applications. At the same time, given its ability to detect kinetic differences in individual

cell cultures, application of this method to patient-derived cells represents a new avenue toward 

functional molecular diagnostics as part of future individualized medicine approaches. 
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