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Eccentric exercise has been associated with an increase in

serial sarcomere number in some studies,1 but not in others.2

Similarly, increasing excursion of muscles resulted in sarco-

merogenesis in some studies using growing animals,3 but not

in others using skeletally mature animals.4 However, chronic

elongation and chronic shortening appears to be a strong regu-

lator of sarcomere number increase5,6 and decrease,5,7 respec-

tively, in animal models. Despite an abundance of research on

the regulation of sarcomerogenesis under a variety of condi-

tions, the mechanisms underlying in series sarcomere number

adaptations in skeletal muscles remain a puzzle, especially in

non-invasive human studies where measurements of sarco-

merogenesis following interventions have not been possible to

date.

In this issue of the Journal of Sport and Health Science,

Pincheira et al.8 combined state-of-the-art ultrasound imaging

for fascicle length and second harmonic generation micro-

endoscopy for sarcomere length measurements to estimate sar-

comere number before and after a 3-week Nordic hamstring

eccentric exercise protocol. The combination of these techni-

ques provides an exciting avenue for studying basic muscle

mechanics in human subjects, resulting in unique data and

novel insight into in vivo muscle adaptation and function. Spe-

cifically, Pincheira et al.8 confirmed that the Nordic hamstring

eccentric exercise intervention resulted in increased fascicle

length9 in some parts of the long head of the biceps femoris,

but added the novel information that this was not accompanied

by a corresponding increase in serial sarcomere number, as

one might have expected, but was caused by a corresponding

increase in the average sarcomere length. Not surprisingly,

they also found that strength (measured using the Nordic ham-

string apparatus) increased with training and assuming (as the

authors did) that the hip angle remained constant during the

exercise, peak force would occur at a more extended knee

angle (and thus greater biceps femoris length) after compared

to before the exercise intervention.

Whether the sarcomere length at which peak force occurred

changed with intervention is not known, but an increase in sar-

comere length at rest (prone position and passive muscle) from

an average of 2.9 mm to 3.4 mm occurred, suggesting a shift
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within the descending limb of the force�length relationship.10

This is somewhat surprising as human knee flexor strength

curves show that the hamstring muscles typically operate on

the ascending part of the force�length relationship, that is

below average sarcomere length of 2.6 mm,11 reaching their

greatest strength near the longest muscle length (fully

extended knee angle). Combined, these results infer a substan-

tial shortening of fascicle length in maximally contracting

compared to passive muscle, resulting in a sarcomere shorten-

ing of around 1.0 mm upon muscle activation. Another possi-

bility is that the timeline assessed in the study was not

sufficient to observe sarcomerogenesis and that the increase in

sarcomere length precedes the addition of sarcomeres in

series12 with sarcomeres later returning to their baseline length

and to excursions that encompass the ascending limb of the

force�length relationship.

One of the missed opportunities in the study by Pincheira

et al.8 was that they did not attempt to measure/estimate sarco-

mere length in the active muscle. Although obtaining dynamic

sarcomere lengths during an exercise is probably impossible

using micro-endoscopy, measuring dynamic fascicle length

using ultrasound imaging is relatively straight forward. By

knowing the number of serial sarcomeres (as they do from the

static measurements), the average sarcomere lengths for the

dynamic Nordic hamstring exercise could have been estimated

by dividing the instantaneous fascicle length by the serial sar-

comere number.13,14 By doing so, the average sarcomere

length at which peak forces were obtained could have been

estimated, and it would have been of great interest to see if

indeed peak forces following training occurred at a longer sar-

comere length than prior to training, or if peak forces, despite

occurring at different joint angles, occurred at about the same

sarcomere lengths, as found previously for maximal and sub-

maximal muscle activation.15 Such an analysis would have

revealed if changes in passive properties (tendon length, ten-

don stiffness, collagen matrix, and titin stiffness) were affected

by the Nordic hamstring exercise intervention, thereby allow-

ing for different amounts of fascicle/sarcomere shortening

with activation prior to and post-exercise intervention.

Sarcomere lengths non-uniformities within subjects and at

a given location were great and covered a range of 1.0 mm
and more for most subjects in this study (Pincheira et al.,8
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Fig. 5), corresponding to about 37% of human optimal sarco-

mere length.10 These results agree with the great sarcomere

length non-uniformities found in frog,16 mouse,17 rabbit,18

and human skeletal muscles,19 but are in stark contrast to the

essentially uniform sarcomere lengths found, for example, in

insect indirect flight muscles (personal observation).

Although it has been argued that vertebrate skeletal muscles

have inherently uniform sarcomere lengths in passive or

isometrically contracting muscles, and sarcomere length

non-uniformities only occur following active muscle stretch-

ing on the descending limb of the force�length

relationship,20,21 this study, like many others, suggests that

this is not the case. Sarcomere length non-uniformities appear

to be a natural occurrence in vertebrate skeletal muscles at all

levels and all contractile conditions, including isometric con-

tractions. The “perfectly” uniform sarcomere lengths of

insect indirect flight muscle are likely a by-product of a stiff

muscle containing structural proteins that allow for very

small sarcomere excursions and produce extremely high pas-

sive forces at short sarcomere lengths.22 Such a structural

arrangement may be of great advantage for muscles that rely

heavily on their passive components during normal locomo-

tion (insect flight), but would not work well for human skele-

tal muscles where a large range of sarcomere lengths needs to

be accommodated with (preferably) little passive resistance

from the muscles.

Aside from the long sarcomere lengths found by Pincheira

et al.8 compared to others23 for the biceps femoris in the prone,

passive position, they also found great variations in the median

sarcomere lengths across subjects (Pincheira et al.,8 Fig. 3B).

Median sarcomere lengths for the distal portion of the biceps

femoris ranged from about 2.5 mm (before training) to 4.0 mm
(after training), and disregarding training effects ranged by

about 1.0 mm for both, the before and after training conditions.

Force�angle properties in humans and animals tend to be

remarkably similar, suggesting that sarcomere lengths are

similar as well for given levels of activation (passive in this

case) and joint angles. Also, sarcomere length measurements

on cadaveric specimens indicated great similarity in average

sarcomere length across human lower limb muscles in the ana-

tomical configuration.23 Therefore, the great variability in

median sarcomere length observed by Pincheira et al.8 is sur-

prising and implies that the knee flexor strength curves for

these subjects would have varied substantially. Measuring the

force�angle properties for the knee flexors, even with all the

difficulties in interpretation, might have provided important

clues as to the functional effects of these substantial diffe-

rences in median sarcomere lengths across subjects.

Interestingly, the variation in estimated serial sarcomere

number across subjects was reduced substantially after training

(Pincheira et al.,8 Fig. 3C) for the distal portion of the biceps

femoris long head where changes in fascicle lengths and sarco-

mere lengths were observed, suggesting that the variability in

sarcomere lengths across subjects may have influenced how
the muscle responded to the Nordic hamstring eccentric exer-

cise intervention.

The study by Pincheira et al.8 provides an exciting glimpse

at in vivo muscle function across structural levels and opens

unimagined possibilities for future research on the properties

and function of in vivo human skeletal muscles. Despite cen-

turies of recognition of the striation/sarcomere pattern in

skeletal muscles, the complex interaction between serial sar-

comere adaptation, sarcomere length non-uniformity, and

muscle properties remains a puzzle yet to be resolved

satisfactorily.
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