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Abstract

The transcriptional network determines a cell’s internal state by regulating protein expres-

sion in response to changes in the local environment. Due to the interconnected nature of

this network, information encoded in the abundance of various proteins will often propagate

across chains of noisy intermediate signaling events. The data-processing inequality (DPI)

leads us to expect that this intracellular game of “telephone” should degrade this type of sig-

nal, with longer chains losing successively more information to noise. However, a previous

modeling effort predicted that because the steps of these signaling cascades do not truly

represent independent stages of data processing, the limits of the DPI could seemingly be

surpassed, and the amount of transmitted information could actually increase with chain

length. What that work did not examine was whether this regime of growing information

transmission was attainable by a signaling system constrained by the mechanistic details of

more complex protein-binding kinetics. Here we address this knowledge gap through the

lens of information theory by examining a model that explicitly accounts for the binding of

each transcription factor to DNA. We analyze this model by comparing stochastic simula-

tions of the fully nonlinear kinetics to simulations constrained by the linear response approxi-

mations that displayed a regime of growing information. Our simulations show that even

when molecular binding is considered, there remains a regime wherein the transmitted infor-

mation can grow with cascade length, but ends after a critical number of links determined by

the kinetic parameter values. This inflection point marks where correlations decay in

response to an oversaturation of binding sites, screening informative transcription factor

fluctuations from further propagation down the chain where they eventually become indistin-

guishable from the surrounding levels of noise.

Introduction

Studies over the past half century have made it clear that eukaryotic gene-regulatory networks

are exceedingly complex. Within these networks, proteins appropriately named transcription

factors (TFs) bind to regulatory elements within promoter regions of DNA to modulate the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245094 January 13, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rowland MA, Pilkiewicz KR, Mayo ML

(2021) Devil in the details: Mechanistic variations

impact information transfer across models of

transcriptional cascades. PLoS ONE 16(1):

e0245094. https://doi.org/10.1371/journal.

pone.0245094

Editor: Ramon Grima, University of Edinburgh,

UNITED KINGDOM

Received: September 25, 2020

Accepted: December 22, 2020

Published: January 13, 2021

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data is found in

the manuscript.

Funding: Funding was provided by the U.S. Army’s

Installations and Operational Environment Basic

Research program. The authors express gratitude

to Dr. E. Ferguson, Technical Director of the US

Army ERDC Installations and Operational

Environment Program, for support of this research.

Opinions, interpretations, conclusions, and

recommendations are those of the author and are

not necessarily endorsed by the U.S. Army.

https://orcid.org/0000-0002-6759-8225
https://orcid.org/0000-0002-3278-2268
https://doi.org/10.1371/journal.pone.0245094
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245094&domain=pdf&date_stamp=2021-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245094&domain=pdf&date_stamp=2021-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245094&domain=pdf&date_stamp=2021-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245094&domain=pdf&date_stamp=2021-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245094&domain=pdf&date_stamp=2021-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0245094&domain=pdf&date_stamp=2021-01-13
https://doi.org/10.1371/journal.pone.0245094
https://doi.org/10.1371/journal.pone.0245094
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


transcriptional rates of genes [1]. Once TFs bind to DNA, they may recruit other elements to

activate the transcription of the gene or act to block additional critical binding events needed

for transcription [1, 2]. TFs are able to bind multiple sites, although with varying levels of spec-

ificity, and some genes require interactions with multiple TFs to initiate transcription [2–5]. In

the Escherichia coli bacterium (E. coli), for instance, the gene regulatory network is hierar-

chically organized so that only a handful of “global” TFs remain unregulated by any others,

with more precise regulation controlled by co-regulation with local TFs [6]. This level of com-

plexity can generate network structures in which a gene is controlled, directly or indirectly, by

many upstream TFs. The E. coli gene slp, for example, is regulated by 17 different TFs [7]. This

begs an important question regarding control of this and other biologically networked systems:

To what extent can gene expression be reliably influenced by fluctuations in the activity of a

TF that is several regulatory links removed? In other words, to what extent can the regulatory

biology effectively convey an “upstream” signaling event if the information must propagate

over a noisy molecular cascade?

The activity level of a TF (e.g., its time-series abundance within the nucleus) directly influ-

ences the response of a cell to changes in the environment. Biological functions, however, are

inherently noisy, in this case either from the influence of the rest of the gene regulatory net-

work, or through physical noise, such as the impact of Brownian motion on the binding kinet-

ics between a TF and its binding site(s) [8–12]. The ability of a system to identify a signal

fluctuation from the pervasive noise, and respond to it appropriately (what we have dubbed

the fluctuation sensitivity [13]), can be quantified as the mutual information between the input

and the output signals, i.e., between the time-dependent fluctuations in the concentration of a

TF and those of some directly or indirectly regulated gene product [14]. In previous work, we

investigated how the information propagated across a “daisy-chain” cascade of concatenated

transcriptional regulatory events varied with the length of the cascade, as well as the linearized

kinetic rate constants of the regulatory interactions. We found that, under certain conditions,

longer cascades could exhibit higher mutual information than shorter cascades, seemingly in

violation of the data-processing inequality (DPI) [13]. No actual violation occurs, however,

because the dependence of a gene’s regulation on the steady-state concentrations of all

upstream transcription factors ensures that the individual regulatory interactions are statisti-

cally dependent upon one another; in other words, the fluctuations in protein abundance at

the beginning and ends of a cascade remain significantly correlated despite the presence of

noise.

By assuming that the kinetics of transcription were sufficiently well-described by their val-

ues near a homeostatic steady state, we linearized the fully nonlinear kinetics and found that

protein production should outweigh its destruction to permit growth of information across

successive cascade events. What we did not previously consider was whether such a regime

was truly feasible in an actual biological system. (At the very least, it could not be sustainable

for infinitely long cascades due to fluctuations increasing in magnitude across the chain,

which would eventually violate our assumption of small fluctuations at steady state.) In this

work, we address this concern by considering a more biologically relevant model of gene regu-

lation that takes into account the explicit binding kinetics of each TF associating and dissociat-

ing with sequences within the transcription-initiating regions of DNA. To properly capture

the fully nonlinear character of this kinetic model, we simulate it in silico using the Stochastic

Simulation Algorithm (SSA) [15]. Using these simulation data, we compute the mutual infor-

mation between fluctuations in the abundance of a “source” TF and the final gene product pro-

duced by the terminus of a daisy chain composed of transcriptional-regulatory interactions

that we assume rate-limits protein production. Although adequately sampling the probability

mass functions underlying this mutual information turns out to be a technical challenge for
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longer cascades due to the increasing size of fluctuations, we ultimately find that although the

fluctuation sensitivity can be enhanced by initially increasing the length of the cascade, these

gains are lost as the cascade continues to grow. Applying our linearized theory to this “explicit-

binding” model, we find that it grossly overestimates the quantitative value of the mutual

information; it nonetheless reproduces the qualitative, nonmonotonic behavior of initial

growth followed by rapid decay seen in the mutual information computed from the SSA simu-

lations. Importantly, the theory makes it clear that the eventual quenching of the fluctuation

sensitivity occurs as a result of an emergent separation in time scales between the binding

kinetics and those of the actual transcription process. This almost adiabatic separation inter-

feres with communication between the steps of the cascade, resulting in the suppression of

information about TF molecule fluctuations.

Results

In our previous work, we used a generalized model for transcriptional kinetics that we linear-

ized for small fluctuations about steady state. Our model of a regulatory cascade was simplified

by assuming that the linearized rate constants of each production/destruction process were

equal in value across the chain. The most trivial (and least contrived) realization of this regime

would be the case where each gene is regulated by an identical mass-action rate law in which

temporal changes to the concentration of its encoded protein are directly proportional to the

concentration of its regulating TF:

ddRi

dt
¼ kdRi� 1 � kddRi þ Zi ½1�

In the above, δRi is the time-dependent concentration fluctuation of the ith TF in the signal-

ing cascade from its steady-state mean value (in other words, the ith response to the initiating

signal), k is the linear rate constant for TF production, and kd is the rate constant of TF degra-

dation. The function ηi is a delta-correlated Brownian noise term with zero mean, which we

use to approximate the stochastic fluctuations caused by all the complex cellular machinery

that we neglect to model explicitly. As stated, we assume that rate constants have identical val-

ues across the chain, each noise function has an identical statistical distribution, and R0 is

understood to be the concentration of the TF that initiates the cascade. For the sake of achiev-

ing closed-form analytic results, we neglected to model the regulation of this lead TF, instead

assuming that it remained at a fixed homeostatic concentration until time t, at which point it

experienced an instantaneous, stochastic fluctuation (the signal) drawn from the same distri-

bution as that characterizing the noise in each other protein concentration. We then used the

metric of mutual information to study how this signal correlated with the instantaneous

response of each downstream TF population in the cascade. It should be noted that this

response can only be instantaneous when the discrete molecular events of transcription are

coarse grained as continuum processes, which is a reasonable approximation when studying

protein fluctuations across an entire cellular population.

Under the above assumptions, we ultimately found that the condition for the fluctuation

sensitivity of the cascade to grow with the number of links was k >
ffiffiffi
2
p

kd. So long as the signal

fluctuation is, on average, the same size as a typical noise fluctuation, this result is independent

of the noise strength. In this regime, the steady-state concentration of each TF is magnified by

a factor k/kd relative to the concentration of its regulator, and the effect of every random con-

centration fluctuation is similarly magnified across succeeding generations in the cascade. The

fluctuations in the source TF always travel at least one more link than any other noisy fluctua-

tion, which means that the signal always gets magnified more than the noise. We also work in
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the long-time limit (t!1), where the impact of any single noise fluctuation tends to be damp-

ened out over time by countless other fluctuations. By contrast, the signal excitation does not

occur until time t, so its impact is, by assumption, not attenuated. This ultimately enables the

signal-to-noise ratio—and thus the fluctuation sensitivity—to increase with longer cascades.

Clearly, this theoretical framework sacrifices a fair amount of physical realism in exchange

for tractable mathematics. Indeed, the very basis for using continuum chemical kinetics to

describe the discrete regulatory processes of individual cells relies on an assumption that the

dynamics of a large population of cells can effectively be treated as one giant biochemical reac-

tor. Stochastic fluctuations in the concentration of the signal TF would also have to be taken

into account in a more realistic treatment, and would surely inhibit the growth potential of the

fluctuation sensitivity. Our previous work demonstrated this latter point with some simple sto-

chastic simulations of discretized mass-action kinetics, though a statistically significant growth

trend with cascade length was still observed for k�kd. Our objective in this work is to modify

those simulations to further relax the cruder assumptions of our analytic model and thereby

determine whether information gains across a cascade might be expected in more biologically

plausible scenarios. In addition to allowing the number of signaling proteins to fluctuate sto-

chastically, these expanded simulations will include an explicit treatment of the nonlinear pro-

tein-binding kinetics central to transcriptional signaling and will be parametrized to describe

signaling within a single cell rather than an entire cellular population.

To meet this objective, we develop and study two models in which information encoded by

molecular fluctuations propagates via regulatory interactions with differing kinetic mecha-

nisms. In our first model, protein production and destruction rates are linearly dependent

upon the concentrations, and its deterministic kinetics can be expressed by the following set of

differential rate laws:

dRi

dt
¼ kRi� 1 � kdRi: ½2�

We refer to this as the mass-action (MA) model, and note that it is essentially equivalent to

Eq [1], except that we have expressed its kinetics in terms of the absolute concentrations in

order to emphasize that they are linear by construction, and not by linearization about a steady

state. We have likewise suppressed the stochastic component of these kinetics to emphasize

that the fluctuations in our simulated models will be controlled by the various reaction rates,

rather than being imposed, as in our original analytic model, by a simple Brownian process.

Our second model modifies the kinetic mechanisms of Eq [2] as a step toward biological

fidelity. If Ri is once again the concentration of the ith TF in the cascade, Bi is the concentration

of free DNA sites that bind that TF, and Ri�Bi is the concentration of those sites that have

reversibly bound a TF molecule, then the deterministic component of this second model’s

kinetics can be represented by the following set of differential rate laws:

dRi

dt
¼ qiRi� 1 � Bi� 1 � kþ Rið Þ Bið Þ þ k� Ri�Bi � kdRi

dRi�Bi

dt
¼ kþ Rið Þ Bið Þ � k� Ri�Bi: ½3�

We refer to this as the “explicit binding” (EB) model and further assume that kinetics of

binding, unbinding, and protein catabolism are identical across the cascade, so that the rate

constants k+, k−, and kd are of identical value for all TF species. The transcriptional kinetics,

which we assume rate-limits protein production, can be different for each link in the chain;

however, we shall choose values of qi that allow for a fair comparison between this model and
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the simpler mass-action model in the regime where fluctuation sensitivity was predicted to

grow with cascade length. Fig 1 provides a schematic of the elementary reactions that are part

of a transcriptional signaling cascade described by Eq [2] and Eq [3]. For the sake of clarity,

we once again stress that these two models will be compared through the lens of stochastic

simulation. A comparison between the simulation results for each model and the predictions

of our previously derived analytic model [13] will be postponed to the end of this section.

In the MA model, the average steady-state concentrations of the various species are related

to one another by the following recursion:

hRi;0i ¼
k
kd
hRi� 1;0i; ½4�

wherein the angled brackets, h�i, denote temporal averages, and we have defined Ri,0 as the

total concentration of the ith TF protein. In the mass-action model, Ri,0 = Ri, but in the

explicit-binding model Ri,0 = Ri+Ri�Bi. To make a fair comparison between the two models, we

want their kinetics to both fluctuate about the same set of steady-state concentrations {hRi,0i,

8i}. If, as we have assumed, transcription initiation is rate-limiting, then we can leverage the

resulting timescale separation to approximately treat the concentration Ri�Bi as if it were

always at a steady state. This Briggs-Haldane quasi-steady state assumption (QSSA) amounts

to an adiabatic separation of the frequent binding and unbinding kinetics and the slow, irre-

versible kinetics of transcription itself. Applying the QSSA to Eq [3], we can derive the follow-

ing pair of equations:

qi ¼
kdhRii

hRi� 1;0i � hRi� 1i

Fig 1. Diagram of the mass-action and explicit-binding models. In the mass-action model, source TF (S) is created and destroyed to maintain it at a steady state. S
regulates the synthesis of gene product R1, R1 regulates R2 (when present), etc. The explicit-binding model is similar to the mass-action, except a TF must first bind to a

DNA binding site (bound TFs are shaded in the diagram) before it can stimulate the synthesis of its product. Note that the final product, not being a TF, does not have its

own binding site.

https://doi.org/10.1371/journal.pone.0245094.g001
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hRii ¼
1

2
½hRi;0i � Bi;0 � KD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhRi;0i � Bi;0 � KDÞ
2
þ 4KDhRi;0i

q

� ½5�

which, when combined with Eq [3], can be solved iteratively to select the values of the qi

required to restrict both models to identical mean steady states. Note that in the above, we

have defined Bi,0�Bi+Ri�Bi as the total number of binding sites for the ith TF, which we assume

to be fixed since these sites can neither be created nor destroyed, and we have introduced the

dissociation constant KD�k−/k+. When recursively solving for the rate constants qi, we assume

that hR0,0i and Bi,0 are known for all i and are inputs of the model.

In general, the average concentrations calculated from the chemical master equation do not

quantitatively agree with average concentrations derived from a macroscopically valid rate

equation treatment of chemical kinetics, such as given by Eqs [2] and [3]. This disagreement

originates from the fact that the rate equation approach is valid in the thermodynamic limit

wherein molecular fluctuations are, to good approximation, proportional to Ω1/2 (Ω being the

volume of the relevant compartment or the system size); but this assumption is too restrictive

for microscopic fluctuations in general. However, it can be shown using the well-known linear

noise approximation [16] that for larger system size, the average calculated from the master

equation obeys the macroscopic law for zero, first, and second order chemical reactions [17],

which covers the region of validity of Eqs [2] and [3]. At mesoscopic scales, quantitative dis-

agreement is more pronounced, but a more careful analysis of the higher orders of the system

size expansion of the master equation can produce effective rate equations that are valid for

any system size [17]. Despite an assumption of “small” fluctuations used to justify the linear

mass-action kinetics of Eq [2], we found an increasing trend of mutual information for longer

daisy chains simulated using the SSA for 2 to 128 source molecules [13], in qualitative agree-

ment with predictions based on the rate equation approach.

We investigate the consequences of the kinetic mechanisms associated with the MA and EB

models for transcriptional cascades of length n = 1,. . .,7 through use of the stochastic simula-

tion algorithm (SSA) [16] implemented within the KaSim v4.0 engine [18–20]. These simula-

tions approximate the solution of the relevant chemical master equation, and, therefore, avoid

many assumptions associated with the usual rate equation treatment at the cost of computa-

tional complexity. Simulations were initialized at steady state with kinetic parameters k = 4, kd

= 1, k+ = 0.1/4820, and k− = 0.1. The value of k was chosen to ensure that k�kd, and KD = 4820

ensures that TF proteins must typically make multiple binding attempts before a single tran-

scription event occurs. We set hR0,0i = 100 and fixed Bi,0 = 3 for all links in the cascade, which

is both a reasonable estimate for the number of DNA promoter sites available to a TF within a

cell, and a further guarantee that transcription initiation will be rate-limiting, regardless of the

actual values of the rate constants qi. (Even if the transcriptional rate constants are large, the

low number of binding sites coupled with the large dissociation constant will severely limit

how frequently new proteins can be produced.) Unlike in our previous theoretical approach

[21], wherein the unregulated lead TF was assumed not to fluctuate in concentration until the

time point of interest, we employ the more realistic assumption that R0 obeys the following dif-

ferential equation, which we also stochastically simulate:

dR0

dt
¼ hR0;0i � kdR0: ½6�

A common issue plaguing the application of information theory metrics such as mutual

information is the sensitivity of their calculated values to the choice of the bin size used in his-

togramming the data [22–25]. This is only an issue, however, when the underlying random
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variables are formally continuous, and must therefore be discretized post hoc to estimate the

differential entropy. Although we are simulating the behavior of chemical kinetics models with

continuous concentrations, our simulations respect the underlying discreteness of the real bio-

chemical processes. As such, when computing the mutual information between the initial and

final TF copy numbers for an n-link cascade,

I Rn; R0ð Þ ¼
X1

Rn ;R0¼0

pðRn;R0Þlog2

pðRn;R0Þ

pðRnÞpðR0Þ

� �

; ½7�

the probability mass functions on the right-hand side of the above expression can be inter-

preted as histograms with separate bins for each possible number of protein molecules. Note

that the joint probability p(Rn, R0) will be a two-dimensional histogram constructed from the

subset of all same-time pairs of Rn and R0 counts.

To sufficiently sample such a large number of bins, a large number of data points is required

[26]. To determine just how high a sampling density we require to obtain consistent values of

the mutual information in Eq [7], we first simulated a pair of uncoupled transcription factors

that both obey the kinetics of Eq [6], and whose initial, steady-state copy counts were 100 and

400, respectively. Since the stochastic fluctuations in the number of molecules of these two TFs

are, by construction, independent and identically distributed (iid), their mutual information

should, in principle, be exactly zero. Any finite ensemble of instantiations of this system will

approach a zero mutual information only asymptotically; to determine a sufficient sampling

density to approximate this condition, we simulated this system for 50 time units (the inverse

unit to that of the degradation rate constant), taking snapshots of its molecular composition at

regular intervals. By choosing the size of this interval differently, we were able to compile data-

sets containing between 103 and 106 samples, and for each dataset of a given number of sam-

ples, we performed 100 replicate simulations.

We plotted the mutual information values computed from each simulation in Fig 2, as a

function of their sampling density. Although there is some expected variation across replicates,

this pales in comparison to the variations across different sample sizes. Initially, with only 103

data points per simulation, we calculated around 4.5 bits transferred, which is erroneously

quite large, exemplifying the ability of spurious fluctuations to bias the value of the mutual

information [27]. A three orders of magnitude increase in the number of data points is

required to decrease this value to 0.25 bits, far below the 1-bit threshold required to determine

with precision if the signal is above or below the mean. This monotonically decreasing trend of

the mutual information toward zero with increasing sampling density is well fit with a sigmoi-

dal equation, in which a line drawn from the slope at its inflection point crosses the log-scaled

sample axis (x-axis) at approximately 5.23 (Fig 2, red dotted line). This suggests that we need

at least 105.23� 170,000 data points to sufficiently reduce the impact of an imperfect sampling

methodology on the value of the calculated mutual information.

Based on this analysis, we simulated each interacting transcriptional cascade for 50 time

units, capturing snapshots of the total copy number of each molecular species every 5 x 10−5

time units. We then calculated the mutual information between R0 and Rn for each of 100 rep-

licate simulations. These replicate-averaged results are now shown in Fig 3 as a function of cas-

cade length for the MA (blue), the EB model (red), and a model with non-interacting/

uncorrelated gene products accumulated at the same steady-state concentrations (green). We

term this latter model, the non-interacting (NI) model. The error bars represent 95% confi-

dence intervals, which we obtained by bootstrapping the results of the simulations with

replacement 1000 times. Although the mutual information also increases with chain length for

the explicit-binding model, this trend plateaus for chains of approximately n�3−4 links, and
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for longer chains, the mutual information rapidly decays toward the value given by the non-

interacting model. Although biology should generally disfavor longer chains simply due to the

greater metabolic burden they place on the cell, they also appear unfavorable from a signaling

perspective.

The EB model is clearly less informationally efficient than the MA model for the set of

parameters chosen in Fig 3, but we now demonstrate that the EB model is less efficient for any

set of parameters. To prove this, we consider only a single regulatory interaction (n = 1) and

show that none of the three control parameters of the explicit-binding model can make it out-

perform the mechanistically simpler alternative. The first parameter we consider is the ratio k/

kd, which controls the steady-state ratio of concentrations hR1,0i/hR0,0i, and, in Fig 4A, we plot

the mutual information for both the explicit-binding and mass-action models for a single-link

cascade as a function of this dimensionless parameter. We varied k/kd from 2−2 to 22, and for

Fig 2. The mutual information (in bits) between two independent transcription factors as a function of the number of data points sampled per simulation. Different

sampling densities were achieved by sampling the data more or less frequently, and 100 simulations were performed for each sampling frequency (blue dots). We fitted a

sigmoidal relationship to the data (y = ymax/(1+(x/K)h), ymax = 5.29832, K = 3.88923, h = 6.765666, solid red curve). We then approximated the power law region of the

sigmoid with the line y = m ln x+b, m = −8.9617, b = 5.2269.

https://doi.org/10.1371/journal.pone.0245094.g002
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each value from within this interval, simulated the models exactly as before, while keeping all

other parameters the same as those used to produce the curves of Fig 3. At any given value of

k/kd, we find that the two models share a similar amount of information, and in both cases this

information grows roughly linearly with the logarithm of the control parameter. The best-fit

line to the MA simulation data does, however, exhibit a statistically significantly steeper slope

than that of the EB model (see Table 1), which suggests that there could be statistically signifi-

cant differences between the fluctuation sensitivities of the two models at much larger or much

smaller values of k/kd. In the former case, this difference would favor the mass-action model

even more, and in the latter case, the mutual information values would be indistinguishable

from noise. (Recall from Fig 3 that for datasets with a million samples, this indistinguishability

threshold fell at roughly 1/4 of a bit.)

The EB model has two control parameters that are not present in the MA or NI models: the

dissociation constant KD and the number of TF binding sites Bi,0. In Fig 4B, we fix k/kd and

Fig 3. Mutual information as a function of chain length for the MA (blue), EB (red), and NI (green) models. This latter model, whose mutual information should be

formally zero, provides a measure of the magnitude of the spurious correlations resulting from our sampling choices. The bars represent the 95% confidence intervals of

the mean mutual information as measured by bootstrapping from 100 replicate simulations. The mass-action model results were fit with the sigmoid y =

ymin+xh(ymin+ymax)/(1+(x/K)h), ymin = 0.67027, ymax = 3.45238, K = 175.58899, h = 3.16516. The explicit-binding model results were fit piecewise with the quadratic y =

ax2+bx+c; a = 0.02473, b = 0.01435, c = 0.58801 for x�3, and a = −0.14725, b = 0.91883, c = 0.66762 for x>3.

https://doi.org/10.1371/journal.pone.0245094.g003
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Bi,0 to the values used in Fig 3, and plot the resulting mutual information as a function of KD

for a single-link cascade obeying explicit-binding kinetics. The dashed lines in the plot mark

the mutual information levels for the mass-action and non-interacting models, and the sig-

moid curve we use to fit the EB simulation data appears to saturate at the former for large KD

and the latter for small KD. In other words, this means that if the binding of transcription fac-

tors to DNA is too efficient, differing concentration fluctuations cannot be discriminated by

the transcriptional mechanism; but no matter how inefficient the binding becomes, the fluctu-

ation sensitivity can never surpass the mass-action limit. In Fig 4C we repeat this exercise vary-

ing Bi,0 while keeping all other parameters fixed, and we see that there is only a very weak

growth trend in the mutual information with the number of binding sites (slope = 0.0021724,

p = 0.00432). If it is possible for the fluctuation sensitivity of the EB model to exceed that of the

mass-action model for a sufficiently large number of binding sites, it would clearly have to be

for a biologically infeasible number of them.

To better understand the trends observed in Fig 4, we analyze the EB model within the pre-

viously-developed linearized kinetics framework [14]. Starting from Eq [3] and applying the

Briggs-Haldane QSSA for Ri�Bi, we can reduce the 2n differential equations governing our n-

link cascade to only n coupled equations:

dRi

dt
¼

qiðBi;0ÞðRi� 1Þ

KD þ Ri� 1

� kdRi: ½8�

Taylor expanding Eq [8] about steady state and keeping only terms of linear order, we then

get the following:

ddRi

dt
¼ ~kidRi� 1 � kddRi þ Zi; ½9�

wherein we have explicitly added the stochastic noise term and defined an effective rate con-

stant ~ki as:

~ki �
qiBi� 1;0KD

ðKD þ hRi� 1iÞ
2
: ½10�

Fig 4. Sensitivity of the mutual information of each model on the parameters. (A) Mutual information as a function

of k/kd for the MA (blue) and EB models (red). The bars represent the estimated 95% confidence intervals of the mean

mutual information as determined by bootstrapping the results of 100 replicate simulations. Each model was fit to the

function y = ax + b, with a = 0.090467, b = 0.478574 for the mass-action model and a = 0.079252, b = 0.469904 for the

explicit-binding model. (B) Mutual information as a function of KD for the explicit-binding model. These results were

fit with the sigmoid y = ymin + (ymax−ymin)(xh)/(K + xh), ymin = 0.356155, ymax = 0.667316, K = 22.917036,

h = 4.367485. (C) Mutual information as a function of the number of binding sites for the explicit model. These results

were fit with the line y = mx + b, with m = 0.0021724, b = 0.6280985.

https://doi.org/10.1371/journal.pone.0245094.g004

Table 1. Estimates of the parameters for the function y = ax+bzx+c+dz, fitted to the mean mutual information for increasing k/kd values for the mass action model

(z = 1) against the explicit binding (z = 0).

A b p-value c d p-value

0.79252 0.011214 4.45e-5 0.469904 0.008671 0.00597

Significant p-values indicate that the values of b and d are relevant, meaning that the slope and intercept of the best-fit curves for the two models are significantly

different.

https://doi.org/10.1371/journal.pone.0245094.t001

PLOS ONE Mechanistic variations impact information transfer across transcriptional cascades

PLOS ONE | https://doi.org/10.1371/journal.pone.0245094 January 13, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0245094.g004
https://doi.org/10.1371/journal.pone.0245094.t001
https://doi.org/10.1371/journal.pone.0245094


If we assume that hRi,0i�hRii when hRi,0i�Bi,0, then Eq [4] can be used to express Eq [10]

in terms of the mass-action rate constant k instead of qi:

~ki ¼
kKD

KD þ hRi� 1i
: ½11�

The above set of linearized rate constants can then be substituted into our previously

reported, approximate formula for I1, which is the long-time limiting value of the mutual

information transferred by an n-link signaling cascade whose kinetics consist of small concen-

tration fluctuations about steady state (see Eq [27] of reference [13]):

I1 n; f~kig
� �

¼
1

2
log 1þ

ð
Qn

i¼1
~kiÞ

2
=k2n

d
Pn

m¼1

Qm� 1

j¼1
½~k2

n� ðj� 1Þ=ð2k2
dÞ

m� 1
�

( )

: ½12�

In Fig 5, we plot the mutual information of Eq [12] for both the explicit-binding and mass-

action models as a function of cascade length, using the same parameter values from Fig 3.

Fig 5. Theoretical predictions of the mutual information (in bits) for a signaling cascade described by the EB model kinetics (red) and MA model kinetics (blue).

All parameters were chosen the same as those used in Fig 3, and the mutual information plots from that figure are replotted here for ease of comparison. The results from

the MA simulations were fit with the sigmoidal function y = ymin+xh(ymax−ymin)/(K+xh), ymin = 1.88496, ymax = 20.17665, K = 179.79606, h = 2.71205. The results from the

EB simulations were fit piecewise with the quadratic y = ax2+bx+c; a = 0.27913, b = −0.35633, c = 2.06838 for x�4; a = −0.8188, b = 7.2838, c = −10.8557 for x>4.74923792.

https://doi.org/10.1371/journal.pone.0245094.g005
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Although Eq [12] considerably overestimates the value of the mutual information for both

models, it qualitatively captures the features of the simulation results: information associated

with the EB model and its reversible binding mechanisms is bounded from above by the MA

model results; and, after initially growing with the number of signaling links, it rapidly

decreases towards zero. This theory also overestimates how many links it takes to reverse the

growth trend in the mutual information (five rather than three), but this, along with the overall

larger information values, can be attributed to our theoretical framework ignoring the noise in

the signal, which would no doubt reduce the informational efficiency of the cascade.

Noting that the condition for the mutual information in Eq [12] to grow with n is roughly

~ki � kd8i, one can use Eq [11] to demonstrate that there is in fact no regime in which the EB

model kinetics can achieve the monotonic growth in fluctuation sensitivity that is possible in

the limit of the MA model. If on the one hand, we choose k>kd, then the steady-state concen-

tration hRi−1i will grow monotonically with i, leading ~ki to invariably become smaller than kd

after some critical value of i. If, on the other hand, we choose k<kd, then the sequentially

decreasing values of the steady-state concentrations will eventually reduce the effective rate

constant in Eq [11] to approximately the value of k, which is less than kd by assumption. We

can also use the above equations to account for all of the trends observed in Fig 4 by substitut-

ing Eq [11] into Eq [12] for the case n = 1:

I1 1; ~k1

� �
¼

1

2
log

2
1þ

kKD

kdðKD þ hR0i

� �2
" #

: ½13�

So long as the squared term inside the argument of the logarithm in Eq [13] is much larger

than unity, the information clearly scales as log(k/kd). As KD!0, the information approaches

zero, and as KD!1, the information approaches the limit of the MA model, wherein ~k1 ¼ k.

Finally, the information in Eq [13] does not depend at all upon the number of binding sites,

B0,0.

Discussion

In this work, we set out to determine whether the ability of biological signaling cascades to

sidestep the limitations of the data-processing inequality—a prediction made by a previously

developed theory based upon a linearization of the fully nonlinear kinetic mechanism—was

actually attainable in a model that did not rely on as many coarse approximations, and that

explicitly accounted for certain aspects of the real biology of cellular transcriptional signaling.

The EB model we employed, while still a gross simplification of real biology, at least required

the transcription factors in charge of protein regulation to reversibly bind to DNA before

being able to influence the rate of gene translation and subsequent transcription. By stochasti-

cally simulating the full nonlinear kinetics of this model, we were able to avoid making many

of the approximations required to make the linearized kinetic theory algebraically tractable.

Nonetheless, we still found that the information transmitted across a transcriptional signaling

cascade can increase with the number of regulatory links—it just cannot grow indefinitely.

After increasing for a few links, the signal abruptly becomes indistinguishable from noise after

only an additional link or two. We found that our linearized theory, when applied to the EB

model equations, can reproduce this phenomenology, though it grossly overestimates the

absolute magnitude of the mutual information. This enabled us to justify our finding that sim-

pler models free of reversible binding kinetics, which allow transcription factors to directly

regulate protein synthesis without first binding to a DNA promoter site, provide an upper

bound on the informational efficiency of the EB model, even for short cascades where both
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models predicted monotonic, link-by-link signal amplification. This result in particular sug-

gests that the kinetics of protein binding serve as a sort of signal dampener that further compli-

cates the evolutionary narrative of molecular communication in biological systems.

Due to the high number of different signaling molecules crisscrossing the cellular cyto-

plasm, protein binding requires a high level of specificity to be effective, and it must also be

reversible, so that binding sites are not occupied longer than necessary. These constraints

favor protein dissociation over association, which means that multiple cycles of binding and

unbinding must typically occur before processes like transcription can successfully initiate.

This results in a separation of time scales, wherein the kinetics of association and dissociation

can be thought to exist at all times in a quasi-steady state with respect to the kinetics of tran-

scription itself. When the steady-state protein concentrations grow across the length of a cas-

cade (generally true when the rate of transcription outpaces that of protein catabolism), this

quasi-steady fraction of occupied binding sites will approach saturation with each successive

link. Once this saturation is reached, the number of bound proteins will, on the time scale of

transcription, effectively not fluctuate. In this limit, a fluctuation in the number of free TF mol-

ecules (the signal) cannot be transmitted, since a commensurate fluctuation in the concentra-

tion of bound TF molecules cannot be induced. This essentially adiabatic regime is

fundamentally why the fluctuation sensitivity of an explicit-binding cascade inevitably falls off

after enough links: increasing the amount of transmitted information requires an amplifica-

tion in the number of proteins, but this amplification saturates the rate of transcription,

thereby rendering the kinetics insensitive to fluctuations.

In addition to limiting the length of regulatory cascades over which information can be

meaningfully transmitted, a saturating rate of transcription also suppresses the absolute

amount of information that can be transferred over a cascade below the single-bit threshold.

Less than a single bit of information corresponds to a response of “maybe” to a “yes” or “no”

question, suggesting that individual cells struggle with even a binary response to environmen-

tal changes. This low communication capacity is consistent with past investigations that have

found an association between poor intracellular communication and efficient population level

responses [28]. Cells typically exist as part of a large population, and adaptation to an environ-

mental change seldom requires the participation of every single cell. Low fidelity communica-

tion within each individual cell ensures that only a fraction of the population will succeed in

responding to a stimulus, and this can actually be healthier for the community as a whole by

conserving resources and avoiding a population-amplified response that exceeds the scale of

the triggering stimulus.

Our modeling of the effect of binding kinetics on information transmission along signaling

chains is general enough to suggest a molecular role in constraining biological network struc-

ture. Gene regulatory networks, for example, may grow through an evolutionary mechanism

that involves gene duplication and divergence to generate new regulatory interactions [29].

Although networks modeled statistically with this growth mechanism have some topological

similarity with known gene-regulatory networks (i.e., they are “scale-free,” “small world” net-

works [30]), they do not explicitly account for the underlying regulatory mechanisms which

connect network structure with function and phenotype [31]. Our information-theoretic anal-

yses identify a signaling “length” scale for these and possibly other molecular networks, sug-

gesting a new mechanism of consideration in models that hope to explain the large-scale

structure of molecular networks. If the structure of these networks is constrained, in part, by

molecular binding events, then our theory predicts that longer chains should exhibit binding

interactions that are weaker (larger KD) than comparatively shorter chains. Experiments could

test this hypothesis, for example, by comparing the value of curve-fitted rate constants for the
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kinetic activity of fluorescent protein reporters in shorter and longer regulatory chains of pro-

tein expression.

To determine whether such experiments are possible, we reviewed datasets from the BIO-

GRID database [32], which provides a number of gene regulatory networks obtained for singu-

lar and multicellular organisms. We reviewed datasets for Saccharomyces cerevisiae (baker’s

yeast), the Escherichia coli bacterium, Drosophila melanogaster (fruit fly), Mus musculus

(house mouse), and Homo sapiens, searching them for regulatory daisy chains of 3, 4, and 5

nodes with, respectively, 2, 3, and 4 links. Specifically, we searched for regulatory daisy chains

in which none of the intermediate genes exhibited interactions beyond the adjacent ones. We

found only the vertebrate datasets exhibited regulatory daisy chains with up to 3 links, and no

datasets we reviewed had any chains with 4 links. For example, in the mouse dataset, we identi-

fied 2699 2-link and 148 3-link daisy chains. A more thorough analysis of the functions associ-

ated with these chains is beyond the scope of our discussion, but their existence shows that

cell-based expression assays could be used as a basis to test the general results from our mathe-

matical models.

Ultimately, we have demonstrated that seemingly small mechanistic details can have a pro-

found impact on how information flows through a system. By better understanding how the

granular mechanisms of molecular signaling events impact the communication capacities of

complex biological networks, we can perhaps one day use mechanistic knowledge to make pre-

dictions about network topology or vice versa. For example, the lack of long, linear cascades in

the transcriptional network of the bacterium Escherichia coli may in fact be nature’s attempt to

compensate for the very limitations on information flow that we have predicted with our

modeling.
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