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Abstract: The presence of microcalcifications in the breast microenvironment, combined with the
growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast,
suggest the existence of active processes of calcification in the breast tissue during a woman’s life.
Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid
arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice
versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported
in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used
against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation,
viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting
to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological
disorder. In this review, we compare microenvironments and molecular characteristics in the most
frequent osteoimmunological disorders with major events occurring in a woman’s breast during her
lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents
targeting pro-inflammatory cytokines against breast cancer can teach us.
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1. Introduction

The term “osteoimmunology” was first used in 2000 by Choi et al. to define a new paradigm
describing the crosstalk between the immune system and osteoclastogenesis [1]. The multiplicity of
osteoimmunological disorders is due to the variety of stimuli responsible for the immune system
activation. In fact, adaptative and innate immunity could be induced by several pathological
(bacteria, tissue injury) or physiological (tissue remodeling) processes. Despite this variety of stimuli,
the associated response remains similar between diseases: a crosstalk between myeloid lineage,
mesenchymal stem cells and the inflammatory microenvironment, which results mainly in both
excessive bone and cartilage resorption, and chronic inflammation, but also in bone formation in some
cases (Figure 1) [1–6].

Int. J. Mol. Sci. 2020, 21, 8613; doi:10.3390/ijms21228613 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-5355-7345
http://dx.doi.org/10.3390/ijms21228613
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/22/8613?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 8613 2 of 34

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 34 

 

 

Figure 1. Main cell lineages (A) and their crosstalk in an osteoimmunological context (B). 
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Figure 1. Main cell lineages (A) and their crosstalk in an osteoimmunological context (B). Abbreviations:
IL = interleukin, RANKL = Receptor Activator of Nuclear factor Kappa-B Ligand, SFRP1 = Secreted
Frizzled-Related Protein 1, Th = T helper, TNF-α = Tumor Necrosis Factor-alpha, Treg = T regulator.

The female breast is a fascinating organ, which undergoes incredible tissue remodeling throughout
a woman’s life. From the mammary gland branching, to the age-related lobular involution through
lactation and postlactation lobular involution, breast history is a complex process that we have to
understand to better decipher carcinogenesis. Most of the processes previously cited are characterized
by a transitory physiological inflammatory microenvironment that takes place in the breast tissue,
combined with an immune system recruitment, both influencing epithelial cells proliferation, migration
and mesenchymal stem cells differentiation. If the role of colostrum and the impact of milk composition
on newborn’s health is extensively studied, the impact of lactation on a mother’s breast and her global
health remains unknown, and underexplored. Indeed, if both parity and breastfeeding are associated
with a decreased risk of breast cancer development, the biological and molecular causes of such
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protective effects remain poorly studied [7–10]. As a natural weapon against breast tumorigenesis,
age-related lobular involution has been studied as a risk factor of breast cancer development [11–24].
However, similar to the lactation process, only a few studies have explored its biological process and
its potential causal role in early breast tumorigenesis.

Breast microcalcifications are composed of either calcium oxalate crystals, which are associated
with benign breast lesions, or hydroxyapatite crystals, associated with both benign and malignant
lesions. Microcalcifications appearance at mammography and composition are currently taken into
account for breast cancer risk and prognostic stratifications [25,26]. The presence of microcalcifications
in the breast microenvironment, combined with the growing evidences of the presence of osteoblast-like
and osteoclast-like cells in the breast, suggest the existence of active processes of calcification in breast
tissue during a woman’s life [27,28]. However, the crosstalk between microcalcifications and the breast
microenvironment throughout a woman’s life, and their implications in early breast carcinogenesis
remain misunderstood.

Interestingly, much evidence that osteoimmunological disorders such as osteoarthritis [29],
rheumatoid arthritis [30–34] or periodontitis [35–37] influence the risk of developing breast cancer in
women exists and vice versa. Furthermore, antiresorptive drugs benefits on breast cancer incidence
and progression in women has been reported in the past decades [38–41]. Anti-cytokines drugs used
against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation,
viability and migratory abilities both in vitro and in vivo in xenografted mice [42–48]. Hence, it is
tempting to hypothesize that breast carcinogenesis associated with microcalcifications should be
considered a potential osteoimmunological disorder. In this review, we compare microenvironments
and molecular characteristics in the most frequent known osteoimmunological disorders with major
events occurring in a woman’s breast during her lifetime with an emphasis on breast cancer and the
risk of breast cancer. In addition, we highlight what the use of bone anabolic drugs, antiresorptive and
biological agents targeting on pro-inflammatory cytokines against breast cancer can teach us.

2. Overview of the Most Frequent Osteoimmunological Disorders

2.1. Osteoporosis (OP)

Osteoporosis (OP) is a metabolic disease characterized by a loss of bone mass and an excessive
fragility of bones due to an imbalance between bone resorption and bone formation. This multifactorial
disease is notably due to an increased secretion of pro-inflammatory cytokines and adipokines, inducing
an excessive osteoclastogenesis. Estrogen deprivation after menopause is an important OP risk factor.
Estradiol serum level is inversely proportional to the risk of fractures [49–51]. Postmenopausal OP was
first associated with an excessive inflammatory reaction following the decrease of estrogens production
in 1991. After only 2 weeks following oophorectomy, the authors have observed an increased urinary
concentration of Interleukin-1 (IL-1) and Tumor Necrosis Factor-Alpha (TNF-α) compared with
premenopausal women [52]. Interestingly, it was reported than an increased production of TNF-α
and Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL) in postmenopausal OP women
was associated with an overactivation of T-cells responsible for an increased osteoclasts formation
(Figure 1B) [53–55]. Leptin, an adipokine well known to be involved in food intake and energy
metabolism, is also associated with bone metabolism. By fixing leptin receptor (Ob-R) on mesenchymal
stem cells (MSCs), leptin stops adipocytic differentiation while it enhances osteoblastic differentiation
and proliferation (Figure 1B) [56,57]. Surprisingly, the adipogenic differentiation of MSCs is higher in
MSCs from postmenopausal women with OP compared with postmenopausal women without OP.
While leptin is responsible for an antiadipogenic differentiation in postmenopausal women without OP,
it had no effect on MSCs obtained from postmenopausal women with OP [58]. Interestingly, it is not only
the secretion of cytokines and adipokines that seems to be dysregulated in OP. In bone microenvironment,
Secreted Frizzled-Related Protein 1 (SFRP1), a Wnt canonical and non-canonical signaling pathway
antagonist [59–63], is known to regulate the differentiation, proliferation and apoptosis of osteoblasts
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and osteocytes [64,65]. In fact, SFRP1 promotes MSCs differentiation in adipocytes and preadipocyte
maturation, decreasing osteoblastogenesis (Figure 1B) [66–68]. Furthermore, by regulating the
osteoblasts-induced osteoclastogenesis, SFRP1 is also involved in bone resorption process [69].
Interestingly, Tang et al. observed that SFRP1 and miR-144 serum levels were higher and positively
correlated in postmenopausal osteoporotic women compared with postmenopausal women with
normal bone density. They also reported that miR-144 promotes osteoblastic differentiation of bone
marrow-derived MSCs by targeting SFRP1 [70]. SFRP1 was also reported as down-regulated in the
bone marrow of OP patients by Gu et al. [71]. In summary, we observe both a decrease of leptin-induced
osteoblasts differentiation and an increased osteoblasts-induced osteoclastogenesis modulated by
SFRP1. This suggests that the adipose tissue has a crucial role in bone metabolism and its dysregulation
can promote metabolic disorders like OP. As reviewed by Kothari et al., adipose tissue is also a crucial
player in breast tissue remodeling and carcinogenesis [72]. The relationship between osteoporosis
and breast cancer is puzzling. Both diseases affect principally postmenopausal women after 65 years
old. However, the biological explanation of such link remains misunderstood. OP risk decreases with
estrogen exposure while breast cancer risk increases. Consequently, an older age at menarche and
a younger age at menopause increase OP risk while they decrease breast cancer risk. On the other
hand, weight under 55 kg at menopause increases OP risk, while obesity increases breast cancer risk
in postmenopausal women [73]. A comparative study of both common and opposite biological and
molecular aspects of both diseases could help to better manage women health.

2.2. Osteoarthritis

Osteoarthritis (OA) is a degenerative disorder of the joints induced by an increasing catabolic
activity in both cartilage and bone tissues. OA is also described as a chronic wound due to initial
cartilage injuries, inducing pro-inflammatory cytokines secretion in the synovial fluid and the associated
immune system recruitment to repair injuries. Among the pro-inflammatory markers up-regulated
in OA context, leptin, TNF-α, interleukin 6 (IL-6) and IL-1, known to negatively regulate cartilage
formation [56–58,74,75]. IL-1 and TNF-α are produced by activated chondrocytes and synoviocytes in
early OA and by leukocytes such as macrophages, T-cells and B-cells, which will then secrete many
other pro-inflammatory cytokines including IL-6. Activated T helper 17 cells (Th17) increase interleukin
17 (IL-17) level in synovial fluid which is associated with an increased RANKL level, resulting in higher
osteoclastogenesis (Figure 1B) [76,77]. It was reported that leptin controls not only bone formation but
also bone resorption. By modulating RANKL expression, leptin decreases osteoclastic differentiation
through the Beta-2 adrenergic receptor (ADRB2) expressed by osteoblasts [78]. SFRP1, which is
also involved in osteoclastogenesis regulation is secreted by synovial cells and predominantly by
fibroblasts-like cells of the synovial fluid in an OA context. However, Pasold et al. observed that in
OA mouse models, SFRP1 expression is reduced in chondrocytes and MSCs, resulting in preferential
osteoblastogenesis compared with chondrogenesis [79]. This increased osteoblastogenesis results in
osteophytes production while the decreased chondrogenesis prevents cartilage healing resulting in a
chronical inflammatory disorder. Once more, a subtle imbalance due to cartilage injuries in the joints
results in MSCs preferential differentiation toward osteoblastic lineage compared with chondrocyte
differentiation, which is needed to achieve cartilage healing. Interestingly, patients with knee or
hip arthritis have a higher risk of breast cancer development after adjustment for age and sex [29].
However, adjustment for mammary gland history or stratification for histopathological characteristics
of breast cancer lesions was unavailable. To date, references are insufficient to clearly understand the
impact of OA on breast cancer risk.

2.3. Rheumatoid Arthritis

In contrast with OA which is initiated by cartilage lesions, rheumatoid arthritis (RA) is an
autoimmune disease characterized by an uncontrolled immune reaction against both cartilage and
bone tissue. RA development is associated with genetic predispositions and the presence of T-cell
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receptors at the joints [80,81]. Consequently, the recruitment of T-cells, notably T helper 1 (Th1) and
Th17, results in IL-17 and TNF-α production, responsible for the increased production of IL-1 and
IL-6 by macrophages and dendritic cells. This microenvironment promotes Th17 differentiation to the
detriment of T regulators (Treg) differentiation. To complete the loop, IL-1, IL-6, IL-17, and TNF-α are
known to stimulate osteoclastogenesis, which results in the degradation of mineralized tissue such as
mineralized cartilage and subchondral bone [81–83]. Similar to what is observed in OA, leptin serum
levels are higher in RA patients, so that overweight and obesity have been associated with RA [84,85].
MSCs were found in the synovium in a RA context, and, as described before, their differentiation is
finely regulated by the microenvironment composition [86,87]. The administration of anti-Dikkopf-1
(Dkk-1) antibody in RA mouse models induces a decrease of bone erosion, potentially due to a decrease
of osteoclast differentiation in the joint by decreasing levels of RANKL [88]. Lee et al. observed that
the addition of SFRP1, another Wnt signaling antagonist in naïve T-cells medium is responsible for
Th17 polarized T-cells differentiation. They also demonstrated that this differentiation is due to an
increased sensitivity of T-cells to Transforming Growth Factor-Beta (TGF-ß) [89]. In murine models of
arthritis, Matzelle et al. observed that the resolution of the inflammation resulted in a down-regulation
of SFRP1 expression, a Wnt signaling antagonist. Consequently, by activating the Wnt signaling
pathway, they also observed a decrease of bone resorption combined with an induction of osteoblast
mineralization [30]. In breast, SFRP1 expression is higher during age-related lobular involution
and in presence of microcalcifications compared with patients completely involuted and without
microcalcification, respectively [90]. Interestingly, the incidence of RA in breast cancer patients is
lower compared with patients without breast cancer after adjustment for age, comorbidities and breast
cancer treatments [31]. However, the incidence of breast cancer in RA patients remains controversial.
Bhandari et al. observed a higher cancer prevalence in RA patients, with a high proportion of breast
cancer [32]. On the other hand, the meta-analysis of Tian et al. showed that the breast cancer risk in
RA patient was not increased versus in the general population. However, when the population study
was stratified for ethnicity, RA patients breast cancer risk was increased in non-Caucasian population
while it decreased in the Caucasian population [33]. More recently, Wadström et al. observed a
decreased occurrence of breast cancer in RA patients, also observable after adjustment for breast cancer
treatment, suggesting that this reduction of breast cancer risk was already present before breast cancer
treatment administration [34]. Unfortunately, the studied cohorts were not stratified for the presence
of microcalcifications, the parity history or the degree of lobular involution, which could be a potential
way of investigation to better understand the link between both diseases.

2.4. Periodontitis

This multibacterial-induced inflammatory disease is characterized by the destruction of periodontal
tissues, a loss of alveolar bone mass principally due to an exacerbation of osteoclastogenesis, an
inflammatory cells infiltration and an increased fibroblasts apoptosis. More precisely, after antigenic
activation of T-cell surface glycoprotein CD4 positive (CD4+) naïve T-cells, activated Th1, T helper
2 (Th2), and Th17 produce cytokines responsible for the activation of B-cells, dendritic cells and
neutrophils. Then, activated B-cells and T-cells produce RANKL responsible for an increased
osteoclastogenesis [91–96]. Interestingly, Kawai et al. demonstrated that in healthy gingival tissue,
only 20% of B-cells ant T-cells expressed RANKL. On the other hand, 50% of T-cells and 90% of
B-cells expressed RANKL in a periodontitis (PD) context, which results in an abnormal alveolar
bone destruction [93]. The clonal activation of B-cells induces the production of antibodies against
gingival components such as collagen, resulting in the destruction of periodontal tissue. Numerous
pro-inflammatory cytokines are upregulated in a periodontitis context including IL-1, IL-6, Interleukin-8
(IL-8), and TNF-α. The lack of Treg to control this inflammation completes the loop, and chronical
inflammation then takes place in the periodontal tissue [91–96]. Leptin was also reported as upregulated
in human saliva and circulating blood [97], and in dog periodontal ligament tissue [98] in a PD context.
More recently, Zhu et al. performed a meta-analysis highlighting elevated leptin serum level and
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lower adiponectin serum level in PD patients compared with controls in the group with a body
mass index under 30 [99]. Li and Amar reported that anti-SFRP1 antibody was able to reverse
both osteoclastogenesis and related inflammation, suggesting its crucial role in bone remodeling
processes [100]. Surprisingly, multiple studies reported that PD is associated with breast cancer
development, suggesting that this disorder could be a risk factor of breast cancer development [35–37].
However, no observation regarding a potential causal role of PD-related molecular issues on breast
cancer development was reported yet. Investigations are still needed to conclude the existence of a
link between PD and breast cancer development.

2.5. Other Osteoimmunological Disorders

The risk of developing an autoimmune rheumatic disease such as RA, systemic lupus
erythematosus (SLE) or systemic sclerosis (SSc) in patients with breast cancer is lower compared with
age and year of index date matched patients without breast cancer [31]. Reciprocally, the risk of
developing breast cancer in SLE patients is lower compared with the general population [101–106].
On the other hand, Colaci et al. observed a higher incidence of breast cancer in SSc patients compared
with age-sex-matched patients without SSc [107]. The same scheme is observable in psoriatic arthritis
(PsA) patients. While some groups reported that breast cancer incidence was higher in PsA patients
compared with age-sex-matched patients without PsA [108], others observed no difference in breast
cancer occurrence between the two groups [109]. However, obesity and overweight incidence and
prevalence in PsA patients are higher compared with the general population [110–112]. Obesity is a risk
factor of triple-negative breast cancer development particularly in premenopausal women [113,114]
and it is associated with poor breast cancer survival [115]. The higher breast cancer rate in the PsA
group could be explained by a higher proportion of obese patients in the PsA group. Unfortunately,
Wilton et al. did not report the body mass index (BMI) nor the breast cancer molecular subtype of
the population studied. Divergent results could also potentially be explained by the absence of the
cohort stratification regarding the degree of lobular involution, and the presence of microcalcifications.
As described above, multiple studies reported a change in breast cancer prevalence or incidence
in patients with osteoimmunological disorders, as well as few evidences of breast cancer effects
on osteoimmunological disorders occurrence independently of breast cancer treatment. However,
many adjustments for clinical variables as well as stratified analyses are lacking. Consequently,
confounding variables are potentially responsible for multiple controversial results. Extensive studies
are needed to conclude to the existence a potential link between osteoimmunological disorders and
breast cancer incidence and this represent a new avenue of investigation to better personalize breast
cancer treatment.

3. Osteoimmunology of the Breast Tissue during a Woman’s Lifetime

3.1. Pregnancy and Lactation

During lactation, a Ca2+ related gene expression program named CALTRANS takes place, including
Ca2+-ATPases, pumps or channels to enrich milk with Ca2+ [116]. Interestingly, Plasma Membrane
Ca2+-ATPase (PMCA2) dysregulation is associated with microcalcifications, breast cancer development
and poor prognosis [117]. Case-reports of pseudo-lactational hyperplasia were previously described in
both premenopausal and postmenopausal women. These women sustained pregnancy-like changes,
including mammary gland branching and microcalcifications development independently from
pregnancy and lactation [118]. This was also observed in virgin mice deficient for Sfrp1 expression,
exhibiting mammary glands branching and lobuloalveolar activity similar to mid-pregnant wild
type mice [119]. In cows, during the late peak of lactation, SFRP1 is significantly upregulated
suggesting its involvement in the acute inflammatory phase needed to initiate lobular involution [120].
In mice, leptin expression is upregulated before lactation while it is downregulated at mid-lactating
stage. However, the leptin serum concentration was the same at both stages, suggesting a regional
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production of the mammary gland and associated adipose tissue [121]. The leptin fixes Ob-Rb,
which, after dimerization, will activate both tyrosine-protein kinase JAK (JAK)/signal transducer
and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK)/ extracellular
signal-regulated kinase (ERK) signaling pathways. Interestingly, the abrupt end of lactation in
mice results in an increased inflammation of the mammary gland tissue, an hyperplasia and an
exacerbation of estrogen receptor-alpha (ER-α) expression [122]. This could be explained by the fact
that leptin production by epithelial cells and adipocytes decreases gradually during lactation [121].
Leptin receptor Ob-Rb colocalizes with ER-α on rats hypothalamic neurons, suggesting a crosstalk
between leptin and estrogens peripheral signaling [123,124]. These evidences suggest the importance
of a successful postlactation lobular involution to avoid microcalcifications and to prevent breast
cancer development. It also suggests the existence of microcalcifications formation by both tumoral
and non-tumoral breast epithelial cells due to CALTRANS dysregulations, in parous and nulliparous
women. Breast microcalcifications formation, independently of the presence of osteoblast-like cells
suggests the existence of multiple microcalcifications formation processes, which are crucial to better
characterized to better characterize and prevent breast cancer development.

3.2. Postlactation Lobular Involution

Postlactation involution is initiated by an acute inflammatory phase due to the accumulation of
milk in the alveolar lumen in response to the end of suckling. This first reversible step induces the
decrease of milk production and the apoptosis of the epithelial cells into the acinar lumen [122,125].
Among the cytokines produced during the acute phase, IL-1 and TNF-α are involved in the nuclear
translocation of Nuclear Factor-Kappa B (NF-κB) and IL-6 is responsible for Signal Transducer and
Activator of Transcription 3 (STAT3) activation [126]. The localized process of lobular involution
initiation is followed by a massive systemic fall of hormones which results in the second part of lobular
involution. STAT3 is involved in both the acute phase and the lobular involution, and notably by
regulating apoptosis [125–128]. This acute inflammatory phase is needed for early recruitment of
dendritic cells, followed by macrophages and T-cells, consistent with the wound healing program [129].
In addition, the transdifferentiation of pink adipocytes, present only during pregnancy and lactation,
in white adipose tissue remains essential for proper involution. Interestingly, this process is mediated
by Osteopontin (OPN), which is highly expressed during lactation and involution while it is not
found in other stages of breast development [72,130,131]. OPN, also named Secreted Phosphoprotein
1 (SPP1) is also expressed by osteoblasts and is an agonist of bone resorption processes. OPN is
overexpressed in breast cancer tissue in the presence of hydroxyapatite crystals compared with
non-calcified tissue, but also in tumoral calcified tissue compared with non-tumoral calcified tissue
suggesting its involvement in both calcification and tumorigenesis [132]. In addition, mRNA OPN
expression is also associated with tumor aggressiveness and invasiveness [133,134]. By silencing OPN
in MDA-MB-231 triple-negative breast cancer cell line (estrogen receptor (ER), progesterone receptor
(PR) and receptor tyrosine-protein kinase erbB-2 (HER2) negative), a decrease in the production of
hydroxyapatite crystals in an osteogenic medium and a decrease of cell migration were observed [135].
An excess of involution-related adipogenesis in the breast microenvironment is associated with an
excessive production of adipokines [72]. To fully measure the importance of lobular involution
characterization, McDaniel et al. isolated mammary glands extracellular matrix from nulliparous rats,
and rats undergoing postlactation involution. Tissues from nulliparous animals promoted the ductal
organization of the MCF-12A non-tumoral cell line and stopped the invasion of the MDA-MB-231 triple
negative breast cancer cell line. Inversely, mammary gland tissue from rats undergoing involution
did not promote ductal organization of MCF-12A while it promoted MDA-MB-231 invasiveness [136].
This suggests a fragile balance between the effects of lobular involution-related inflammation on
non-tumoral tissue versus tumoral tissue that remains urgent to understand, especially to improve
lactating breast cancer treatment.
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3.3. Age-Related Lobular Involution

Age-related lobular involution is a perimenopausal process starting progressively around 40 years
old and aims to replace epithelial cells and stroma by adipose tissue and collagen to decrease the
risks of breast hyperplasia and tumor development. To do so, the breast undergoes a significant
tissue remodeling, requiring inflammation, apoptosis, immune system recruitment, extracellular
matrix destruction and adipogenesis. Hanna et al. described the inflammatory profile associated
with age-related lobular involution and highlighted that chronic inflammation could reduce the
age-related involution completion and consequently, increase breast cancer risk. A higher expression
of the pro-inflammatory markers such as IL-6, TNF-α, C-reactive protein (CRP), cyclooxygenase 2
(COX-2), leptin, serum amyloid 1 (SAA1) and IL-8 were inversely associated with completed lobular
involution while a higher expression of the anti-inflammatory marker interleukin 10 (IL-10) [137] was
positively associated with mammographic density, another well-known breast cancer risk factor [14].
Interestingly, IL-6, TNF-α and leptin expression by epithelial breast tissue is strongly correlated
with SFRP1 expression, also known to be inversely associated with completed age-related lobular
involution. SFRP1 is a good predictor of the degree of lobular involution and its expression is higher
in presence of microcalcifications. Moreover, SFRP1 expression is lower in involuted nulliparous
women compared with involuted non-nulliparous women suggesting that the first lobular involution
is different from the others [90]. This is particularly important to consider as lower expression of SFRP1
in breast tissue is largely associated with breast cancer development and poor prognosis [134,138–146].
Leptin serum level is higher following estrogen deprivation-related adipogenesis in ovariectomized
rats compared with controls [147]. The impact of concomitant leptin expression by breast adipose
tissue during lobular involution and a higher leptin serum level due to menopause-related fall of
estrogen remains unexplored. However, leptin is involved in preferential osteoblastic differentiation of
MSCs. Naseem et al. observed that the proportion of patients with microcalcifications was higher
in perimenopausal women compared with both premenopausal and postmenopausal women [148].
This result suggests the existence of a potential microcalcification resorption process in breast tissue
and proves the importance to decipher the molecular mechanisms of lobular involution process to
better prevent breast cancer development and recurrence in women diagnosed for breast cancer before
40 years old.

3.4. Inflammation in Breast Carcinogenesis

As inflammation is needed in several physiological processes of mammary gland involution,
it remains difficult to segregate which, from the “good” or the “bad” inflammations could exacerbate
breast cancer risk (Figure 2). Breast cancer is nowadays, the leading cancer type diagnosed in
women and the second leading cause of cancer related death in women. One in eight women
will develop an invasive breast cancer during her life. The 5-year survival rate for all stages of
breast cancer in 2020 is 90%. However, the 5-year survival rate in distant disease patients is 27%
only [149]. These statistics testify that both breast cancer prevention and screening are essential to
avoid late diagnosis. However, knowledge regarding carcinogenesis-related molecular pathways
is still lacking. Chronic inflammation is associated with an increasing risk of breast cancer [150].
In non-tumoral breast tissue, higher expression of IL-6 is associated with higher mammographic density,
while higher expression of anti-inflammatory TGF-ß is associated with lower mammographic density
in both premenopausal and postmenopausal women [151]. Furthermore, as described previously,
local inflammation is inversely associated with age-related lobular involution [137]. Similar to
osteoimmunological disorders cited above, breast cancer could also be promoted by the immune
system. At first, tumor-infiltrating lymphocytes, composed by a majority of T-cells and macrophages
perform immunosurveillance and engage the destruction of malignant cells. However, in a second
phase, they promote both proliferation and escape of immune system resistant tumoral cells [152].
Confirming that evidence, Desmedt et al. reported that tumoral-infiltrating cells were preferentially
detected in in situ lesions compared with invasive lesions [153]. In vitro, invasive ductal carcinoma
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(IDC) supernatants contained more inflammatory cytokines and less anti-inflammatory cytokines
compared with non-invasive breast lesions supernatant, suggesting that an inflammatory profile is
associated not only with cancer risk, but also with cancer aggressivity [154]. Interestingly, 90% of ductal
carcinoma in situ (DCIS) contain microcalcifications, and 40% become invasive. Microcalcifications
are currently diagnosed by mammography and used to perform malignancy risk stratification of
breast lesions [26]. However, the impact of microcalcifications in breast cells microenvironment at the
molecular level as well as the interactions between such crystals and breast cells remains underexplored.
Thought, Naseem et al. observed that microcalcifications are associated with HER2 overexpression,
invasiveness, perimenopausal status, heterogeneous breast density and multifocal disease [148].
These evidences suggest that inflammatory profile of the breast tissue during a woman lifetime could
have a major impact on microcalcifications development and carcinogenesis. Consequently, it appears
essential to consider microcalcifications as a potential active player in breast cancer development.
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4. Evidence of the Presence of Osteoblastic and Osteoclastic Lineages in the Breast Tissue

4.1. Osteoblast-Like Breast Cells

Multipotent stem cells are necessary to ensure tissue renewal as well as injury repair in adults.
More precisely, multipotent stem cells are immatured cells with an unlimited capacity of self-renewal.
Furthermore, these cells can differentiate into all cell types of few restricted lineages. Both embryonic
and adult breast tissue developments are regulated by the Wnt signaling pathway and notably by
SFRP1 [155–158]. However, we reported throughout this review that SFRP1 is dramatically modulated
during breast history. It is now well described that not only stem cells have multipotency abilities in adult
tissues. In fact, epithelial to mesenchymal transition (EMT) results in the acquisition of multipotency
and invasiveness capacities largely associated with cancer development. In 2016, Tan et al. reported
that MCF-7 and T47D breast cancer cell lines cultured in conditioned medium from cancer-associated
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fibroblasts underwent EMT [159]. Scimeca et al. reported that human breast cancer lesions exhibited
mesenchymal markers that correlated with the quantity of breast-osteoblast-like cells [160]. The quantity
of breast-osteoblast-like cells was positively correlated with TGF-ß and vimentin expression while it was
inversely correlated with CD44 expression [160]. Interestingly, they also reported that the expression
of CD44 and Vimentin was higher in presence of microcalcifications compared with tumor tissue
without microcalcifications [161]. Tulotta et al. reported that the contact between breast cancer cells
and osteoblasts or bone marrow cells was responsible for the increased secretion of IL-1ß by the three
protagonists, resulting in EMT and tumor aggressiveness [44]. In 1985, Valentin-Opran et al. reported
for the first time an estrogen-dependent bone resorbing activity from the MCF-7 luminal A (ER and/or
PR positive, and HER2 negative) breast cancer cell line in vitro [162,163]. At that time, this result was
used to explain acute hypercalcemia associated with ER-positive tumors and osteolytic characteristics
of bone metastases derived from breast cancer lesions but the local effect of an osteoblast stimulating
activity was not explored. In 2012, Cox et al. investigated the origin of breast microcalcifications
and reported that hydroxyapatite microcalcifications were actively produced by breast cancer cells
with osteoblastic characteristics in vitro [164,165]. In 2016, Tan et al. reported that breast cancer
tissues expressed more bone-related genes compared with non-tumoral-tissues. Among these genes,
Runt-related transcription factor 2 (RUNX2) is a key regulator of bone-related gene expression in breast
cancer cell lines [159]. More recently, Scimeca et al. reported that the expression of osteoblasts specific
proteins such as RANKL, OPN, vitamin D3 receptor (VDR), and bone morphogenetic protein 2 (BMP-2)
was higher in breast cancer lesions with microcalcifications compared with breast cancer lesions
without microcalcifications [161]. To complete the investigation, they also quantified mineralization
process markers like bone morphogenetic protein 4 (BMP-4) and pentraxin-related protein PTX3 (PTX3),
and their expression was also higher in presence of microcalcification compared with breast cancer
lesions without microcalcifications [161]. More and more evidences of osteoblast-like cell existence,
as well as breast cancer cell line abilities to produce calcifications, are reported. However, their impacts
on breast non-tumoral and tumoral cells remain poorly understood and their origins are still unknown.

4.2. Osteoclast-Like Giant Breast Cells

For the first time in 1979, breast osteoclast-like giant cells were described by Agnantis et
al. who studied eight infiltrating carcinomas containing these cells of interest [166]. This rare
cell type is defined as a giant multinucleated cell similar to histiocytic osteoclasts found in bone
tissue. However, if osteoclast-like giant cells are similar to osteoclasts regarding the abilities of
resorbing cortical bone, they do not have ruffled border or clear zone. In addition, unlike osteoclasts
which are coupled with osteoblasts, PTH alone is able to activate bone resorption by osteoclast-like
giant cells in vitro [167]. Interestingly, cases reported were aged 43 to 84 with a median age of
49 years old, suggesting that this type of lesion is not menopausal-status specific [166]. Since then,
around 200 breast cancer cases with osteoclast-like giant cells in both in situ and infiltrating lesions
were reported [168–176]. Breast osteoclast-like giant cells were positive for CD68 [171,172,175,177]
and CD163 [174] staining confirming their monocytic lineage. Tumoral-cells were ER and PR
positive [168,171,172,174], HER2 negative [168,171,172], and associated stromal cells were positive for
vimentin expression when tested [171]. Few triple-negative breast carcinomas with osteoclastic giant
cells were also reported [169,177,178]. Interestingly, breast osteoclast-like giant cells associated with
tumoral tissue and invasiveness are predominantly CD163 positive, hence possessing a M2-macrophage
phenotype [178]. Cancer cells treatment with leptin induces the secretion of both intracellular adhesion
molecule 1 (ICAM-1) and RANKL and enhances tumor-induced osteolysis in vivo, suggesting a
potential role for leptin in osteoclast-like giant cell formation in a cancer context [179]. However,
the scarcity of available references and reported cases, combined with the major differences between
the phenotypic characteristics of these multinucleated giant cells compared with osteoclasts show that
we must remain cautious regarding any conclusions.
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5. Osteoblastic and Osteoclastic Breast Cancer Metastases in Bone Microenvironment

5.1. Osteolytic Lesions

In bone microenvironment, breast cancer metastases form in 80 to 90% of osteolytic lesions
which supports an excessive bone resorption and degradation. Osteolytic lesions express bone
resorption promoting factors, such as parathyroid hormone-related protein (PTHrP), which is higher
in both bone metastases and serum of osteolytic bone metastases from patients [180,181]. However,
PTHrP increases RANKL expression by osteoblasts and decreases osteoprotegerin (OPG) expression,
resulting in osteoclast activation [182]. Furthermore, Bendre et al. observed in vitro that IL-8
expression by breast cancer cells could promote osteoclastogenesis indirectly by promoting RANKL
expression by osteoblasts, and directly by inducing blood mononuclear cells differentiation in resorbing
osteoclasts [183]. Furthermore, neutralizing IL-1ß with anakinra in mice xenografted with triple
negative MDA-MB-231 and luminal A MCF-7 breast cancer cell lines reduces the incidence of bone
metastases and bone turnover markers expression including TNF-α [42]. Kovacheva et al. observed
that knockdown MDA-MB-231 for OPN induces a decrease of cell proliferation and migration abilities,
and a remission of the osteolytic lesions compared with unmodified MDA-MB-231 [184]. Dkk-1, a Wnt
signaling antagonist, is expressed in osteolytic lesions while it was not expressed in osteoblastic
lesions [185]. Furthermore, Dkk-1 level in the serum of women with breast cancer bone metastases
is higher compared with age-matched healthy controls and patients with breast cancer metastases
in another site than bones [186]. Interestingly, ER negative breast cancer cell lines MDA-MB-231,
MDA-MB-435s and BT549 form osteolytic lesions [187]. However, the proportions of osteolytic lesions
by breast cancer molecular subtypes were not reported in women yet. Furthermore, the question about
which, of metastases secretions, breast cancer cells with osteoblastic phenotype or both are responsible
for bone resorption remains without an answer so far.

5.2. Osteoblastic and Mixed Lesions

Osteoblastic breast cancer bone metastases occur in 10 to 20% of breast cancer bone metastases
and show disorganized new bone with an associated increase of bone resorption. These lesions support
osteoblastogenesis notably by expressing TGF-ß, bone morphogenic proteins, and Wnt proteins,
all known to promote osteoblasts formation [188]. Another potential causal factor of breast cancer
cell mediated osteoblastic lesions is Endothelin-1 (ET-1). ET-1 is higher in male serum with prostate
cancer compared with male without prostate cancer. Furthermore, prostate cancer cell lines expressing
ET-1 increase phosphatase alkaline activity in new bone formation [189]. Interestingly, metastases
obtained from luminal A breast cancer cell lines MCF-7, ZR75.1 and T47D also form osteoblastic
lesions [187,190]. Yin et al. demonstrated that a treatment against ET-1 receptor; endothelin A
receptor antagonist in mice xenografted with the luminal A breast cancer cell line ZR75.1 induces a
decrease of both bone metastases and tumor burden compared with untreated mice [190]. Interestingly,
mice neonatal calvariae treated with ET-1 expressed a lower level of Dkk-1 while they expressed a
higher level of IL-6 [191]. Mixed lesions, combining both osteolytic and osteoblastic markers also exist.
Like osteoblastic lesions, mixed lesions express ET-1 but not PTHrP [187,190]. However, such lesions
remain poorly understood. Furthermore, the necessity of the presence of osteoblast-like cell and
microcalcifications in the primary tumor to develop such bone lesions remains unknown.

6. Drugs Commonly Prescribed for Osteoporosis or Rheumatoid Arthritis Treatment and Their
Impact on Breast Cancer Prevalence

6.1. Hormone Replacement Therapies

Estrogens and progestatives were massively prescribed in the past to attenuate menopause side
effects and notably the menopause-associated OP. In fact, the dramatical decrease of estrogen during
menopause is responsible for a longer survival of osteoclasts. In absence of estrogens, MSCs prioritize
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an adipocytic differentiation rather than an osteoblastic differentiation. Estrogens are notably involved
in the decrease of bone resorption-related cytokines, such as TNF-α, IL-1, and IL-6 [73]. However,
as described previously, there is a dual effect of the fall of estrogen on bone tissue compared with
breast tissue. If the menopause-induced increase of TNF-α, IL-1 and IL-6 results in the loss of bone
mass density, hence promoting OP, it is necessary to initiate age-related lobular involution, a natural
weapon against breast cancer development. In fact, as described by Hanna et al., the expression of
TNF-α and IL-6 is higher in non-involuted breast compared with completely involuted breast [137].
Consequently, hormone replacement therapies (HRT) were associated with an increased risk of breast
cancer development [192–200], and are no more prescribed in this indication nowadays.

6.2. Antiresorptive Drugs

6.2.1. Bisphosphonates

Bisphosphonates are the first line treatment against OP in postmenopausal women. Alendronate,
risedronate and zoledronate are pyrophosphate analogues. They set hydroxyapatite molecules in bone
and are released because of pH changing in an area with intense osteoclasts activity. Their internalization
by osteoclasts induces the activation of apoptosis, resulting in a decrease of bone resorption [201,202].
For these reasons, bisphosphonates are currently used to fight breast cancer-related hypercalcemia [203]
and in metastatic breast cancer patients with bone involvement to reduce skeletal-related events and
bone pain [204]. Cancer Care Ontario and the American Society of Clinical Oncology recommend the
use of bisphosphonates in postmenopausal women to reduce bone metastasis recurrence and improve
survival in nonmetastatic patients [205]. Many studies and reports support the use of bisphosphonates
as adjuvant breast cancer therapies in postmenopausal women for their benefits on breast cancer
outcomes [206–212]. However, some interrogations regarding the distinct effects of bisphosphonates
on premenopausal and postmenopausal women for less than 5 years versus postmenopausal women
for more than 5 years exist [213–215]. Coleman et al. observed no improvement of disease-free survival,
invasive-free survival and overall survival in women older than 18 years old treated for stage II
or III breast cancer with adjuvant acid zoledronic administration compared with women untreated
with adjuvant zoledronic acid. However, they observed reduced bone metastases development in
the adjuvant zoledronic acid treated group compared with women who did not receive adjuvant
zoledronic acid. They also observed an improved invasive disease-free survival in women with
established menopause treated with adjuvant zoledronic acid compared with women who did
not receive adjuvant zoledronic acid [214,215]. Suarez-Almazor et al. recently reported that the
administration of the recommended dose of bisphosphonates for OP in postmenopausal women
older than 66 years old with breast cancer increase both overall survival and breast-cancer-specific
survival after multiple adjustments [216]. The same year, van Hellemond et al. observed no
effect of 3 or 6 years bisphosphonates administration before 2 to 3 years of tamoxifen treatment
on postmenopausal women distant recurrence free survival, compared with women who did not
receive bisphosphonates [217]. More recently, Perrone et al. observed benefits in disease-free
survival in premenopausal women undergoing ovarian function suppression treated with adjuvant
bisphosphonates compared with women who did not receive adjuvant bisphosphonates [218]. In vitro
study demonstrated that bisphosphonate-coated bovine bone slices reduced MCF-7 luminal A and
MDA-MB-231 triple-negative breast cancer cell lines abilities to adhere and proliferate compared with
controls without bisphosphonate-coating [219]. Interestingly, Buranrat et al. have also demonstrated
that bisphosphonates reduced migratory abilities by inducing cell cycle arrest and increasing apoptosis
of the MCF-7 cell line [220]. If bisphosphonates adjuvant therapy improves breast cancer-related bone
metastases outcomes, its effects on breast cancer recurrence and invasiveness remains controversial.
No evidence regarding the potential role of bisphosphonates against early mammary carcinogenesis
exists yet. Extensive in vitro studies should help to better decipher the direct impact of bisphosphonates
on breast cancer cells.
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6.2.2. Selective Estrogen Receptor Modulators (SERMs)

Compared with estrogen which targets all ER-positive tissues, SERMs are capable of inducing
tissue-specific ER activity. Raloxifene is a SERM used in the treatment and prevention of postmenopausal
osteoporosis. Although it showed benefits relative to placebo against vertebral fractures and femoral
neck bone mineral density, no benefit regarding hip fractures were statistically significant compared
with placebo in randomized controlled trials in a population at risk of osteoporotic fractures [221].
More precisely, raloxifene induces a reduction of RANTES, composed notably of chemoattractant
molecules, resulting in a decrease of inflammation processes in postmenopausal women [222].
In ovariectomized rats, raloxifene reversed the body weight gain, the increased leptin serum level
and the decreased Ob-Rb hypothalamic expression induced by estrogen deprivation [147]. However,
in women results are controversial. Some studies reported an increased leptin serum level in
postmenopausal women treated with raloxifene [223,224] while Tommaselli et al. reported that
raloxifene prevents postmenopausal body weight gain without modification of leptin serum level [225].
Interestingly, tamoxifen and raloxifene were reported for their association with a decrease in breast
cancer risk. The Multiple Outcomes Raloxifene Evaluation (MORE) study, a multicenter, blinded,
randomized placebo-controlled clinical trial reported that raloxifene reduced, by 72%, the risk of
developing an invasive ER-positive breast cancer in postmenopausal women with OP during 4 years
of raloxifene treatments [38]. This was then confirmed by the Continuing Outcomes Relevant to
Evista (CORE) trial, which examined the effects of raloxifene versus placebo in the same cohort for
4 additional years [39]. The National Surgical Adjuvant Breast and Bowel Project (NSABP) Breast
Cancer Prevention Trial (BCPT) compared both tamoxifen and raloxifene effects on invasive breast
cancer risk and observed no difference between the two groups [226]. Leptin expression and Ob-Rb
expression in breast cancer tissue is higher compared with non-tumoral tissue [227]. Furthermore,
leptin serum level is also higher in breast cancer patients compared with healthy patients [228].
Leptin potentiates the proliferative and migratory abilities of breast cancer cells positive for ER-α [229].
Another SERM, the bazedoxifene, approved in Europe for treating OP, was described as a pure ER-α
antagonist, which reduces tumor growth of both tamoxifen sensitive and resistant breast cancer cell
lines xenografts. As for tamoxifen and raloxifene, it induces the proteasomal degradation of ER-α
by changing its conformation in xenograft models [230]. Furthermore, Tian et al. demonstrated that
bazedoxifene reduces phosphorylated-STAT3 and IL-6 mediated downstream target genes expression,
but also viability, proliferation, and migration capacities of multiple triple-negative breast cancer
cell lines including SUM159, MDA-MB-231, and MDA-MB-468 [231]. Interestingly, the combination
of bazedoxifene and reparixin/SCH527123 targeting IL-8 had a more potent inhibition of viability,
colony formation, and migration abilities on the triple-negative breast cancer cell lines SUM159 and
MDA-MB-231 [232]. Bazedoxifene also induces ER-α degradation and a decrease of cell growth in
wild type (WT) and D538G mutated MCF-7 luminal A breast cancer cell lines compared with untreated
cell lines. However, the Y537S mutant is resistant to bazedoxifene-induced ER-α degradation but its
transcription is reduced compared with untreated MCF-7 Y537S mutant [233]. In vivo experiments
demonstrated that bazedoxifene inhibits the estrogens-induced ductal growth and terminal end bud
formation on nude mice non-tumoral mammary tissue. Furthermore, bazedoxifene also blocked
estrogens-induced tumor stimulation by increasing apoptosis and decreasing proliferation of MCF-7
cell line xenografted in nude mice [234]. In 2019, Fu et al. demonstrated in vitro that combined
with the chemotherapeutic agent paclitaxel, bazedoxifene decreases cell viability, colony formation,
cell migration, and potent apoptosis of ER-positive cell lines by inhibiting ER-α expression, and
of triple-negative cell lines by inhibiting phosphorylated-STAT3 (Y705) and downstream targets
expression [235]. In perimenopausal and postmenopausal women, combining bazedoxifene and
conjugated estrogens induces favorable effects on risk biomarkers such as a decrease of mammographic
fibroglandular volume and reported patients outcomes regarding menopause specific quality of
life [236]. Both raloxifene and bazedoxifene represent a new hope in breast cancer prevention and
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personalized therapy development, including against triple negative breast cancer for which no
personalized treatment exists yet.

6.2.3. Denosumab

Denosumab is a human monoclonal antibody against RANKL, offered to postmenopausal OP
women with a high risk of fracture, and in both women with non-metastatic breast cancer treated with
aromatase inhibitor and men with non-metastatic prostate cancer treated with anti-androgenic drugs
with high risk of fracture. In postmenopausal women previously treated with bisphosphonates, the risk
of breast cancer development is lower in the group receiving denosumab compared with the matched
group who received placebo [237]. Results of the randomized, double-blind, placebo-controlled phase
3 trial from ABCSG-18 demonstrated that adjuvant denosumab improved the disease-free survival
of patients treated for early breast cancer who received adjuvant aromatase inhibitor [40]. Treatment
with denosumab was also correlated with an absence of circulating tumor cells in patients with high
grade invasive cancers [41]. Conversely, Coleman et al. observed no improvement in disease-related
outcomes in stage II-III breast cancer patients receiving denosumab with neoadjuvant or adjuvant
therapy compared with patients receiving placebo [238]. These controversies could be explained by the
heterogeneity of the cohorts, especially considering the osteoimmunological disorder treated initially,
but also considering the tumor phenotypes. Complementary cohort studies considering breast cancer
subtypes and patients clinical characteristics should be performed before concluding. Furthermore,
no in vitro study on breast cancer models were reported yet.

6.3. Bone Anabolic Drugs

6.3.1. Parathyroid Hormone Analog

Parathyroid hormone (PTH) is produced by the parathyroid glands and regulates osteoclastic
bone resorption and calcium mobilization. To do so, PTH activates TGF-ß and Wnt signaling pathways
both involved in MSCs recruitment and osteoblastic differentiation [239]. Teriparatide is a recombinant
form of human PTH indicated principally for severe forms of OP in postmenopausal women or in
both men and women suffering from glucocorticoid-induced OP. In fact, in treated patients bone
formation markers were increased by 150% and bone resorption markers by 100% in the first 3 months
of treatments. However, Food and Drug Administration (FDA) stipulates that teriparatide should be
used for no longer than 2 years, and it is contraindicated in patients with risk factors of osteosarcoma,
Paget’s disease of bone, prior skeletal radiation, and children with open epiphyses [240]. The Forteo
Patient Registry and the United States (US) postmarketing surveillance study of adult osteosarcoma
and teriparatide found no incident cases of osteosarcoma after 8 and 7 years of observation in US
patients receiving teriparatide treatment respectively. However, these are interim reports as the 15 years
studies were not completed [241,242]. PTH is involved in bone remodeling and breast development.
Intermittent PTH expression results in bone formation while continuous expression results in bone
resorption. Swami et al. observed that mouse models with 4T1 murine mammary carcinoma cell
line xenografted in the fat pad, pretreated then treated with intermittent PTH have the same tumor
size than controls. However, the frequency of bone metastases was significantly reduced in the
treated group compared with the control group. Interestingly, they also observed a decrease of 4T1
cells capacities of bone engraftment in the group pretreated with PTH compared with the control
group [243]. This suggests the breast cell acquisition of PTH-related phenotypical characteristics to
adhere to bone tissue. Because intermittent PTH is involved in osteoblastogenesis, it is crucial to
interrogate the possibility that MSCs and breast cancer cells with mesenchymal characteristics could
also develop an osteoblast-like phenotype resulting in hydroxyapatite production. Furthermore, if
PTH is responsible for Wnt signaling pathway activation [239], it is crucial to examine the impact of
teriparatide on involuted breast tissue that does not express SFRP1 [90], a Wnt signaling pathway
antagonist. In absence of such a negative regulator, it is plausible that the overactivation of the
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pro-proliferative Wnt signaling pathway could result in breast hyperplasia. Even if teriparatide is only
prescribed in rare severe form of OP with multiple precautions regarding patient history, it remains
urgent to interrogate the impact of such treatment on both breast microcalcifications development
and hyperplasia.

6.3.2. Parathyroid Hormone Related Protein Analog

Parathyroid hormone related protein (PTHrP) is a paracrine regulatory hormone acting on bone
forming cells by fixing PTHR1 as well as PTH. Interestingly, PTHrP is also locally produced by
mammary epithelial cells to regulate cell growth and differentiation suggesting an autocrine and
paracrine roles in breast microenvironment [244–246]. PTHrP also joins the systemic circulation
to regulate maternal-to-fetal placental calcium transport [246,247]. Once more, the local effect of
continuous production of PTHrP on MSCs present in the breast microenvironment has not been
explored yet. In vitro, the MCF-7 luminal A breast cancer cell line overexpressing PTHrP in co-culture
with murine osteoblasts and hematopoietic cells induced osteoclastogenesis [248]. Abaloparatide,
a synthetic homologue of PTH (41% of homology), and PTHrP (76% of homology) is a new anabolic
agent developed for OP management [249–251]. However, no study regarding its effect on breast
tissue, breast cancer development or progression exists yet.

6.3.3. Romosozumab, an Anti-Sclerostin Monoclonal Antibody

Romosozumab is an anti-sclerostin (SOST) monoclonal antibody recently proposed against severe
OP. This drug has anabolic effects followed by antiresorptive effect, increasing rapidly the bone mineral
density of treated patients. This treatment is administrated once a month for one year, and then stopped
or changed with another antiresorptive treatment to maintain the gain in bone mass. In contrast
with SOST mRNA, which was found in few human tissues such as heart and kidney, the sclerostin
protein, a Wnt signaling antagonist was only detected in bone tissue. Sclerostin is produced by mature
osteocytes to decrease osteoblastogenesis [252]. Interestingly, Hesse et al. observed that MDA-MB-231
triple-negative metastatic breast cancer cells expressed sclerostin. In addition, conditioned medium
from MDA-MB-231 reduces both osteoblastic differentiation and mineralization. MDA-MB-231 mouse
models treated with an anti-sclerostin antibody had less bone metastases and bone loss than the
MDA-MB-231 mouse model receiving the vehicle alone [253]. However, cardiovascular serious events
rate in men receiving romosozumab is higher than in men receiving the placebo [254]. This evidence
was not found in postmenopausal women receiving romosozumab compared with postmenopausal
women receiving the placebo [255,256]. In both men and postmenopausal women, higher levels of
sclerostin were associated with aortic calcification [257,258]. However, inverse association between
sclerostin serum level and aortic calcification were found in patients with chronic kidney disease
after adjustment for age and cardiovascular history [259]. These controversial results demonstrate
the urgent need to better understand sclerostin and romosozumab impact on soft tissue calcification,
and notably on breast microcalcifications development.

6.4. Biological Agents Targeting Pro-Inflammatory Cytokines in Rheumatoid Arthritis

6.4.1. IL-1

The transcriptomic profile of metastatic breast cancer patients overlaps systemic juvenile idiopathic
arthritis, which is an IL-1 driven osteoimmunological disorder [43]. Interestingly, IL1B expression
is increased by the addition of hydroxyapatite crystals in Hs578T triple-negative breast cancer cells
culture medium [260]. Anakinra, an IL-1 receptor antagonist is a clinically approved agent used
against osteoimmunological disorders, such as RA. Interestingly, Holen et al. demonstrated that the
administration of anakinra in mice with subcutaneous or intravenous injection of luminal A (MCF-7)
or triple negative (MDA-MB-231) breast cancer cell line reduced significantly the tumor size and
the number of mice with bone metastasis compared with placebo [42]. Wu et al. also observed a
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decrease of tumor size after anakinra treatment administration in mice with subcutaneous injection of
Hs578T [43]. More recently, Tulotta et al. confirmed the potential of IL-1B blockers in reducing breast
cancer metastases by treating mice injected subcutaneously with MCF-7, MDA-MB-231 and T47D
with both anakinra or canakinumab, two anti-IL1B antibodies [44]. The difficulties to test biological
agents targeting cytokines ex-vivo and in vitro limit the availability of references. Progress relative
to spheroids and organoids culture could help the scientific community to test the impact of such
biological drugs on breast tissue.

6.4.2. IL-6

Korkaya et al. demonstrated for the first time that the IL-6 receptor antibody tocilizumab,
used against RA, decreases cytokines production and EMT in luminal A MCF-7 and triple-negative
SUM-159 overexpressing HER2 and knocked down for PTEN (MCF-7 HER2+ PTEN- and SUM-159
HER2+ PTEN-), resulting in a decrease of tumoral aggressivity in xenograft mouse models. This is a hope
for developing personalized treatment for HER2 positive tumor patients resistant to trastuzumab [45].
In 2015, Rodriguez-Barrueco et al. demonstrated that MCF10A/Erbb2 obtained from the non-tumoral
breast cell line MCF10A transformed with an oncogenic form of HER2, was sensitive to tocilizumab
compared with untreated cells in both in vitro and in three-dimensional (3D) culture, and in vivo in
xenograft mouse models [46]. Lin et al. demonstrated that the triple negative breast cancer cell lines
MDA-MB-231 and BT-549 treated with the IL-6 receptor antibody tocilizumab dramatically lost their
STAT3 activity compared with untreated cell lines [261]. The triple negative breast cancer cell line
MDA-MB-231-LN co-cultured with lymphatic endothelial cells (LEC) produces IL-6, which binds
the IL-6 receptor on LEC, resulting in STAT3 signaling pathway activation. In face of this evidence,
Jin et al. compared MDA-MB-231-LN viability after treatment with tocilizumab and observed a
decrease of cell proliferation compared with untreated cells. They also observed a decrease of tumor
growth in xenograft mouse models treated with the mouse IL-6 receptor antibody [48]. More recently,
Alraouji et al. demonstrated that tocilizumab inhibits IL-6 related EMT in triple negative breast cancer
cell lines by inhibiting the canonical Wnt signaling pathway [47]. Another IL-6 receptor monoclonal
antibody, sarilumab, improves signs and symptoms of RA comparable to tocilizumab [262–264].
However, no study on sarilumab in vitro effects on breast cancer cell lines have been reported yet.
As mentioned previously, STAT3 is involved in the acute phase of lobular involution initiation, and the
associated extracellular matrix is known to promote tumorigenesis [125–128,136]. Consequently,
if tocilizumab and sarilumab seem to have potential in decreasing breast cancer cells proliferation
in vitro, their impact on breast involution must be carefully studied.

6.4.3. TNF-α

Two types of TNF-α targeting drugs exist; the etanercept, which targets TNF-α receptor, and
infliximab, adalimumab, golimumab, and certolizumab, which directly target circulating TNF-α [265].
A phase II study of etanercept was performed in 2004 in sixteen metastatic breast cancers refractory
to conventional therapy. However, no disease response was observed in the recruited cohort [266].
Hence, few studies were performed to interrogate TNF-α inhibitor therapy such as etanercept, infliximab
or adalimumab safety on breast cancer patients. In women with RA treated with TNF-α inhibitor and
having a history of breast cancer, no more recurrences were observed compared with other breast
cancer patients who did not receive TNF-α inhibitors [267]. Mamtani et al. also observed the same
results in three retrospective cohorts including women with RA and inflammatory bowel disease [268].
Chiesa Fuxench et al. explored the risk of primary breast cancer development in patients with psoriasis
who received treatments including TNF-α inhibitors, without finding any changes compared with
the control group of patients without psoriasis [269]. However, few meta-analyses and systematic
reviews highlighted the absence of sufficient evidences to either conclude to an innocuity of TNF-α
inhibitors on breast cancer development or to conclude to the existence of a relationship between
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the two protagonists [270–272]. No studies on the potential anti-tumor effect of such proteins were
performed in vitro.

7. Conclusions

Numerous similarities between the microenvironment of bone tissue and the breast microenvironment
in presence of hydroxyapatite microcalcifications have been highlighted in the present review (Table 1).
Both osteoimmunological disorders and breast carcinogenesis have in common an activation of a
bone resorbing microenvironment phenotype due to a dysregulation of the fragile balance between
physiological and pathological inflammation. However, a bone resorbing microenvironment-like in
breast tissue containing epithelial cells results in a higher aggressivity of tumoral cells, and potentially
in early carcinogenesis.

Future studies should investigate both breast postlactational involution and age-related lobular
involution as critical steps during which a subtle imbalance could result in both microcalcifications
production and resorption, and associated chronic inflammation similar to osteoimmunological
disorders. Moreover, it would be interesting to test the preventive effect of antiresorptive drugs and
drugs targeting pro-inflammatory cytokines in cohorts stratified for parity history, the degree of lobular
involution and the presence of microcalcifications. The safety of anabolic drugs use on women with
microcalcifications should also be evaluated.

Furthermore, exploring early breast carcinogenesis as the result of a cumulative imbalance
between physiological and pathological inflammation, which results in hydroxyapatite remodeling
somewhat similar to bone remodeling should be further considered. A longitudinal follow-up in
women after delivery and breastfeeding regarding the quality of lobular involution, the inflammatory
profile and the presence of microcalcifications could help identifying patients at high risk of breast
cancer development and avoid late diagnosis. Moreover, in vitro testing of both antiresorptive and
drugs targeting pro-inflammatory cytokines effects on breast cell lines and their abilities to calcify
could be crucial in developing microcalcifications preventive therapeutics options in the future.
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Table 1. Pattern of myeloid and mesenchymal lineages recruited in the osteoimmunological disorders and breast microenvironment and their cytokines production.

PI ARLI Carcinogenesis OP RA OA PD

References [72,126,129–131] [90,151] [44,151,159–162,
164–167,273–275] [52–58,70] [30,81–88] [56–58,75–77,276,277] [91–97,99,100]

Cytokines
IL-1 + + + + +
IL-6 + + + + + + +
IL-8 + +

IL-17 + +
TNF-α + + + + + +
Leptin + + + + + + +

RANKL + + + +
IL-10 - -

TGF-ß -
Others secreted protein

SFRP1 + + + + +

Myeloid lineage
T-cells + + + + + + +
Treg - -

B-cells +
Macrophages + + + + + +

Osteoclasts/OCL + + + + +
Bone resorption makers

SPP1 + + + +
OPN + + +

Mesenchymal lineage
MSCs + + +

Osteoblasts/OBL + + + +
Bone formation markers

ALP +
OC + - - + + or =

Osteoblastogenesis
markers
RUNX2 +

Abbreviations: PI = postlactational involution, ARLI = age-related lobular involution, OP = osteoporosis, RA = rheumatoid arthritis, OA = osteoarthritis, PD = periodontitis, IL = interleukin,
TNF-α = tumor necrosis factor-alpha, RANKL = Receptor Activator of Nuclear factor Kappa-B Ligand, TGF-ß = transforming growth factor-beta, SFRP1 = secreted frizzled-related
protein 1, MSCs = mesenchymal stem cells, OBL = osteoblast-like, ALP = phosphatase alkaline, OC = osteocalcin, RUNX2 = runt-related transcription factor 2.
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Abbreviations

OP osteoporosis
IL-1 interleukin 1
TNF-α tumor necrosis factor-alpha
RANKL Receptor Activator of Nuclear factor Kappa-B Ligand
Ob-R leptin receptor
MSCs mesenchymal stem cells
SFRP1 secreted Frizzled-Related Protein 1
OA osteoarthritis
IL-6 interleukin 6
Th17 T helper 17
IL-17 interleukin 17
ADRB2 beta-2 adrenergic receptor
RA rheumatoid arthritis
Th1 T helper 1
Treg T regulator
Dkk-1 dikkopf-1
TGF-ß transforming growth factor-beta
PD periodontitis
CD4 surface glycoprotein CD4
Th2 T helper 2
IL-8 interleukin 8
SLE systemic lupus erythematosus
SSc systemic sclerosis
PsA psoriatic arthritis
BMI body mass index
PMCA2 plasma Membrane Ca2+-ATPase
JAK tyrosine-protein kinase JAK
STAT signal transducer and activator of transcription
MAPK mitogen-activated protein kinase
ERK extracellular signal-regulated kinase
ER-α estrogen receptor-alpha
NF-κB Nuclear Factor-Kappa B
STAT3 Signal Transducer and Activator of Transcription 3
OPN osteopontin
SPP1 secreted phosphoprotein 1
ER estrogen receptor
PR progesterone receptor
HER2 receptor tyrosine-protein kinase erbB-2
CRP C-reactive protein
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COX-2 cyclooxygenase 2
SAA1 serum amyloid 1
IL-10 interleukin 10
IDC invasive ductal carcinoma
DCIS ductal carcinoma in situ
RANTES regulated upon activation, normal T-cell expressed and secreted
EMT epithelial to mesenchymal transition
RUNX2 runt-related transcription factor 2
OBL osteoblast-like cell
VDR vitamin D3 receptor
BMP-2 bone morphogenetic protein 2
BMP-4 bone morphogenetic protein 4
PTX3 pentraxin-related protein PTX3
OCL osteoclast-like giant cell
ICAM-1 intracellular adhesion molecule 1
PTHrP parathyroid hormone-related protein
OPG osteoprotegerin
ET-1 endothelin-1
HRT hormone replacement therapies
SERM selective estrogen receptor modulator
MORE Multiple Outcomes Raloxifene Evaluation
CORE Continuing Outcomes Relevant to Evista
NSABP National Surgical Adjuvant Breast and Bowel Project
BCPT Breast Cancer Prevention Trial
WT wild type
PTHPTHrP parathyroid hormoneparathyroid hormone related protein
FDA Food and Drug Administration
US United-States
SOST sclerostin
LEC lymphatic endothelial cells
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