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Abstract

Socioeconomic status (SES) is often considered a risk factor for health outcomes. SES is
typically measured using individual variables of educational attainment, income, housing,
and employment variables or a composite of these variables. Approaches to building the
composite variable include using equal weights for each variable or estimating the weights
with principal components analysis or factor analysis. However, these methods do not con-
sider the relationship between the outcome and the SES variables when constructing the
index. In this project, we used weighted quantile sum (WQS) regression to estimate an
area-level SES index and its effect in a model of colonoscopy screening adherence in the
Minnesota—Wisconsin Metropolitan Statistical Area. We considered several specifications
of the SES index including using different spatial scales (e.g., census block group-level,
tract-level) for the SES variables. We found a significant positive association (odds ratio =
1.17,95% CI: 1.15-1.19) between the SES index and colonoscopy adherence in the best fit-
ting model. The model with the best goodness-of-fit included a multi-scale SES index with
10 variables at the block group-level and one at the tract-level, with home ownership, race,
and income among the most important variables. Contrary to previous index construction,
our results were not consistent with an assumption of equal importance of variables in the
SES index when explaining colonoscopy screening adherence. Our approach is applicable
in any study where an SES index is considered as a variable in a regression model and the
weights for the SES variables are not known in advance.

Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United
States, only secondary to lung cancer [1]. Regular colorectal cancer screening (CRCS) is rec-
ommended for average-risk adults ages 50-75 years as it significantly reduces mortality [2-3].
However, CRCS is underutilized with about 35% of age-eligible adults non-adherent to
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national CRCS recommendations (i.e., having a stool test within a year, sigmoidoscopy within
5 years, and colonoscopy within 10 years) [4].

CRCS adherence is influenced not only by individual-level factors (e.g. age, gender, educa-
tion, health insurance coverage, barriers to CRCS, etc.) [5-12], but also area-level influences
such as socioeconomic status (SES) [13-22]. To date, CRCS studies have examined single mea-
sures or discrete sets of SES indicators with the majority reporting significant associations
between lower SES and non-adherence [11, 16-24]. SES indices have also been proposed for
inclusion in SES-related research [25-27]. There are pros and cons to using single SES vari-
ables or composite measures of SES. Using single SES variables can help us understand how a
certain aspect of SES is associated with health [28], offer a simple approximation to a depriva-
tion environment, or test a specific hypothesis [29]; however, including multiple correlated
SES variables in a traditional regression model may lead to collinearity effects such as regres-
sion parameters that are counterintuitive in sign and have inflated variances. In addition, sin-
gle SES variables cannot fully reflect the whole concept of area SES [30]. Using SES composite
measures such as a deprivation index can overcome the aforementioned problems and reduce
the dimensionality of the problem.

An SES index or deprivation index is generally constructed using a combination of educa-
tional attainment, income, housing, and employment variables and is represented as a com-
posite variable or index with weights for each component [25, 31]. The Townsend and
Carstairs deprivation indices used in the United Kingdom also include a variable for percent
of no car ownership [25]. Typical approaches to constructing an SES index include creating a
sum of z-scores of selected variables [25-27, 32-35], using principal components analysis
(PCA) [36], or using factor analysis [26-27, 33]. PCA estimates the weights for each variable in
a weighted linear sum of variables to make each component and factor analysis estimates the
factor loading that expresses the relationship of each variable to the underlying factor. The var-
iables used to create the SES index using the z-score sum approach may be pre-specified [34-
35] or selected using a factor analysis [26-27, 33].

There are drawbacks to these common approaches. For example, combining variable z-
scores into a sum places equal weight on each variable, which makes a strong assumption
about the relative importance of the variables and may not be appropriate. In addition, using
an index with the variable set defined in one geographic area (e.g., a city in the United King-
dom) may not adequately represent SES for a completely different geographic area (e.g., a
rural area in the United States). Further, PCA and factor analysis do not consider the relation-
ship between the health outcome and the SES variables when constructing the index. The prin-
cipal components are constructed based solely on the correlation or covariation pattern
among the predictor variables without regard to the outcome variable. Therefore, PCA is not
able to perform model selection when building the index. In PCA, the variables with the most
variation across the analysis units will receive the most weight [36]. The principal components
do not identify a set of SES variables that is associated with a selected health effect as the load-
ings are the same regardless of the health effect.

Another issue when estimating the association between area SES and CRCS adherence is
the selection of spatial scale. It is common in the literature to assume a particular spatial scale
is relevant for assessing area-level SES. Many published studies measure area-level SES using
variables defined at relatively large geographic scales such as US county [11, 14-19, 21, 23-24,
37], which may obscure effects of area-level SES due to heterogeneous SES within the large
geographic areas. Few CRCS-related studies have used smaller geographic scales such as US
census tract, block group (a subset of census tract), or ZIP Code [20, 38]. Studies of area-level
SES and other health outcomes have calculated SES indices and compared effect estimates at
both the census tract- and block group-levels [25, 27, 32], but these studies have not considered
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spatial scale as a model selection step when assessing the relationship between SES and health
outcomes. However, this is an important decision because the estimate of an association can
vary depending on the spatial scale used to measure the exposure variable of interest [25, 32].
In addition, recent work demonstrates that different area-level variables are selected into
regression models at different spatial scales when spatial scale is considered as a model selec-
tion decision [39]. Currently, there is a lack of knowledge about which geographic scale (i.e.,
census tract vs. block group) is more appropriate for measuring area-level SES as it relates to
CRCS adherence.

The objectives of this study were to: (1) estimate an area-level SES index empirically while
estimating its association with colonoscopy screening adherence using a novel approach, and
(2) determine the spatial scale (i.e., census block group, census tract, or a combination of block
group and tract variables—a multiscale SES index) for SES variables that were best for estimat-
ing the SES index in a large study of CRCS adherence in Minnesota and Wisconsin.

Materials and methods
Setting

As part of the Colorectal Cancer Screening With Improved Shared Decision Making Project
(CRCS-WISDM), individual-level data were obtained from the electronic health record (EHR)
of Allina Health facilities located in Minnesota counties of the Minneapolis-St. Paul-Bloom-
ington, MN-WI Metropolitan Statistical Area. Allina Health has one of the most comprehen-
sive EHR systems in the nation and had >7 million clinic visits in 2015 [40]. The Virginia
Commonwealth University Institutional Review Board approved this study.

Eligibility

To be eligible for inclusion, patients were: ages 50-75 years (the recommended age for CRCS
for average-risk adults) and had at least one primary care-related visit within the past two
years at one of 78 Allina Health facilities for each cross-sectional data query (December 2010 -
August 2014). Unique patient identification numbers were used to create a retrospective
cohort where the most recent data were used for patients who appeared in more than one
cross-sectional sample. Overall, 205,755 unique patients were included in the analytic sample.

Measures and coding

Study measures included colonoscopy, patient-level SES-related variables, area-level SES-
related variables as well as Allina Health patients’ addresses. Individual-level variables included
gender, age, race/ethnicity, and tobacco use.

Colonoscopy adherence. The primary, dichotomous outcome was adherence to national
colonoscopy screening recommendations [5], which is the most commonly used CRCS modal-
ity [4]. Using EHR data, patients were considered adherent if there was EHR-validated evi-
dence of a colonoscopy in the last 10 years (i.e., September 7, 2004 —~August 30, 2014) given the
data of the original cross-sectional sampling. The following CPT and ICD 9 codes were used to
obtain data on colonoscopy: 1) CPT codes 44388-44394, 44397, 45355, 45378, 45387, 45391,
45392, G0105, G0121; 2) ICD 9 codes 45.22, 45.23, 45.25, 45.42, 45.43.

Geocoding. Patients’ most recent residential addresses were geocoded using ESRI Busi-
ness Analyst Desktop [41] to create an analysis data set with spatial coordinates located in the
states of Minnesota and Wisconsin. Geocoding resulted in 93% of addresses matching at the
point or street level and the remaining 7% matching at the ZIP Code level. The census tracts in
Minnesota and Wisconsin that contain the residential locations of patients included in this
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Fig 1. Study area with census tracts that contain study patient residential locations in Minnesota and
Wisconsin.

https://doi.org/10.1371/journal.pone.0179272.9001

study are shown in Fig 1. The spatial coordinates were used to spatially join patients to census
block groups and tracts and assign area-level SES variables to patients. Of the 205,755 patients
in the analytic sample, 2,049 (1%) were seen in Minnesota Allina facilities but live in
Wisconsin.

Area-level SES variables. We obtained five-year (2009-2013) estimates of area-level
socioeconomic variables from the American Community Survey (ACS) at the census tract-
and block group-level for all Minnesota and Wisconsin counties of the Minneapolis—St. Paul-
Bloomington, MN-WI Metropolitan Statistical Area. The ACS is administered annually to a
nationally representative sample of about three million American households [42]. Selected
participants complete an online or paper-based questionnaire for their household and non-
responders receive a phone call or personal visit from ACS staff to ensure complete data collec-
tion. The questionnaire collects social and economic information such as age, gender, race,
income, education, housing, employment and occupations [42].

Due to confidentiality concerns, some ACS variables are not available at the smaller block
group scale but are available at the larger census tract scale. We assigned select ACS SES vari-
ables to patients using spatial overlay. In addition, we assigned select variables from the 2012
Updated Demographics data from ESRI [43] to patients when geocoding. ESRI produces
annual updates to the demographic data based on the 2010 Census and a variety of additional
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data sources and forecasting methods [43]. The demographic variables available when geocod-
ing were more limited than when using the full ACS downloaded data. The spatial scale of the
demographic data variables assigned to patients during geocoding was the block group for
point and street matches (93%) and was the tract for ZIP Code matches (7%). More details on
the variables used in the analysis are provided below.

Statistical analysis

To estimate different SES indices and the associated SES effects for colonoscopy adherence, we
used weighted quantile sum (WQS) regression. The WQS method [44] is a regression model
designed for variable selection in environmental exposure analysis that includes a weighted
index of correlated components scored as quantiles. The components in the index are assumed
to be reasonable to combine into an index (i.e., all are SES variables) and are constrained to
have associations in the same direction with the outcome or have no association. The weights
are constrained to sum to 1 and be between 0 and 1, thereby reducing dimensionality and
addressing collinearity issues that typically arise with correlated components. The index
weights can be empirically determined through the use of bootstrap sampling [44-45] using B
number of bootstrap samples of size # from a training dataset, where 7 is the sample size in the
training set. The unknown weights w are estimated to maximized the likelihood for b = 1 to B
bootstrap samples for the following model

g(w) = By + B, <zc: Wiqi> +7'¢ (1)

b

subject to the constraints Z w,
i=1

=1land 0 <w; < 1fori=1to c. In the above equation, w;
b

represents the weight for the i component ¢; and the term Z w,q, represents a weighted
i=1

index for the set of c components of interest. The term z denotes a vector of covariates deter-
mined prior to estimation of the weights, ¢ are the coefficients for the covariates in z, and g(.)
is any monotonic and differentiable link function that relates the mean, y, to the predictor var-
iables in the right hand side of the equation. For a binary outcome variable, such as colonos-
copy screening adherence, a logit link is assumed for g.

The final component weights w, are calculated as a weighted average of the bootstrap esti-
mates based on the relative strength of the test statistic for 3, (the parameter estimate for the
weighted index) from each bootstrap sample. Using a validation data set, the weighted quantile

score is then specificed as WQS = Z w.q;, and the significance of the WQS index is deter-
i=1
mined using the validation data set and the model

g(u) = By + pLWQS +2'¢, (2)

where exp(f,) is the odds ratio (OR) associated with a unit increase in the weighted sum of
component quartiles. We applied a 50% random split of the analysis data into a training set
and validation set to first estimate the SES index weights and then estimate the association of
the index with screening adherence.

An advantage of WQS regression compared with other methods for estimating an SES
index is that it can estimate the effect of an SES index and the weights for each variable in the
SES index while limiting effects of collinearity that arise in traditional regression models. The
estimated component weights may be interpreted as measures of relative variable importance
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in the index. In contrast to PCA or factor analysis, the weights are estimated while considering
the association with the outcome variable. In addition, covariates for adjustment are also
included in the model that estimates the SES index weights. In other words, all the information
contained in the data is used to determine the variables in the SES index that are important.
Estimating the SES index weights also avoids the assumption that all variables are equally
important in the SES index, which is the assumption of popular indices that sum the z-scores
of variables to construct the SES index, such as the Townsend and Carstairs deprivation
indices.

We used WQS regression to estimate several SES indices. We estimated an index using the
2012 ESRI demographic data and multiple indices using the 2009-2013 ACS data. We selected
a set of SES variables in advance that were available at the block group or census tract scale
that we thought could be associated with CRCS adherence. The seven SES variables in the
2012 index included measures of income, poverty, housing tenure, household size, and age
dependency, which is defined as the ratio of the young population (<15 years) and the older
population (>65 years) to the working age population (15-64 years). The variables used in the
indices are listed in Table 1. We estimated different 2009-2013 SES indices using variables
measured at only the block group, only the census tract, and a combination of variables mea-
sured at the block group and census tract. The first block group index (BG1) included 10 mea-
sures of income, poverty, education, housing tenure, housing rent, and race. The second block
group index (BG2) added to BG1 a Gini index of income equality for 11 total variables. The
Gini index is 0 with perfect equality and 1 with perfect inequality, and we subtracted this from
1 to match the hypothesized direction (positive) of the variables in the SES index. The first

Table 1. Variables used in different area-level SES indices using census block group and tract ESRI 2012 demographic and ACS 2009-2013 data.

Variable

Median household income
Per capita income

Percent of households not on public
assistance

Percent of families with children under 18 not
in poverty

Percent of population >25 years with a
bachelor’s degree

Percent owner occupied housing
Percent not vacant housing units
Median gross rent

Percent of households with mortgages
Percent of population that is white

Gini index of income equality

Percent of population not in poverty

Percent population >1 years in same house
as 1 yearago

Percent population 50-74 years in same
house as 1 year ago

Percent of people with health insurance
Percent not Hispanic or Latino population
Percent of households not in poverty
Age dependency index

Average household size

https://doi.org/10.1371/journal.pone.0179272.t001

2012
Index

2009-2013 Block Group | 2009-2013 Block Group | 2009-2013 Tract | 2009-2013 Tract
Index 1 Index 2 Index 1 Index 2

X X X X X
X X X X X
X X X X

X | X | X | X | X

X | X [ X | X X |X
X (X [ X | X [ X [ X | X | X
X | X | X [ X X
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census tract index (CT1) included 15 measures of income, poverty, education, migration,
housing tenure, housing rent, health insurance, race, and ethnicity. The second census tract
index (CT2) included the variables from BG1 but measured at the census tract instead of at the
block group.

There were specific motivations for the set of proposed SES indices. The motivation for the
2012 index was to determine if an easily constructed SES index would provide a relatively
good model fit. The 2009-2013 ACS indices were more time intensive to construct due to the
required downloading and processing of the ACS data. The motivation for block group index
2 (BG2) was to determine if adding an important variable available at the census tract only
improved the model fit of the block group index 1 (BG1). The motivation for tract index 1
(CT1) was to determine if using a larger set of SES variables available at the census tract level
would lead to a better fit compared with the block group indices. The motivation for tract
index 2 (CT2) was to compare with BG1 to determine which spatial scale resulted in a better
model fit. We compared the fit of the different SES index models using the Akaike Information
Criterion (AIC). In each of the WQS models, we adjusted for the following individual-level
variables when estimating the SES index and effect: age, gender, race, ethnicity, and tobacco
use. We fitted the WQS models using the R computing environment with B = 100 bootstrap
samples. An R package called wqs [46] is available for fitting WQS models.

As a comparison to the approach of using equal weights for each variable in the SES index,
we found the best of the fitted WQS models described above according to the AIC and then
fixed the weights in the index to be all equal when fitting the model in (Eq 2) above. The AIC
for the best WQS model with estimated weights should be significantly lower than the AIC for
the WQS model specified with equal weights if our approach is superior to assuming equal
importance for all variables in the SES index. In another comparison, we constructed the best
WQS model index to match a conventional SES index based on z-scores by replacing the quan-
tiles for the SES variables with z-scores in Eqs (1) and (2). We then compared a model with an
index of z-scores and estimated weights to a model with an index of z-scores and fixed and
equal weights. Again, if our approach is superior then the model with estimated index weights
will have a significantly lower AIC.

Results

Overall, 52.6% of the sample had a colonoscopy in the last 10 years. According to the AIC, all
of the 2009-2013 ACS models fit substantially better than the smaller 2012 model (Table 2).
Adding the Gini index of income equality to the block index BG1 meaningfully improved the
model fit. Overall, the block group index models fit better than the tract index models. Specifi-
cally, the block group models fit substantially better than census tract model CT1 even though

Table 2. AIC values in the validation dataset for WQS models with different definitions of the SES
index.

Model AlC
2012 Index 137,822
2009-2013 Block Group Index 1 137,772
2009-2013 Block Group Index 2 137,748
2009—2013 Tract Index 1 137,808
2009-2013 Tract Index 2 137,800
2009-2013 Block Group Index 2 with equal weights 137,778
2009-2013 Block Group Index 2 with z-scores 137,754
2009-2013 Block Group Index 2 with z-scores and equal weights 137,780

https://doi.org/10.1371/journal.pone.0179272.t1002
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the census tract model used more variables in the SES index. The tract model CT2 limited to
the variables used in the block group index in model BG1 had worse fit than the model BG1,
indicating that using the block group spatial scale led to better fit. The model with the block
group SES variables and the census tract Gini index of income equality (BG2) had the best
overall fit, demonstrating that a multi-scale SES index can improve on the fit of either a block
group or tract only SES index.

When the index weights for the best fitting model were fixed to be equal (w = 0.091), the
AIC increased to 137,778. This is meaningfully higher than the value of 137,748 for the model
with weights estimated to be unequal, showing that allowing the variable importance to vary
results in better model goodness-of-fit. In fact, using equal variable importance in this model
led to a worse goodness-of-fit then the BG1 model, which omitted an important variable (the
Gini index). The BG1 model that was clearly inferior to BG2 when the weights were estimated
was superior to the best specified BG2 model when it had fixed and equal weights. When using
z-scores in place of quantiles for SES variables, the AIC for the model with estimated weights
was 137,754 and the AIC for the model with equal weights was 137,780, again demonstrating
that estimating the weights led to a better fitting model.

For the best fitting model (BG2), the most heavily weighted variables in the SES index were
percent white population, percent owner occupied housing, per capita income, and the Gini
index of income equality (Table 3). These variables were also relatively highly weighted in
other SES indices. Percent white was the most heavily weighted variable in the BG1, BG2, CT1,
and CT2 models. Percent owner occupied housing was the most heavily weighted variable in

Table 3. SES index weights estimated in the training set for variables using census block group and tract ESRI 2012 demographic data and Ameri-
can Community Survey 2009-2013 data.

Variable 2012 | 2009-2013 Block Group | 2009-2013 Block Group | 2009-2013 Tract | 20092013 Tract
Index Index 1 Index 2 Index 1 Index 2

Median household income 0.28 0.13 0.06 0.05 0.15
Per capita income 0.02 0.07 0.14 0.12 0.06
Percent of households not on public 0.02 0.02 0.00 0.01
assistance
Percent of families with children under 18 not 0.02 0.01 0.03
in poverty
Percent of population >25 years with a 0.00 0.00 0.00 0.00
bachelor’s degree
Percent owner occupied housing 0.29 0.29 0.21 0.04 0.20
Percent not vacant housing units 0.08 0.00 0.00 0.01 0.02
Median gross rent 0.10 0.08 0.02 0.04
Percent of households with mortgages 0.03 0.02 0.00 0.02
Percent of population that is white 0.33 0.27 0.34 0.47
Gini index of income equality 0.17 0.20
Percent of population not in poverty 0.00
Percent population >1 years in same house 0.02
as 1 year ago
Percent population 50-74 years in same 0.01
house as 1 year ago
Percent of people with health insurance 0.08
Percent not Hispanic or Latino population 0.08
Percent of households not in poverty 0.10
Age dependency index 0.11
Average household size 0.11

https://doi.org/10.1371/journal.pone.0179272.t003
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Table 4. Odds ratios estimated in the validation set for variables in models with different SES indices based on ESRI 2012 demographic data and
American Community Survey 2009-2013 data.

Variable 2012 Index | 2009-2013 Block Group Index | 2009-2013 Block Group Index | 2009-2013 Tract Index | 2009-2013 Tract Index
1 2 1 2

Intercept - - - - -
Age 50-54 0.649* 0.650* 0.649* 0.652* 0.651*
Age 55-59 1.342* 1.345* 1.344* 1.348* 1.347*
Age 60-64 1.228* 1.228* 1.228* 1.231* 1.230*
Age 65-69 1.375% 1.375% 1.375% 1.377* 1.376*
Male 0.980 0.979 0.979 0.9821 0.980
Race Null 0.689* 0.700* 0.700* 0.699* 0.700*
Race Black 0.728* 0.754* 0.756* 0.747* 0.746*
Race Asian 0.613* 0.633* 0.632* 0.636* 0.637*
Race American 0.837 0.853 0.854 0.844 0.843
Indian
Race Native 0.565* 0.576* 0.577* 0.579* 0.577*
Hawaiian
Ethnicity Null 0.725* 0.731* 0.729* 0.731* 0.732*
Ethnicity Hispanic 0.629* 0.641* 0.641* 0.638* 0.638*
Tobacco Use Null 0.057* 0.057* 0.057* 0.056* 0.056*
Tobacco Use Quit 1.035" 1.0341 1.032/ 1.029n 1.0312
Tobacco Use 0.872 0.875 0.873 0.869 0.869
Passive
Tobacco Use Yes 0.565* 0.565* 0.564* 0.558* 0.560*
SES Index 1.106* 1.154* 1.172* 1.149*% 1.117*

*p-value < 0.01
Ap-value < 0.05

https://doi.org/10.1371/journal.pone.0179272.t1004

the model with the 2012 ACS data and the second most heavily weighted variable in the BG1
and CT2 models. Percent white population and the Gini index of income equality were the
two highest weighted variables in the index in the CT1 model. Per capita income was the next
most highly weighted variable in this model index. The variable percent of population >25
years with a bachelor’s degree received effectively no weight across the models.

The SES index for all the models was statistically significantly positively associated with
colonoscopy adherence, with odds ratios ranging from 1.10 to 1.17 and p-values < 0.01
(Table 4). The best fitting model had the highest odds ratio (1.17, 95% CI: 1.15-1.19). The
covariate reference values were age 70-74 years, female, white, non-Hispanic, and never used
tobacco. Screening adherence was significantly positively associated with ages 55-69 years,
white race, non-Hispanic ethnicity, and former tobacco use. Current tobacco use and age 50-
54 years were significantly inversely related to screening adherence in all models.

The estimated SES index for census tracts from model CT2 (not shown) and for block
groups from model BG1 (Fig 2) show spatial variation in area-level SES with higher values on
the periphery of Minneapolis-St. Paul. The block group index has more spatial heterogeneity
than the tract index given the smaller spatial unit.

Discussion

In this paper, we estimated an area-level SES index and its association with colonoscopy using
WQS regression in a large study of patients in Minnesota and Wisconsin. Our results demon-
strate that it is feasible to simultaneously estimate an area SES index and its association with an
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Fig 2. SES index for block groups estimated with block group model 1 (BG1) in the training set.

https://doi.org/10.1371/journal.pone.0179272.9002

outcome using WQS regression. We found a statistically significant relationship between area-
level SES and colonoscopy adherence. Certain variables in the index, such as home ownership
and race, were estimated to be more important than others. Some variables, like education,
were estimated to have effectively no weight in the index. These results show that for this study
assuming equal weights for the variables in the SES index, which is done in the typical
approach when summing z-scores to create an index [25-27, 32-35], lead to a worse fitting
model. Instead of assuming a strict definition of the SES index, we learned from the data how
to represent the SES index.

There are several advantages of using WQS regression to estimate an area-level SES index.
The WQS regression method was designed to estimate the effect of a combination of many
variables, identify the individual variables most strongly associated with a health outcome, and
adjust for risk factors. The method is designed to accommodate highly correlated data that cre-
ate collinearity issues with traditional regression methods. It identifies the important variables
in the index through the estimated index weights, in contrast to z-score sums that treat the var-
iables as equal in importance. Simulation studies show that WQS regression has high specific-
ity and adequate sensitivity in identifying important variables in regression models [44, 47]. In
simulation studies based on pairwise correlations of 11 chemicals in NHANES (2005-2008),
WQS regression had greater accuracy in identifying the 7 of 11 truly important chemicals (i.e.,
chemicals set to be related to the outcome) correctly as the correlation of the exposures and
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the outcome increased from that observed (range of 0.03 to 0.08) to three times that observed
[44]. It also showed an improvement in specificity over traditional regression and popular
shrinkage methods (e.g., lasso, adaptive lasso and elastic net). In another simulation study,
WQS regression had good sensitivity and specificity in all exposure scenarios for both continu-
ous and binary outcome variables [47] and had higher specificity than penalized regression
models. The studies show that WQS regression tends to place negligible weight on compo-
nents with no correlation with the outcome. In addition, WQS regression can be used for a
large number of SES variables, as the method has been successfully used to model disease risk
related to a mixture of 27 chemicals [45, 47].

Placing the SES index construction into a modeling framework allows one to explore differ-
ent model specifications and select the model with the best goodness-of-fit. We capitalized on
this modeling approach to investigate different spatial scales for the SES index and found that
a spatial scale of block group provided a better fit to the data than a spatial scale of census tract.
Using a modeling-based approach to select the spatial scale is superior to assuming a particular
spatial scale for the analysis and leads to better model fit [39]. In our case, we found that a
multi-scale SES index provided the best fit by combining an important variable available only
at the census tract with a set of variables available at the block group. This consideration of spa-
tial scale is similar in spirit to the recent development of algorithms to select the spatial scale
for each area-level covariate in linear regression models [39]. Similar to avoiding the assump-
tion of equal variable importance in the index, by treating spatial scale of SES variables as a
model selection problem we avoid making the assumption that one spatial scale is correct for
all SES indices.

Our study has several limitations. First, misclassification of colonoscopy adherence may
exist. For example, data for colonoscopy tests done at facilities outside the Allina Health system
may not be captured in the Allina Health EHR. Also, for those in the first three of six cross-sec-
tional samples, data on colonoscopy were only available in the EHR for 7 to 9 years. This mis-
classification would result in people being considered non-adherent while they are actually
adherent to CRCS guidelines. Second, we used patients’ most recent address to geocode. Thus,
the addresses that are geocoded may not reflect the addresses where patients lived when they
obtained CRCS. However, migration within MN is quite low; for example, only 3% of 65-74
year olds move to another address in the state [48]. Third, this study used the census tract and
block group as a proxy of neighborhood, which may not realistically reflect meaningful neigh-
borhoods or communities in all cases. Fourth, not all patient-level variables and area-level indi-
ces that have been cited as relevant to the association between SES and health outcomes were
available for our analysis [25-27, 32]. Therefore, it is possible that the observed effects of area-
level SES and individual colonoscopy behaviors could be affected by unmeasured confounders.
Fifth, we were not able to differentiate between people at high-risk for CRC and those at aver-
age-risk. Thus, both screening and diagnostic colonoscopy were included in the main out-
come. However, adherence was defined in this study as having a colonoscopy in the last 10
years, which aligns with national recommendations for average-risk adults [3]. Lastly, the
study sample only included Allina Health patients who had a primary care visit in the Twin
Cities metropolitan area in MN in the past two years of each cross-sectional sampling date.
Thus, it may not completely represent the general population or those who do not access care.

Our approach of using WQS regression is applicable in any study where an SES index is
considered as a variable in a regression model and the weights for the SES variables are not
known in advance. While we used this approach for estimating area-level SES indices, it could
also be used to estimate an individual-level SES index if the required variables were available.
The feasibility of applying this method in other studies is aided by the presence of an R package
[46].
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