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Simple Summary: MDM2 is a protein responsible for negative regulation of the p53 tumor suppres-
sor. In addition, MDM2 exhibits chaperone-like properties similar to the HSP90 molecular chaperone.
Multiple studies revealed that MDM2 is deeply involved in cancer development and progression.
Some recently published results indicate that the role of MDM2 in DNA repair inhibition is more
complex than previously thought. We show that MDM2 is directly involved in the homologous
recombination DNA repair, and its chaperone-like activity is crucial for this function. The DNA
repair inhibition is a result of inefficient MDM2 dissociation from the NBN protein complex. When
cancer cells are treated with chemotherapy, MDM2 can be easily released from the interaction and
degraded, resulting in effective homologous recombination DNA repair, which translates into the
acquisition of a chemoresistant phenotype by the tumor. This knowledge may allow for identification
of the patients that are at particular risk of tumor chemoresistance.

Abstract: Analyzing the TCGA breast cancer database, we discovered that patients with the HER2
cancer subtype and overexpression of MDM2 exhibited decreased post-treatment survival. Inhibition
of MDM2 expression in the SKBR3 cell line (HER2 subtype) diminished the survival of cancer cells
treated with doxorubicin, etoposide, and camptothecin. Moreover, we demonstrated that inhibition of
MDM2 expression diminished DNA repair by homologous recombination (HR) and sensitized SKBR3
cells to a PARP inhibitor, olaparib. In H1299 (TP53−/−) cells treated with neocarzinostatin (NCS),
overexpression of MDM2 WT or E3-dead MDM2 C478S variant stimulated the NCS-dependent
phosphorylation of ATM, NBN, and BRCA1, proteins involved in HR DNA repair. However,
overexpression of chaperone-dead MDM2 K454A variant diminished phosphorylation of these
proteins as well as the HR DNA repair. Moreover, we demonstrated that, upon NCS treatment, MDM2
K454A interacted with NBN more efficiently than MDM2 WT and that MDM2 WT was degraded more
efficiently than MDM2 K454A. Using a proliferation assay, we showed that overexpression of MDM2
WT, but not MDM2 K454A, led to acquisition of resistance to NCS. The presented results indicate
that, following chemotherapy, MDM2 WT was released from MDM2-NBN complex and efficiently
degraded, hence allowing extensive HR DNA repair leading to the acquisition of chemoresistance by
cancer cells.
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1. Introduction

DNA damage in the form of a single-strand break (SSB) or a double-strand break
(DSB) induces activation of the DNA damage response (DDR) signaling pathway [1]. The
more toxic DSB can be repaired by homologous recombination (HR) or non-homologous
end-joining (NHEJ) DNA repair pathways. In rapidly replicating cancer cells, DSB are cre-
ated at replication forks or by chemotherapeutic agents. They are repaired by the HR DNA
repair mechanism, which uses the undamaged sister chromatid as a repair template [2],
predominantly during the S, G2, and M phases of the cell cycle [3,4]. The NHEJ DNA repair
pathway does not rely on undamaged DNA molecules, is much more error-prone, and op-
erates predominantly in the G1 phase [5,6]. Very efficient repair of DSB in cancer cells could
lead to the inhibition of apoptosis and the acquisition of chemoresistance [7]. Both HR and
NHEJ pathways are initiated by positioning of the MRN complex (MRE11/RAD50/NBN)
on DSB [5,6]. After phosphorylation of histone H2AX, the MRN complex positioned on
DSB recruits inactive Ataxia-telangiectasia mutated (ATM) kinase dimers and activates
them [8]. Activated ATM intensifies the DNA damage response by further phosphorylation
of H2AX histones and other downstream components of this pathway: checkpoint kinases
1 and 2 (CHK1 and CHK2), breast cancer 1 (BRCA1), and p53, as well as components
of the MRN complex. These events trigger RAD51-dependent, homology-directed DNA
repair [9].

Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor
protein. Under normal, non-stress conditions, MDM2 inhibits the transcriptional activity
of p53 and is responsible for p53 ubiquitination, targeting it for proteasomal degrada-
tion [10,11]. Consistently, in healthy adult breast duct cells, the major tumor suppressor
p53 is not detectable, while MDM2 and MDM4 are observed at high levels [12,13]. In
response to cellular stress, including genotoxic stress, p53 is stabilized by the disruption
of MDM2–p53 interaction and can act as a transcription factor leading to tumor suppres-
sion [11,14,15]. p53 induces or attenuates expression of hundreds of genes, including
MDM2 and genes responsible for apoptosis, cell cycle arrest, the DNA damage response
(DDR), autophagy, and DNA repair [16]. The TP53 gene is often mutated in cancer cells [17].
Inactivation of p53 provides cancer cells a growth and survival advantage. The majority of
mutations in TP53 gene are missense mutations [17]. The resulting p53 protein variants
with a single amino acid substitution can acquire oncogenic properties [18]. MDM2 not
only shows E3 ligase activity [19] and ATP-dependent molecular chaperone-like activ-
ity [20] but is also involved in the transrepression of other genes [21,22], translational
control [23,24], and the maintenance of genome stability [25]. Some of these MDM2 activi-
ties are independent of p53 [26]. Elevated levels of MDM2 protein strongly correlate with
an increased risk of cancer [13,27,28]. Furthermore, MDM2 overexpression was demon-
strated in a variety of tumors [27–39]. In human breast cancer, the MDM2 protein level
was identified as a prognostic biomarker [40]. Overexpression of MDM2 gene leads to a
growth/survival advantage for cancer cells not only by p53 inhibition but also by induction
of p53-independent pro-survival mechanisms, including inhibition of tumor suppressor
activity of retinoblastoma (Rb) [41] or (E2F transcription factor 1) (E2F1) [42]. Investigating
p53-independent activity of MDM2, Eischen laboratory identified three members of the
MRN complex (namely, MRE11, RAD50, and NBN), which co-immunoprecipitated with
MDM2 from HeLa cells lysate [43]. The direct and specific interaction between MDM2 and
NBN led to the delay or even the inhibition of γH2AX phosphorylation and DNA break
repair, as measured using comet assay [25,43,44]. Elevated levels of MDM2 in the absence
of p53 resulted in chromatid and chromosome breaks. MDM2-dependent delay of DNA
repair resulted in an increased transformation potential of p53-null fibroblasts [44]. The
involvement of MDM2 in the inhibition of DNA repair is well documented, but several
findings have recently been published that contradict previous statements. Cancer cells
with MDM2 amplification are selectively resistant to treatment with drugs introducing
DSB (inhibitors of topoisomerase II). These tumor cells have reduced DDR after treatment
with doxorubicin or etoposide [45]. Moreover, MDM2 inhibitor (nutlin-3) delayed DNA
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repair of DSB in pancreatic ductal adenocarcinoma (PDAC model), suggesting that MDM2
inhibitors block MDM2 activities needed for effective DNA repair [46]. MDM2 inhibitors
synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer
cell death [46].

Herein, to answer the question of how MDM2 overexpression may simultaneously pro-
mote genome instability and the survival of cancer cells treated with chemotherapeutics, we
verified the hypothesis that in rapidly replicating cancer cells high levels of MDM2 protein
inhibit HR-based DSB DNA repair by interaction with the MRN complex. We demonstrated
that, following treatment with chemotherapeutics, MDM2 is released from the MRN com-
plex in an ATP-dependent reaction, triggering efficient homologous recombination DNA
repair, thereby allowing cancer cells to survive the exposure to DNA-damaging drugs.

2. Materials and Methods
2.1. Breast Cancer Patients Survival Analysis

Breast cancer patients’ clinical and genetic data were retrieved from The Cancer
Genome Atlas (TCGA) using the UCSC Xena browser (http://xena.ucsc.edu, accessed on 1
December 2019). After proper filtering (Study: “TCGA Breast Cancer (BRCA),” Phenotype:
“Primary Tumor,” “PAM50 subtype from RNAseq data (TCGA AWG),” “OS.time,” “vital
status,” Genomic: “Somatic Mutation: TP53,” “Gene Expression: MDM2”) the data of 807
patients were used for survival analysis. Samples from specific molecular subtypes of breast
cancer were divided into two groups (MDM2 high and low) by the median value of MDM2
gene expression in that subtype. The statistical significance of differences in survival was
assessed by a log-rank test (Mantel–Haenszel) using GraphPad Prism 6 software.

2.2. Cell Culture, Transfection, and Treatment

All cell lines: MCF7 (HTB-22), SKBR3 (HTB-30), MDA-MB-231 (HTB-26), MDA-MB-
468 (HTB-132), and H1299 (CRL-5803) were purchased from the American Type Culture
Collection (ATCC, Manassas, United States) and cultivated according to the supplier’s
documentation. Transient transfection with siRNA was performed with GenMute siRNA
Transfection Reagent (SignaGen, Frederick, MD, USA), according to the manufacturer’s
manual, using 40 nM of specific siRNA (Thermo Fisher Scientific, Waltham, MA, USA):
control—(AM4613), MDM2–siMDM2#1 (s8630), siMDM2#2 (AM51334), BRCA1–siBRCA1
(s459), and RAD51–siRAD51 (VHS40453). Cells were seeded on 10-cm-diameter culture
dishes (2,400,000 cells/plate) 24 h before first transfection. Transfection was performed
twice, 24 h apart. Gene silencing efficiency was verified with RT-PCR and western blot
analysis. Transient transfection with plasmids was performed with Lipofectamine 2000
Transfection Reagent (Thermo Fisher Scientific), according to the manufacturer’s manual.
Cells were treated with indicated concentrations of doxorubicin, camptothecin, etoposide,
olaparib (all Selleckchem, Houston, TX, USA), and neocarzinostatin (Sigma-Aldrich, St.
Louis, MO, USA).

2.3. Viability Assay

Metabolic activity (viability) was measured with resazurin reduction assay. Cells were
seeded on 96-well plates (12,800 cells/well), and, following drug treatment, the plates
were rinsed with PBS. Resazurin (15 µg/mL, R7017, Sigma-Aldrich) in a standard culture
medium was added. Plates were incubated for 4 h (37 ◦C, 5% CO2, humidified incubator),
and fluorescence was measured at 590 nm (excitation at 560 nm) with Tecan Infinite M1000
plate reader (Tecan, Männedorf, Switzerland). Cell viability is expressed as a percentage of
viable treated cells relative to the corresponding control cells.

2.4. Real-Time Cell Proliferation Monitoring with the xCelligence SYSTEM

Real-time cell proliferation monitoring was performed with the RTCA DP xCelligence
system (ACEA Biosciences, San Diego, CA, USA). The equipment was placed in a cell
culture incubator (37 ◦C, 5% CO2, humidified incubator). The resistance values measured
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by the device were quantified as the cell index (CI). Twelve thousand cells were seeded
per well of the 16-well E-plates with an area of 0.3 cm2 (12,000 cells/well) according to
the manufacturer’s procedure. Twenty-four hours after the start of the measurements, the
chemotherapeutic agents were added at the appropriate concentrations. Cell proliferation
was monitored for the period of time indicated in the respective figures. Data analysis
was carried out with the RTCA Software 2.0 (ACEA Biosciences, San Diego, CA, USA) and
GraphPad Prism 6.

2.5. In-Cell Western

The in-cell western (ICW) Assay is a quantitative immunofluorescence assay per-
formed in 96-well plate format, functionally equivalent to western blot but providing high-
throughput capability. Cells were seeded and cultured on 96-well plates (12,800 cells/well).
After the treatment, plates were rinsed with PBS and fixed with 100% methanol for 20 min
in −20 ◦C and blocked for 2 h in: 2% BSA, 2% donkey serum, and 0.1% Triton X-100,
PBS. The same buffer was used for overnight incubation with primary antibody (1:5000,
phospho-H2AX antibody NB100-384, Novus Biologicals). Subsequent steps of the assay
were performed according to LI-COR’s in-cell western workflow. The fluorescence signal
was measured with Odyssey CLx (LI-COR, Lincoln, NE, USA), and total fluorescence from
the antibody was normalized to the counterstain signal corresponding to the number of
cells in a well.

2.6. Proximity Ligation Assay (PLA)

Cells (76,000 cells/well) were seeded on sterile 12-mm coverslips (P231.1, ROTH),
which were placed individually in the wells of a 24-well plate (BD, Franklin Lakes, NJ,
USA). After 24 h, cells were washed twice with PBS and fixed with frozen (−20 ◦C) 100%
methanol for 20 min at −20 ◦C then washed with PBS buffer. The experiments were
performed with the use of Duolink In Situ Detection Reagents Red ligation kit (DUO92008,
Sigma-Aldrich), Duolink In Situ PLA Probe Anti-Mouse MINUS secondary antibodies
(DUO92004, Sigma-Aldrich, St. Louis, MO, USA), and Duolink In Situ PLA Probe Anti-
Rabbit PLUS (DUO92002, Sigma-Aldrich, St. Louis, MO, USA). The entire procedure was
performed according to the manufacturer’s instructions, using only the reagents provided
in the kit. Pictures were taken with confocal fluorescence microscope ZEISS LSM 800
(Oberkochen, Germany).

2.7. Co-Immunoprecipitation (Co-IP)

Material for immunoprecipitation was collected from 10-cm plates of fully confluent
cells. Cells were lysed in the following IP buffer: 50 mM Tris-HCl pH 8.0; 150 mM NaCl;
0.5% NP-40; 2 mM MgCl2; 1 mM EDTA; 10 mM NaF; 1 mM Na3VO4-2H2O. Cells were
lysed for 30 min on ice then sonicated (2 × 5 s, 25% power) and centrifuged for 10 min at
12,000 rpm, 4 ◦C. The volume of lysate containing a total of 2 mg of protein was transferred
to a new tube and diluted with IP buffer to a concentration of approx. 10 µg/µL. Five µL
of Dynabeads Protein G (10004, Thermo Fisher Scientific, Waltham, MA, USA) pre-washed
in IP buffer was added and incubated for 30 min at 4 ◦C with agitation. This step was
to eliminate non-specific binding of the lysate components to the surface of the magnetic
beads. In parallel, capture antibodies (2 µg) were added to the lysate and incubated
overnight (ca. 16 h) at 4 ◦C with rocking. Ten µL of pre-blocked Dynabeads Protein G was
then washed in IP buffer and added to each sample. The sample was incubated for 60 min
at 4 ◦C with rocking. The magnetic beads were rinsed three times with cold IP buffer for
5 min at 4 ◦C with rocking. Finally, the beads were resuspended in 10 µL of RIPA buffer
and heated at 98 ◦C for 10 min prior to performing SDS-PAGE.

2.8. In-Vivo Protein Ubiquitination Assay

H1299 cells were seeded in a 6-well dish at a density of 280,000 cells/well. The next
day, cells were transfected with 2 µg of plasmid encoding the HA-tagged ubiquitin and
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2 µg of plasmid encoding the MDM2 WT or MDM2 K454A gene using Lipofectamine
2000 (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s protocol. Six
hours after transfection, the transfection medium was replaced with fresh culture medium.
Twenty-four hours after transfection, 150 nM neocarzinostatin (NCS; Sigma-Aldrich, St.
Louis, MO, USA) and 20 nM proteasome inhibitor MG132 (Tocris, Bristol, UK) were added
to the medium for 30 min. After that time, NCS was removed, and incubation with MG132
continued for an additional 3.5 h. Cells were then washed with cold PBS and lysed in
300 µL of RIPA buffer directly in a dish placed on ice. The samples were centrifuged
(10 min, 13,000 rpm, 4 ◦C), the supernatants were collected, and protein concentration was
measured by the Bradford method. Lysate samples with a total protein content of 40 µg
each were saved as IP input controls. Protein G-bound agarose beads were coated with the
antibody: 3.5 µg of anti-MDM2 (4B2) antibody was added to 10 µL of RIPA pre-washed
50% agarose beads and incubated for 2 h. Antibody-coated agarose beads were added to
the total cell lysates and incubated at 4 ◦C for 16 h. The beads were then washed four times
for 5 min in RIPA buffer. For protein denaturation, the beads were heated at 98 ◦C for
10 min in RIPA with Laemmli buffer. The samples were centrifuged, and the supernatants
were collected. All samples were separated on a 4–20% gradient polyacrylamide gel for
western blot analysis. The MDM2 protein in control samples (input) was detected with
4B2 antibody, and ubiquitinated MDM2 protein was detected with anti-HA antibody (Y11,
Santa Cruz Biotechnology, Dallas, TX, USA).

2.9. Antibodies and Primers

The following antibodies were used for western blot and co-immunoprecipitation:
p53 (DO-1, 1:10,000) and MDM2 (4B2, 1:250, SMP14, 1:250) were a kind gift from B.Vojtesek
(Moravian-Biotechnology Ltd., Brno, Czech Republic ), GAPDH (#2118, Cell Signaling,
1:5000), β-actin-HRP (AC-15, Sigma-Aldrich, St. Louis, MO, USA, 1:10,000), NBN (NB100-
143, Novus Biologicals, Littleton, CO, USA, 1:5000), pNBN (Ser343) (ab47272, Abcam,
Cambridge, UK, 1:250), MRE11 (NB-473, Novus Biologicals, Littleton, CO, USA, 1:1000),
RAD50 (NB100-154, Novus Biologicals, Littleton, CO, USA, 1:5000), pATM (Ser1981) (200-
301-400, Rockland, Gilbertsville, PA, USA, 1:500), pBRCA1 (Ser1524) (#9009, Cell Signaling,
Danvers, MA, USA, 1:250), Chk2 (ab47433, Abcam, Cambridge, UK, 1:500), and pChk2
(Thr68) (#2197, Cell Signaling, Danvers, MA, USA, 1:250). Secondary antibodies: anti-
Mouse HRP (A9917, Sigma-Aldrich, St. Louis, MO, USA, 1:10,000), anti-Rabbit HRP
(Sigma-Aldrich, St. Louis, MO, USA, A0545, 1:10,000), anti-Mouse IRDye® 800CW (926-
32212, LI-COR, Lincoln, NE, USA, 1:15,000), and anti-Rabbit IRDye® 680LT (926-68023,
LI-COR, Lincoln, NE, USA, 1:15,000). The following primers were used for RT-PCR: MDM2
F: GGAGATTTGTTTGGCGTGC, MDM2 R: AGTCCGATGATTCCTGCTGA, GAPDH F:
AAGGTGAAGGTCGGAGTCAA, GAPDH R: TGAGGTCAATGAAGGGGTCA, BRCA1 F:
GATTTATCTGCTCTTCGCGT, BRCA1 R: AGGTTCCTTGATCAACTCCA, RAD51 F: GCT-
GCGGACCGAGTAA, and RAD51 R: TTCTTCACATCGTTGGCATT. RT-PCR conditions:
initial denaturation: 95 ◦C, 10 min; 34 cycles: denaturation: 95 ◦C, 15 s; annealing: 56 ◦C,
30 s; extension: 72 ◦C, 30 s. Equipment used: LightCycler 96 Real-Time PCR System (Roche,
Basel, Switzerland).

2.10. Homologous Recombination Assay Kit

Homologous Recombination Assay Kit (#35600, Norgen Biotek, Thorold, ON, Canada)
is a sensitive tool for measuring the efficiency of homologous recombination through
RT-PCR. Cells were seeded on 12-well plates (152,000 cells/well) and transfected with
plasmid mix (dl-1, dl-2, 300 ng) or the control plasmid (300 ng per well). After 24 h, cellular
DNA was isolated using the Cell and Tissue DNA Isolation Kit (#53100, Norgen Biotek,
Thorold, ON, Canada), according to the manufacturer’s protocol. One hundred ng of DNA
was used as a template for RT-PCR (SG qPCR Master Mix, EURX, Gdansk, Poland) with
primers supplied in the kit. The results were analyzed using LightCycler 96 Real-Time PCR
System (Roche, Basel, Switzerland) software.
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2.11. Homologous Recombination GFP Reporter Assay

H1299 cells, stably transfected with GFP/GFP* reporter (Dr. Slabicki gift), were seeded
on 12-well plates (152,000 cells/well) and, after 24 h, transfected with plasmid encoding
I-SceI endonuclease (300 ng per well). Forty-hour post-transfection cells were collected,
resuspended in 1 mL of PBS, and placed on ice for flow cytometry analysis. Correct
repair of the GFP/GFP* reporter by homologous recombination leads to the creation of a
functional GFP gene whose expression can be observed as cellular fluorescence. HR repair
efficiency was calculated as the percentage of GFP-positive cells in all living cells.

2.12. Statistical Analysis

The experimental data were processed in Microsoft Excel and then analyzed in Graph-
Pad Prism 6. One-way or two-way analysis of variance (ANOVA) was used to compare
the tested variants with control samples, depending on the experiment design, followed
by Tukey’s honest significance test. All experiments were performed with at least three
independent biological replicates. Appropriate controls and technical repetitions were
used depending on the type of experiment. Statistical significance: * p < 0.05, ** p < 0.01,
*** p < 0.001. Error bars represent SD.

3. Results
3.1. An Elevated Level of MDM2 Transcript Correlates with a Worse Prognosis for Survival in
Patients with an HER2-Enriched Molecular Subtype of Breast Cancer

Previously, we and others demonstrated that MDM2 overexpression in non-small cell
lung cancer [28] and breast cancer [39] decreased overall patient survival after treatment.
We used clinical data presented in (the Cancer Genome Atlas Program) TCGA to extend
this research and investigate if a correlation between overexpression of MDM2 gene and a
decrease in patient survival is found in any of the molecular subtypes of breast cancer. As
shown in Figure 1, in the HER2-enriched molecular subtype, where 65% of the patients bear
mutations in TP53 (Figure S1), there was a very strong association (p = 0.0001; Figure 1)
between MDM2 overexpression and a decrease in overall survival.

3.2. Downregulation of MDM2 Gene Expression Leads to Decreased Survival of SKBR3 Cells
(HER2-Enriched Subtype) after Treatment with DNA-Damaging Chemotherapeutic Agents

To elucidate the molecular mechanism of these clinical observations, we tested, using
a metabolic survival assay, the effect of MDM2-gene-silencing (siMDM2#1, siMDM2#2) on
a panel of breast cancer cell lines: MCF7 (luminal subtype, with wild-type TP53), SKBR3
(HER2-enriched subtype with mutated p53-R175H), MDA-MB-231 (basal subtype, with
mutated p53-R280K), and MDA-MB-468 (basal subtype with mutated p53-R273H). As
shown in Figure 2a, after silencing of the MDM2 gene expression and in the absence of any
additional treatment, a slight decrease in cell viability was observed only in MCF7 cells
(TP53 WT). This can probably be attributed to the activation of p53-dependent apoptosis
resulting from the decrease in the MDM2 level.

However, different survival characteristics were revealed when prior to survival assay,
cells were treated with clinically used chemotherapeutics: doxorubicin (DOXO), etoposide
(ETOP), and camptothecin (CPT), which introduce DNA damage (Figure 2b, and results not
shown). In the case of SKBR3 cells (HER2-enriched subtype, p53-R175H), we observed the
decrease in survival after drug treatment in cells with reduced expression of endogenous
MDM2. Similar results were obtained using real-time growth monitoring using xCelligence
technology (Figure S2).

3.3. Downregulation of MDM2 Gene Expression Inhibits H2AX Histone Phosphorylation after
Treatment of SKBR3 Cells with DNA-Damaging Agents

To elucidate the molecular mechanism of this association, we used an in-cell western
technique to assay phosphorylation of H2AX histone (γH2AX). Again, in the case of SKBR3
cells, we detected a correlation between the level of γH2AX and an siRNA-dependent
decrease in MDM2 expression, following treatment with NCS (neocarzinostatin), CPT,
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DOXO, and ETOP (Figure 3). Decreased γH2AX level following downregulation of MDM2
expression could be explained by the role played by MDM2 in DNA damage repair (see
the discussion in [45,47]). At the same time, we cannot exclude the possibility that the
decrease in γH2AX levels after MDM2 ablation with specific siRNA may also be partly
due to enhanced apoptosis (see the results previously published in [39]). Both of these
statements are consistent with the fact that in SKBR3 cells treated with chemotherapeutics,
inhibition of MDM2 expression reduced cell survival (Figure 2b).
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Figure 2. Cell viability after silencing of MDM2 gene expression with and without treatment with chemotherapeutics.
Cell survival was assessed by metabolic activity assay after silencing of MDM2 gene expression using siRNA (siMDM2#1,
siMDM2#2). (a) Cell viability following downregulation of MDM2 gene expression in a panel of breast cancer cell lines.
The viability was assayed 72 h post-transfection and normalized to cells transfected with non-specific siRNA (control).
(b) Viability of SKBR3 cells (HER2-enriched subtype) transfected with non-specific siRNA (control) or one of two different
MDM2-silencing siRNAs (siMDM2#1, siMDM2#2) and treated for 72 h with various concentrations of DNA-damaging
chemotherapeutic agents (camptothecin, doxorubicin, etoposide). For each transfection viability was normalized to non-
treated cells. Statistical significance was assessed by comparing two silencing sequences (siMDM2#1, siMDM2#2) with the
control (non-specific siRNA) at each concentration of the chemotherapeutic agent, * p < 0.05, ** p < 0.01, *** p < 0.001. Three
independent biological experiments were performed for each chemotherapeutic (n = 3).
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Figure 3. In-cell western analysis of histone H2AX phosphorylation after treatment with DNA-damaging agents and
silencing of MDM2 gene expression in the SKBR3 cells. The signal from H2AX phosphorylation was normalized to
untreated cells. Statistical significance was assessed by comparing siMDM2 with the control (non-specific siRNA) for all
tested concentrations of compounds, * p < 0.05, ** p < 0.01, *** p < 0.001. Four independent biological experiments were
performed for each chemotherapeutic (n = 4).

3.4. Downregulation of MDM2 Gene Expression Reduces DNA Repair Efficiency by a
Homologous Recombination Mechanism and Sensitizes SKBR3 Cells to Olaparib
(Poly(ADP-Ribose) Polymerase, PARP, Inhibitor)

To test whether MDM2 is involved in HR DNA repair we used the Homologous
Recombination Assay Kit from Norgen Biotek. Components of the kit-plasmids containing
various mutated lacZα cassettes that can form a functional lacZα cassette through inter-
molecular homologous recombination were transfected into SKBR3 cells. This assay, as
employed here, is based on RT-PCR quantification of intact lacZα cassette re-created from
the components of the kit by homologous recombination in cells. In the validation experi-
ment, we tested whether the assay was sensitive to the presence of known factors directly
involved in HR DNA repair, namely, BRCA1 and RAD51. The presence of specific siRNA
against BRCA1 or RAD51 inhibited the recombination of transfected plasmids containing
mutated lacZα cassettes when compared to the control (non-specific) siRNA (Figure 4a).
Using the same assay, we showed that siRNAs against MDM2 also impaired homologous
recombination reaction, suggesting that MDM2 could be a positive factor required for HR
DNA repair (Figure 4a). The positive involvement of MDM2 in HR-based DNA repair
was also supported by the finding, that silencing of MDM2 gene expression sensitized
SKBR3 cells to PARP inhibitor, olaparib (Figure 4b). Olaparib is used in the clinic for the
breast cancer patients with mutated BRCA1 and/or BRCA2 where the HR DNA repair is
impaired [48].
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Figure 4. Analysis of homologous recombination DNA repair efficiency and sensitivity to olaparib in SKBR3 cells following
MDM2 gene silencing. (a) Homologous recombination assay assessment of the homologous recombination efficiency
after silencing the expression of two genes important for the studied DNA repair pathway and MDM2 gene (right panel).
Statistical significance was assessed by comparing siRNA against the specific gene of interest with the control (non-specific
siRNA). (b) Metabolic activity of SKBR3 cells (HER2-enriched subtype) treated for 72 h with olaparib (PARP inhibitor). The
viability was normalized to untreated cells. Statistical significance was assessed by comparing two silencing sequences
(siMDM2#1, siMDM2#1) with the control (non-specific siRNA) at each concentration of olaparib, * p < 0.05, ** p < 0.01,
*** p < 0.001. n—the number of independent experiments performed.

3.5. MDM2 K454A Variant, Which Lacks Chaperone-like Activity and Inhibits Homologous
Recombination DNA Repair in H1299 Non-Small-Cell Lung Cancer Cells

The interpretation of the results obtained in SKBR3 cells, where MDM2 may act as
positive factor for HR-based DNA repair, is difficult since these cells express mutated
p53-R175H that also interacts with MDM2 [39] and MRN complexes [49]. We engineered
the SKBR3 cell line with stably silenced p53 expression, effectively a (TP53−/−) variant,
but the morphology of these cells differed significantly from the parental cell line. We
decided that, since silencing of TP53 apparently introduced profound changes in cellular
metabolism, the results obtained with parental and modified cells would be difficult to
compare. Therefore, we chose H1299 non-small-cell lung cancer (NSCLC) cells, which
are TP53−/−. Moreover, the expression of endogenous MDM2 in H1299 cells is very
low [39]. In these cells, exogenous MDM2 (both WT and mutated variants) was expressed
by transfection with an appropriate plasmid construct. The validity of the new experimental
model (cell line) was also supported by the observation that high expression of MDM2 was
associated with a poor prognosis for NSCLC cancer patients [28].

In order to check if exogenous MDM2 is involved in homologous recombination in
H1299 cells, we used the cells with stable expression of the GFP/GFP* HR reporter [50].
This construct, when cut by the I-SceI restriction enzyme and processed by cellular ho-
mologous recombination machinery, produces a functional GFP reading frame and green
fluorescence in the cells. These reporter cells were transiently transfected with plasmids ex-
pressing MDM2 WT, MDM2 K454A (chaperone-dead variant), or p53 R175H. Twenty-four
hours later, the cells were transfected with plasmid expressing I-SceI restriction enzyme
in order to introduce double-strand breaks in the reporter construct. After an additional
48 h, the level of active GFP was measured. As shown in Figure 5, expression of the
restriction enzyme I-SceI stimulated homologous recombination of GFP (control). Ad-
ditional expression of exogenous MDM2 WT did not change the recombination of the
GFP in a statistically significant manner. Interestingly, overexpression of mutated MDM2
K454A, which abolishes binding of ATP to MDM2 and inhibits its molecular chaperone-like
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activity [20], inhibited homologous recombination of GFP genes. Similar results were
obtained when H1299 cells were transfected with mutated p53 R175H. This last result
additionally supports previous findings that mutated p53 interacts and interferes with the
MRN complex, therefore impairing HR-based DNA repair [49].
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Figure 5. Analysis of homologous recombination DNA repair efficiency. Homologous recombina-
tion GFP reporter assessment after overexpression of MDM2 WT, MDM2 K454A, and p53 R175H.
Statistical significance was assessed by comparing MDM2 WT overexpression with other samples,
*** p < 0.001. n—the number of independent experiments performed.

3.6. MDM2 WT Stimulates While MDM2 K454A Inhibits Phosphorylation of Multiple Proteins
Involved in DDR (ATM, BRCA1, NBN) in H1299 Cells with DSBs

The results of experiments showing the kinetics of phosphorylation of proteins in-
volved in DSBs repair are presented in Figure 6a,b. Without additional expression of
MDM2, phosphorylation of ATM kinase (pATM) after NCS treatment (time 0) was a very
fast process and corresponded to the kinetics of NBN phosphorylation. Phosphorylation of
BRCA1 (pBRCA1) was slightly delayed compared to the phosphorylation of ATM (pATM)
and NBN (pNBN), suggesting that this event occurred after MRN-dependent activation
of ATM (Figure 6a). Expression of mutant p53-R175H protein substantially inhibited the
phosphorylation of ATM and almost completely abolished the phosphorylation of H2AX,
NBN, and BRCA1 (Figure 6a). After ectopic expression of MDM2 WT, the phosphorylation
of the above proteins was slightly accelerated/stimulated (Figure 6b). However, expression
of the MDM2 K454A variant (after NCS treatment) substantially inhibited phosphorylation
of ATM, BRCA1, NBN, and H2AX (Figure 6b). Based on the kinetics of phosphorylation of
these proteins, the 40-min time-point was chosen to investigate the effect of overexpression
of various variants of MDM2, namely: WT, chaperone dead (K454A), and E3-ligase dead
(C478S) on the phosphorylation of proteins involved in DDR.
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The activation of ATM (phosphorylation of serine S1981), BRCA1 (phosphorylation of
serine S1524), and NBN (phosphorylation of serine S343) occurred only when both MDM2
WT and NCS were present (Figure 6c). Interestingly, we also observed MDM2-independent
phosphorylation of those proteins, suggesting the existence of different mechanisms of
DSBs DNA repair activation (see the discussion section for details). Substitution of MDM2
WT with the MDM2 K454A variant inhibited phosphorylation of these proteins in a dose-
dependent manner. Phosphorylation of NBN, BRCA1, and, to some extent, ATM was
stimulated by increasing expression of MDM2 WT (Figure 6d). Substitution of MDM2 WT
with mutant MDM2 C478S with abolished E3-ligase activity did not impair the stimulation
of NBN and BRCA1 phosphorylation, which suggests that E3-ligase activity of MDM2 was
not required for activation of those proteins. It was shown before that other E3 ligases are
involved in ubiquitination of NBN leading to activation of HR DNA repair reaction [51–53].
Interestingly, increasing expression of mutant MDM2 K454A, as well as double mutant
MDM2 K454A C478S (result not shown), substantially inhibited phosphorylation of ATM,
BRCA1, and NBN (Figure 6d).
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3.7. Chaperone-Dead MDM2 K454A Variant Interacts with NBN More Efficiently Than
MDM2 WT

Using a proximity ligation assay (PLA), we demonstrated that, in H1299 cells express-
ing exogenous MDM2 and treated with NCS for 40 min, NBN and MDM2 were located in
direct proximity, suggesting that they interacted with each other in the nucleus (Figure 7a).
Surprisingly, substitution of MDM2 WT with MDM2 K454A increased the proximity signal,
suggesting that MDM2 K454A interacted with NBN more efficiently (Figure 7a,b).
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assay between MDM2 and NBN, performed at 40 min after 150 nM NCS treatment. Representative fields of view shown
for MDM2 WT and K454A transfections. GFP is a co-transfection marker for MDM2 expression. Red fluorescence (PLA)
represents direct proximity of MDM2 and NBN. In the bottom panel, the PLA signal is represented by black dots, and the
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location of nuclei is marked by red outlines and GFP by blue outlines. GFP-positive cells are also MDM2-overexpressing
cells. (b) Quantification of PLA foci number per nucleus. Statistical significance was assessed by comparing overexpression
of MDM2 WT and K454A, *** p < 0.001. Control transfection with GFP plasmid. (c) In-vivo protein ubiquitination assay
comparing MDM2 WT and K454A ubiquitination efficiency 40 min after treatment with 150 nM NCS. (d) Western blot
analysis of protein stability assayed in the presence of translation inhibitor cycloheximide. Comparison of MDM2 WT to
K454A variant with and without NCS treatment (150 nM, 40 min), over a 180 min time-course. Representative western
blot shown.

A possible interpretation of these results is that NCS treatment activated ATM, which
phosphorylated both MDM2 and NBN and caused MDM2–NBN complex dissociation. In
the presence of MDM2 K454A, phosphorylation of NBN was inhibited (Figure 6c,d), and
mutated MDM2 K454A did not dissociate from the MRN complex (Figure 7b). Assuming
that this interpretation is correct, the MDM2 WT dissociating from the MRN complex might
be more prone to ubiquitination and thus more unstable than MDM2 K454A. Indeed, NCS
treatment of the cells expressing MDM2 WT induces efficient ubiquitination of this protein,
while the effect of NCS on MDM2 K454A ubiquitination is not so prominent (Figure 7c).

In support of this, we showed that, without NCS treatment, the degradation rates of
MDM2 WT and MDM2 K454A were similar (Figure 7d). However, after NCS/cycloheximide
treatment, MDM2 WT was degraded faster than the MDM2 K454A variant (Figure 7d).

3.8. Overexpression of MDM2 WT Gene Led to Longer Proliferation of H1299 Cells (NSCLC) after
Introduction of DNA Damage

Our results suggest that once liberated from MDM2, the MRN complex located on
DSB activates ATM and allows the HR-based DNA repair reaction to proceed. Efficient
repair of DNA DSB can inhibit drug-induced apoptosis and lead to the acquisition of
chemoresistance by cancer cells. To test this scenario, we monitored H1299 cells prolifera-
tion using xCelligence technique (Figure 8). We observed that, 8 h after NCS treatment,
the proliferation of cells was inhibited. The overexpression of MDM2 WT allowed for
longer proliferation of the cells, suggesting the acquisition of partial resistance to NCS
treatment. The overexpression of mutant MDM2 K454A delayed the response to the drug,
but, 22 h after NCS treatment, the proliferation of H1299 cells was completely inhibited.
The molecular mechanism of chemoresistance acquisition resulting from high expression of
MDM2, which we proposed here, might contribute to the poor prognosis for breast cancer
(this article, Figure 1) and non-small cell lung cancer [28] patients with high expression
of MDM2.
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4. Discussion

Amplification of MDM2 or MDM4 genes in some cancers results in decreased pa-
tient survival [54]. We showed that MDM2 gene amplification is a factor independent of
the p53 status in the prognosis of non-small-cell lung cancer [28]. It was demonstrated,
using immunostaining, that MDM2 overexpression as well as its nuclear localization are
negative prognostic markers in breast carcinomas [40,55]. In this study, we showed that
overexpression of the MDM2 gene clearly correlates with decreased overall survival of
breast cancer patients, but only in the case of the HER2 molecular cancer subtype. A
decreasing endogenous MDM2 level (using specific siRNA) in different breast cancer cell
lines led to the same conclusions: only in the case of SKBR3 cells (which represent the HER2
subtype of breast cancer) did downregulation of MDM2 gene result in the decrease in cell
survival. Interestingly, MDM2 gene silencing in SKBR3 cells diminished cell survival and
proliferation after treatment with drugs introducing DNA damage (CPT, DOXO, ETOP),
suggesting that the presence of the MDM2 protein could augment repair of DSB created by
these drugs. In support of this notion, the decrease in MDM2 expression reduced phos-
phorylation of H2AX protein involved in the repair of DSBs and inhibited homologous
recombination, suggesting that MDM2 could be a positive factor involved in the HR-based
DNA repair process.

The interpretation of these results is difficult because SKBR3 cells contain mutated
TP53 (p53 R175H variant), which could itself, by binding to MRN complex, influence
the repair of DSBs [49]. Moreover, it was shown before that, when p53 is not functional,
inhibition of MDM2 could induce expression of the TAp73α tumor suppressor protein and
promote p73-dependent apoptosis [47]. To complicate this picture even more, we showed
that in SKBR3 cells the endogenous level of MDM2 was sufficient for the formation of a
p53 R175H-TAp73α-MDM2 complex, which inhibited TAp73α-dependent apoptosis of
SKBR3 cancer cells [39]. In that scenario, MDM2 worked as a scaffold protein, stabilizing
the interaction between p53 R175H and TAp73α. To distinguish the effect of mutated
p53 R175H protein from the effect of overexpression of the MDM2 gene on the repair of
DSBs, we tried to engineer a genetically stable SKBR3 (TP53−/−), which proved unfeasible.
Therefore, we employed a simpler system: the H1299 (TP53−/−) cell line, which also
expressed a very low level of endogenous MDM2. Increasing MDM2 expression led to
an increase in the phosphorylation of NBN, BRCA1, and, to some extent, ATM. In the
case of γH2AX, however, increased expression of MDM2 partially inhibited and delayed
the appearance of phosphorylated H2AX histone. These findings support the idea that,
initially, before activation of ATM, phosphorylation of H2AX near DSB is conducted
by VRK1 chromatin protein kinase [56]. After activation of ATM, the ATM-dependent
phosphorylation of H2AX helps to assemble and stabilize protein complexes involved in
DNA repair [57,58].

We also demonstrated that overexpression of the MDM2 K454A variant (instead
of MDM2 WT) diminishes phosphorylation of ATM, NBN, and BRCA1 and weakens
phosphorylation of H2AX histone. We had previously shown that MDM2 WT possessed
ATP-dependent molecular chaperone-like activity since it could substitute HSP90 in the
folding of p53 and luciferase proteins in an ATP-dependent reaction [20]. MDM2 WT
bound ATP but did not catalyze its hydrolysis. The K454A mutation abrogated binding
of ATP to MDM2 and blocked its chaperone-like activity, but it did not block its E3-ligase
activity [26]. As we demonstrated here, the affinity of MDM2 K454A towards NBN, in
cells treated with NCS, was higher than that of MDM2 WT, suggesting that after drug
treatment MDM2 WT dissociates from NBN, which is a component of the MRN complex
located on DSB. This scenario is supported by the finding that, after NCS treatment, MDM2
WT was more efficiently ubiquitinated and degraded by proteasome than MDM2 K454A.
We addressed the question whether MDM2 WT was involved in ATM activation by the
MRN complex located on the DSB and why the chaperone-like activity of MDM2 WT was
important in this process.
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One possible scenario is that MDM2 helps to bring non-active ATM to the MRN com-
plex. Then, following activation of ATM and ATM-dependent phosphorylation of MDM2,
the latter dissociates from MRN complex, thus allowing ATM-dependent phosphorylation
of proteins involved in HR-based DNA repair. It was shown before that non-active ATM
kinase was attracted to the MRN complex positioned on DSB. The carboxy-terminus of
NBN was shown to directly interact with ATM, contributing to its activation [58–61]. It
cannot be ruled out that the NBN-MDM2 complex augments the loading of ATM on the
MRN complex positioned on DSB. Recently, it was shown that HSP90α-ATM and HSP90α-
NBN complexes exist in unstressed (non-irradiated) cells, contributing to the ATM and
NBN stability that is required for the MRN-complex-dependent ATM activation. HSP90
helps to load ATM on the MRN complex; after ATM activation, it phosphorylates HSP90,
thus triggering its dissociation from the MRN-ATM complex [62,63]. Interestingly, the
presence of HSP90 inhibitor, 17-DMAG, reduced the interaction between NBN and ATM,
radiation-induced activation of ATM, and the ability of MRN components to form nuclear
foci after irradiation [64]. Given that MDM2, due to its chaperone-like activity, can replace
HSP90 in promoting p53 binding to its corresponding promoter sequence [20], the case
may also be true for ATM interactions. As shown before, NBN interacted with MDM2;
even NBN mutant lacking both the N- and C-terminus still co-immunoprecipitated with
MDM2 [43]. More detailed analysis demonstrated that the region of NBN comprising
474aa to 512aa is responsible for the interaction [44]. Notably, MDM2 can also interact
with ATM [65]. These combined findings suggest that MDM2 might work as a scaffolding
protein, interacting with both ATM and NBN, helping to position the former near the
C-terminus of the latter. At the same time, the prolonged presence of MDM2 interferes with
the activation of ATM; therefore, MDM2 must be released from the complex, allowing for
the proper interaction of its components. Activated ATM phosphorylates MDM2, ensuring
its autoubiquitination and proteasomal degradation [66].

The alternative scenario is that MDM2 simply acts as an inhibitor that needs to
dissociate from the MRN complex to trigger the activation of ATM. Another molecular
chaperone, such as the previously mentioned HSP90, could by itself be responsible for
guiding ATM to the MRN complex. This scenario is supported by the finding that, in
our homologous recombination-based GFP assay, after creation of DSB by expression of
I-SceI restriction enzyme, in the presence of low concentration of endogenous MDM2, GFP
recombination still occurred. An increasing concentration of endogenous MDM2 improved
this reaction only slightly, and overexpression of MDM2 did not inhibit recombination. The
only thing that could significantly inhibit GFP recombination was substitution of MDM2
WT by MDM2 K454A. A similar effect was observed when phosphorylation of NBN or
BRCA1 was investigated—an increase in MDM2 expression caused an increase in pNBN
and pBRCA1 levels in a dose-dependent manner.

Our results demonstrate that MDM2 needs to dissociate from NBN to enable activation
of ATM protein kinase, which is associated with MRN positioned on DSB. Even a single
point mutation in the ATP-binding site of MDM2 (K454A), which diminishes dissociation
of MDM2 from the complex with NBN, could block the activation of ATM. As shown
previously by the Eischen laboratory and others (review in [25]), MDM2 and MDM4 bind
to MRN complex by specific interaction with NBN and inhibit the repair of DSB. Thus,
inhibition of DNA repair by MDM2 helps cells survive the presence of DSBs by increasing
genomic instability, which leads to cellular transformation [25]. In transformed cancer
cells, particularly those without functional p53, the selective pressure is probably directed
towards the overproduction of MDM2. This is mainly because of increased survival of
those cells (MDM2 abrogates activity of other tumor-suppressor proteins like Rb and E2F1).

5. Conclusions

Previous studies in cancer cells not treated with chemotherapeutics have shown that
the interaction between MDM2 and NBN inhibits the repair of DSBs generated during
DNA replication in rapidly proliferating cells. The data presented here demonstrate
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that the situation is radically different when cancer cells are treated with chemotherapy
(Figure 9). Such treatment efficiently activates stress kinases ATM and CHK2, which, in
turn, phosphorylate MDM2. This phosphorylation causes dissociation of MDM2 from
the MRN complex located on DSB and triggers the initiation of HR-based DNA repair.
Unfortunately, the increase in DSB repair efficiency in cancer cells with high MDM2
expression translates into clinical acquisition of a chemoresistant phenotype.
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