
plants

Review

Roles of Aquaporins in Plant-Pathogen Interaction

Guangjin Li 1,2, Tong Chen 1 , Zhanquan Zhang 1, Boqiang Li 1 and Shiping Tian 1,2,*
1 Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design,

Chinese Academy of Sciences, Beijing 100093, China; liguangjin@ibcas.ac.cn (G.L.);
chentong@ibcas.ac.cn (T.C.); zhangzhanquan82@ibcas.ac.cn (Z.Z.); bqli@ibcas.ac.cn (B.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: tsp@ibcas.ac.cn; Tel.: +86-10-6283-6559

Received: 31 July 2020; Accepted: 30 August 2020; Published: 1 September 2020
����������
�������

Abstract: Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide
range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of
various small solutes involved in numerous essential processes across membranes. A growing
body of evidence now shows that AQPs are important regulators of plant-pathogen interaction,
which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can
mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant
defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and
systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the
activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production
of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata.
On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling
and regulate their normal growth, development, secondary or specialized metabolite production
and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity,
and communications during plant-pathogen interaction.
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1. Introduction

Aquaporins (AQPs) are membrane channel proteins that are primarily associated with water
transport across cell membranes [1]. Water transportation is extremely important for all living cells to
maintain cellular functions and normal vital activities under various conditions. Less than 30 years
after the discovery in human red blood cell membranes, AQPs are now known to exist in nearly
all living organisms, suggesting their essential role in physiological functions [1–3]. In addition to
water, some AQPs can also transport small solutes (including urea, ammonium, arsenite, lactic acid,
boric acid, and glycerol), micronutrients (including silicon and boron), other small molecules (reactive
oxygen species, ROS), and even gas molecules (including CO2, O2 and NO), some of which may
function as crucial signaling molecules during various cellular responses under stress conditions [4–10].
In contrast, non-transporting functions of some AQPs include cell-cell adhesion, membrane polarization,
and regulation of interacting proteins, such as ion channels [1]. Compared to the functions of AQPs in
symbiotic plant-microbe interaction, it has become increasingly clear that AQPs also play an important
role in host-pathogen interaction. The present review focuses on the roles of AQPs in plant immunity,
pathogen pathogenicity, and communications during pathogenic plant-microbe interaction.

The numbers of AQP genes vary significantly among different species [11]. Recent genomic
sequencing projects have shown that AQPs are more abundant in eukaryotes as compared to
prokaryotes [12]. To date, at least 35, 36, 33, 70, 47 aquaporin genes of higher plants have been
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identified in Arabidopsis, maize, rice, cotton, and tomato, respectively [13–17]. The first reported AQP
in the plant was AtTIP1;1, a tonoplast intrinsic protein from Arabidopsis. Its functions have been
further analyzed through expression studies in Xenopus oocytes and cell-swelling experiments in
hypoosmotic media [18]. Since their discovery in the 1990′s, numerous AQPs have been identified and
investigated in plants. Based on their sequence similarity and specific subcellular localization, AQPs in
the plant are divided into five major subgroups, including the plasma membrane (PM) intrinsic proteins
(PIPs), X intrinsic proteins (XIPs), and nodulin 26 like intrinsic proteins (NIPs) in the PM, tonoplast
intrinsic proteins (TIPs) in tonoplast, and small basic intrinsic proteins (SIPs) in the endoplasmic
reticulum [19,20]. Each subfamily can be further divided into different subgroups according to their
specific locations and functions. For example, PIPs have been classified into two subgroups, namely,
the PIP1 subfamily composed of PIP1;1 to PIP1;5 and the PIP2 subfamily composed of PIP2;1 to
PIP2;8 [21]. PIPs are mainly in charge of substrate transport between the exterior and interior of cells,
whereas the others function in transport between organelles [22,23]. Gene knockout studies have
revealed that AQPs participate in regulating the many physiological processes in plants, including
water uptake, gas exchange, nutritional elements and heavy metal acquisition, seed formation and
germination, calcium, and ROS-mediated signaling and biotic and abiotic stresses responses [19,21].
Some microbes, such as bacteria, show less aquaporin diversity, typically possessing only one or two
AQP genes, and the absence of such genes has not revealed any definite phenotype [1]. Moreover,
AQP-deletion mutants have also been studied in Botrytis cinerea and Fusarium graminearum, respectively,
suggesting that AQPs also have important roles in growth, development, secondary metabolism,
and pathogenicity of fungal pathogens [5,24].

AQPs are tightly controlled through multiple mechanisms, mostly including transcriptional control
of their expression and post-translational modifications to control their abundance and transport
activity [25,26]. Many reports suggest that AQPs are upregulated or downregulated in plants in
response to environmental cues [27–29]. Nevertheless, the post-translational regulation (such as
phosphorylation, methylation, deamidation, and acetylation) that regulates PM delivery and the
activity of PIPs is still unexplored [19,30]. These regulation mechanisms can influence the conformation
of AQP monomers, their stability in PMs, and their trafficking or subcellular localization [26,31].
Phosphorylation is a common mode of post-translational modification that acts as a molecular ‘switch’
to regulate protein activity in response to various stresses. It has been proven that phosphorylation of
AtPIP2;1 at multiple sites in the C-terminal occurs under salt stress conditions, leading to the switch of
AtPIP2;1 from PMs to intracellular regions, reducing the hydraulic conductivity of Arabidopsis [32].

2. The Function of Aquaporins in Plant-Pathogen Interaction

Plants are constantly under attack by pathogens, including viruses, bacteria, and fungi, which
leads to various diseases in economically important plants and significant economic losses [33,34].
Plant pathogens have developed efficient strategies to attack the hosts, whereas plants also employ
functional innate immune systems for defenses against pathogens [35]. The PM is one of the first
compartments where plant-pathogen interaction occurs, which mainly depends on the functions of
membrane proteins and other biomacromolecules. Increasing evidence suggests that AQPs play key
roles in plant-pathogen interaction involved in plant immunity and pathogen pathogenicity.

2.1. AQPs Regulation of Plant Immunity

To protect themselves against attack by pathogens, plants perceive conserved pathogen-associated
molecular patterns (PAMPs) from various pathogens, such as bacterial flagellin, harpin or fungal chitin,
which further trigger PAMP-triggered immunity (PTI) and activate various defense reactions, including
the production of ROS, the activation of ion fluxes and conserved mitogen-activated protein kinase
(MAPK) signaling cascades, the secretion of antimicrobial secondary metabolites, stomatal closure,
and cell wall strengthening [36,37]. Pathogens can suppress PTI by delivering effector proteins into
plant cells, resulting in successful infection. In turn, plants have developed another stronger and



Plants 2020, 9, 1134 3 of 9

faster immunity response called effector-triggered immunity (ETI), which involves localized cell death,
also termed hypersensitive response (HR) and systemic acquired resistance (SAR) in the whole plant
to limit pathogen spreading [38,39].

The oxidative burst is an early defense reaction of plants to pathogen attack, leading to the
generation of ROS around the infection site [40,41]. The rapid and transient generation of ROS,
particularly H2O2, reflects a successful recognition of pathogen invasion, which further triggers
a variety of immune responses, such as PTI and SAR, to regulate plant disease resistance [42].
The PM-localized NADPH oxidase is a main factor responsible for the PAMP-induced ROS burst
in plants, which catalyzes the production of superoxide by transferring electrons from cytosolic
NADPH to apoplastic oxygen, and finally, the production of H2O2 by superoxide dismutases [43].
Apoplastic H2O2 is then rapidly translocated into the cytoplasm across the PM. Recently, it has
been demonstrated that AtPIP1;4, one of the PIP family members in Arabidopsis, was involved in
the transport of H2O2 across the PM [44]. Meanwhile, several downstream defense reactions were
observed following this process, including the activation of conserved MAPK signaling cascades by
inducing the expression of MPK3, the production of callose by inducing the expression of GSL5, and the
activation of NPR1 and PR genes [44] (Figure 1). In AtPIP1;4 knockout mutants, H2O2 was prevented
from being transported into the cells, and high concentrations of H2O2 accumulated within apoplastic
regions, leading to hypersensitivity to the pathogen. These findings indicated AtPIP1;4 in Arabidopsis
links the translocation of apoplastic H2O2 to the activation of the PTI and SAR pathways in response
to PAMPs. Furthermore, several other AQPs in plants, including the PIPs and TIPs, were also shown
to mediate H2O2 transport across the membrane between cells [45,46]. Importantly, the structural
configuration may greatly facilitate the elucidation of the functions of AQPs. A recent, excellent review
has provided some details on the structural features of AQPs for regulating H2O2 transport, which may
add more values to the understandings of sophisticated mechanisms involving AQPs in host-pathogen
interaction [22]. In turn, H2O2 also regulates the expression, activity, and localization of specific AQPs
and affects the capacity of AQPs to transport H2O2, thus contributing to H2O2-induced immune
responses in plants [47–49].
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Figure 1. A working model for the involvement of aquaporins in mediating plant immunity.
The perception of pathogen-associated molecular patterns (PAMPs) leads to the activation of the immune
receptor complex. Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata
1 (OST1) may further activate membrane-localized NADPH oxidase and PIP1;2. Phosphorylation at
Ser121 in PIP1;2 by BAK1 and/or OST1 activates the H2O2 transport activity of PIP1;2, further inducing
stomatal closure and leading to PAMP-triggered immunity (PTI). Alternatively, PIP1;4 is also involved
in the transport of apoplastic H2O2 into the cytoplasm, further orchestrated by SAR or PTI, to counteract
pathogen invasion. In addition, PIP1;3 directly interacts with harpin Hpa1 at the PM to mediate the
translocation of the effector PthXo1 into host cells.
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As a part of plant innate immunity, plants have the capacity to close their stomata after the
perception of PAMP to restrict pathogen invasion [50,51]. Stomatal opening and closing are precisely
controlled by various endogenous and environmental stimuli [50]. It has been known that the
stress hormone ABA participates in the regulation of stomatal closure [52]. AtPIP1;2 was found
to facilitate the transport of water and H2O2 across the PM of guard cells to trigger ABA- and
pathogen-induced stomatal closure in Arabidopsis [50]. Phosphorylation of AtPIP1;2 at Ser121 by
Brassinosteroid Insensitive 1-associated Receptor Kinase 1 (BAK1) and/or Open Stomata 1 (OST1) may
activate H2O2 transport activity of AtPIP1;2 in response to ABA signaling and PAMP recognition
(Figure 1). These results clearly showed that AQPs were involved in the opening and closing of stomata
leading to PAMP-triggered immunity.

Harpin is a PAMP elicitor secreted by the type III secretion system in pathogenic bacteria [53].
It has the ability to create pores through cell membranes by directly binding to membrane components,
and thus, promoting the translocation of effector proteins into plant cells [54]. Recent results indicated
that the translocator function of bacterial harpin protein Hpa1 depended on their interaction with
aquaporin PIP1;3 in rice, which participated in the regulation of PthXo1 effector translocation [55]
(Figure 1). Knockout or overexpression of PIP1;3 did not affect Hpa1-induced immune responses,
but substantially affected the susceptibility of rice to bacterial blight pathogen [55,56]. In A. thaliana,
Hpa1 also interacted with the H2O2 transport channel AtPIP1;4, which facilitated apoplastic H2O2 entry
into the cytoplasm and may lead to the initiation of an immune response [22,57]. There is no evidence
to indicate whether PIP1;2 participates in effector translocation that needs further investigation.

Evidence for the participation of AQPs in plant immunity has been drawn from the transcript
profiling of plants infected by pathogens [29]. In addition to increased expression of defense-related
genes, a decline in the expression of a number of aquaporin-encoding genes was observed in cotton [29].
In citrus plants and soybean leaves, several AQPs were also found to be differentially expressed
exclusively following the pathogen infection—indicating that these genes may be involved in disease
development [58,59]. Based on the above observations, further studies are required to determine
whether these AQPs have a specific role in plant resistance to the pathogen. In addition, it is noteworthy
that a number of other solutes or gases, such as nitric oxide and silicon, have been reported to be
transported across the membrane via AQP channels. In contrast, these small molecules are involved in
a variety of metabolic processes or function associated with plant immunity [4,10].

2.2. AQPs Regulation of Fungal Pathogen Pathogenicity

Plant fungal pathogens efficiently colonize the hosts to obtain the necessary nutrients for their
growth and survival [33]. During the initial phases of infection, fungal pathogens regulate their growth
and development tightly and develop specialized infection structures (such as appressoria, infection
cushions, and hyphae) for penetrating hosts and absorbing nutrients [60]. To further colonize hosts
and cause disease, fungal pathogens usually produce and secrete a number amount of extracellular
virulence factors, including effectors, ROS, and toxic secondary metabolites [33,61]. Effectors can
directly suppress host immunity, while toxic secondary metabolites and ROS may contribute to killing
host cells.

Fungal pathogens have the capability to produce various small molecules called secondary
metabolites, which have been shown to function as virulence factors in the interactions with plants [62].
Fungal pathogens secrete toxic secondary metabolite inducing programmed cell death of host cells [61].
Deoxynivalenol (DON) is an important trichothecene mycotoxin and virulence factor produced by
several Fusarium spp. [63]. DON can interfere with normal cellular functions through inhibition
of protein translation by binding to the ribosomes. In F. graminearum, the AQP protein FgAQP1
localized at the nuclear membrane was crucial for hyphal growth, sexual and asexual development,
stress responses, and secondary metabolism [24]. The deletion of FgAQP1 significantly affected
DON production and the expression of related genes, indicating that FgAQP1 may play key roles in
F. graminearum-host interaction (Figure 2).
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Figure 2. A working model for the involvement of aquaporins in modulating pathogen pathogenicity.
As important second messengers, ROS are generally produced in mitochondria or at PM, in which
NADPH oxidase (Nox) complexes have crucial functions. Aquaporin8 (AQP8) is involved in ROS
production by influencing noxR expression, mitochondrial distribution, and H2O2 transport across
membranes. Consequently, ROS-mediated signaling is activated and functions in regulating the growth,
development, and pathogenicity of pathogens. In addition, AQP1 is localized to the nuclear membrane
and plays an important role in hyphal growth, sexual and asexual development, stress responses,
and secondary metabolism.

ROS are known to be involved in plant defense, but also for pathogen attack. Increasing evidence
indicated that fungal pathogens could also generate ROS as signaling components, which are important
for hyphal growth, development, infection structure formation, and fungal pathogenicity [64,65].
Similar to plants, the primary enzymatic ROS generating systems in fungal pathogens is the NADPH
oxidase complex, and mitochondria are major sources of intracellular ROS [66–68]. B. cinerea is an
economically important necrotrophic fungal pathogen that can cause devastating diseases, especially on
fresh fruits and vegetables. An et al. identified eight AQP genes in B. cinerea, among which the only
AQP8 participates in ROS production, distribution, and transport across the PM [5] (Figure 2). It has
been proven that specific AQPs can regulate H2O2 membrane permeability and signaling and facilitate
the transport of H2O2 across the PM in living organisms [69]. These studies indicated that AQP8 could
mediate H2O2 uptake through its capacity to act as a membrane channel for H2O2, and therefore,
affect the ROS signal pathway. In B. cinerea, the deletion of AQP8 obviously suppressed the expression
of the noxR gene, indicating that AQP8 may affect the function of the NADPH oxidase complex and
the production of ROS. In addition, the disruption of both AQP8 and noxR changed the distribution
of mitochondria in B. cinerea hypha. Moreover, AQP8 disruption significantly impaired mycelial
growth, conidiation, infection structures formation, and virulence. The results imply that AQP8 was
indispensable for normal growth, development, and pathogenicity through their mediation of ROS
signaling transduction in B. cinerea.

3. Prospects for Future Research

AQPs are membrane channel proteins that primarily transport water and small solutes across
membranes in nearly all living organisms [1]. Recent studies have shown that AQPs play pivotal
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roles both in plant immunity and pathogen pathogenicity during plant-pathogen interaction.
Although diverse classes of AQPs in plants are differentially regulated upon pathogen attack, their roles,
especially the intracellular AQPs (such as TIPs, NIPs, and SIPs), in plant-pathogen interaction,
are largely unknown. Apart from expression analysis, abundance, activity, gating, trafficking,
and subcellular relocalization of AQPs should be further evaluated by integrating physiological,
biochemical, and molecular genetic methods. Notably, plants may employ tissue- or cell type-specific
AQP genes in different biological contexts, thus responding to diversified environmental conditions [70].
Further studies are still required to go into details to decipher the assembly of protein complexes and
underlying mechanisms.

AQPs are tightly regulated at multiple levels in their expression, abundance, and transport activity,
but the molecular mechanisms involving transcriptional, post-translational regulatory mechanisms,
and molecular interactions need to be further deciphered. It may appeal to great interests to determine
how AQPs are involved in endocytic activities and how effectors are simultaneously internalized
with PM protein via membrane trafficking. Answers to these questions may provoke new ideas
for efficiently protecting crops and controlling pathogens. Moreover, further characterization of
upstream signaling events and their cross-talks also represents significant challenges for future research.
Although accumulating evidence has shown that AQPs are indispensable for growth, development,
and pathogenicity of pathogens, a more comprehensive understanding of the interacting partners and
regulations on cellular redox homeostasis of AQPs still requires further investigation.
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