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Antigen Presentation in the Lung
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Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology,
Nara Institute of Science and Technology (NAIST), Ikoma, Japan

The lungs are constantly exposed to environmental and infectious agents such as dust,
viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped
with an immune defense mechanism that involves a wide variety of immunological cells to
eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs)
function as professional antigen-presenting cells (APCs) that engulf pathogens through
endocytosis or phagocytosis and degrade proteins derived from them into peptide
fragments. During this process, DCs and MACs present the peptides on their major
histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or
CD4+ T cells, respectively. In addition to these cells, recent evidence supports that
antigen-specific effector and memory T cells are activated by other lung cells such as
endothelial cells, epithelial cells, and monocytes through antigen presentation. In this
review, we summarize the molecular mechanisms of antigen presentation by APCs in the
lungs and their contribution to immune response.
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INTRODUCTION

The lung is the peripheral tissue that exchanges gas during respiration; therefore, it is exposed to the
outer environment, which potentially increases the risk of invasion by viral and bacterial pathogens.
Respiratory viruses, including influenza virus and recent coronavirus, induce inflammation and
tissue damage, leading to disorders of the lungs. The high infectivity and spreadability of these
viruses have caused a worldwide pandemic in recent years and has provoked the argument for
recurrent infection and efficacy of vaccination in order to suppress the pandemic. Innate immune
cells such as dendritic cells (DCs) and macrophages (MACs) in the lungs form the first line of
defense by recognizing the molecular structures common to pathogens, called pathogen-associated
molecular patterns, through pattern recognition receptors (1, 2). During the past decade, various
types of lung DCs and MACs have been identified and classified according to surface markers,
expression genes, and corresponding transcription factors with specialized functions. These DCs
and MACs function as antigen-presenting cells (APCs) that engulf pathogens through endocytosis
or phagocytosis and present their peptides on major histocompatibility complex class I (MHC-I) or
MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. Although DCs and MACs are
known as professional APCs with a higher expression of co-stimulatory molecules, such as CD80
and CD86, other types of cells such as monocytes and epithelial cells in the lungs also have the
potential to present antigens to T cells.

APCs load peptides derived from exogenous antigens on MHC-II and present peptide-MHC-II
complex to CD4+ T cells whereas APCs load peptides derived from both endogenous and cytosolic
org May 2022 | Volume 13 | Article 8609151
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antigens on MHC-I and present peptide-MHC-I complex to CD8+

T cells (Figures 1, 2). In addition, specific APCs take up exogenous
antigens, process them, and load peptides onto MHC-I to CD8+ T
cells, a process called antigen cross-presentation (3). Lung DCs are
largely divided into three major subsets: cDC1s, cDC2s, and
plasmacytoid DCs (pDCs). These DCs have been focused on as
key regulators of T cell responses (4); however, recent evidence
indicates that other types of cells in the lung, such as MACs,
monocytes, and epithelial cells, also have antigen presentation
capacity to both CD4+ and CD8+ T cells. MACs in the lung are
mainly classified into alveolar macrophages (AMs) and interstitial
macrophages (IMs). Lung epithelial cells (LECs) consist of alveolar
type I (ATI) and alveolar type II (ATII) cells in the alveoli, and the
predominant cell types constituting the bronchial airway epithelium
include endothelial cells, basal progenitor cells, ciliated cells,
secretory club cells, and goblet cells (5, 6). Lung DCs, MAC and
LECs express MHC-I and/or MHC-II on their cell surface and
potentially present antigen to CD4+ or CD8+ T cells (7).

During pathogen infection in the lung, pathogen-specific CD4+

and CD8+ cells are primed in the lung-draining lymph nodes by
antigen-presenting DCs that migrate from the infected area in the
lung (8, 9). Antigen-presenting DCs encounter naïve CD4+ and
CD8+ T cells in the lymph nodes, where antigen-specific T cells are
selected, and the proliferation and differentiation by antigen
presentation on MHC molecules are induced along with the
assistance of co-stimulatory molecules and the local cytokine
environment (10, 11). Antigen-specific CD4+ and CD8+ T cells
in the lymph nodes migrate to the lungs to directly eliminate
infected cells or induce the accumulation of other immunological
Frontiers in Immunology | www.frontiersin.org 2
cells for pathogen clearance. In addition, antigen-specific T cells
encounter local APCs in the lungs, including DCs, MACs,
monocytes, and LECs, and further differentiate and expand in
the lung (12). Parts of antigen-specific cells differentiate into long-
lived memory cells, which are divided into three types of
population: central memory T (TCM) cells, which are largely
found in secondary lymphoid organs; effector memory T (TEF)
cells, which systematically circulate, transiently entering peripheral
tissue, and resident memory T (TRM) cells, a non-circulating, self-
renewing population located in peripheral tissues including the
lungs (13, 14). There has been increasing evidence that antigen-
specific memory T cell formation through antigen presentation or
cytokines is facilitated by various types of lung cells. In this review,
we summarize the molecular mechanisms of antigen presentation
to MHC-I andMHC-II on APCs and memory T cell formation by
APCs during pathogen infection in the lung.

Molecular Basis of Antigen Presentation to
CD4+ T Cells
In general, extracellular antigens are endocytosed or phagocytosed
by APCs and degraded by proteases such as asparaginyl
endopeptidase (15) and cathepsins S, B, H, and L (16–18).
Degraded peptides are ultimately presented on MHC-II
molecules to prime CD4+ T cells (19) (Figure 1). However, less
than 30% of antigens on MHC-II are derived from endogenous
antigens, such as cytoplasmic or nuclear antigens (20, 21).
Regardless of peptides derived from self or non-self-antigens,
these peptides can be presented by APCs, non-professional
APCs, or tumor cells mainly via autophagosome- or chaperone-
FIGURE 1 | Antigen presentation on MHC-II molecule. Extracellular antigens are endocytosed or phagocytosed, and intracellular antigens are translocated to the
late-endosome or the lysosome via autophagosome- or LAMP-2A- mediated autophagy. Then these antigens are degraded by asparaginyl endopeptidase and
cathepsin. MHC-II is synthesized in ER and mainly pooled at the plasma membrane as MHC-II-Ii chain complex. When the complex translocates from the ER or the
plasma membrane to the acidic compartment, Ii chain is degraded into CLIP and driven out by interaction with H2-M. Afterward, antigen peptides bind to the MHC-II
and the peptide-MHC-II complex exports to the cell surface.
May 2022 | Volume 13 | Article 860915
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mediated autophagy (22). Antigen degradation is mediated by the
fusion of autophagosomes with endosomes and lysosomes in
autophagosome-mediated autophagy (23). Antigens degraded by
the proteasome in the cytosol are translocated to the late
endosome or lysosome, which is enhanced by lysosome-
associated membrane protein 2A (LAMP-2A) (24).

Newly synthesized MHC-II forms a complex with the invariant
(Ii) chain in the endoplasmic reticulum (ER), and is pooled in the
ER or plasma membrane and then respectively, translocated to the
endosomes and lysosomes either directly (25) or indirectly though
endocytosis (26, 27); however, the complex cannot bind to antigen
peptides (28, 29). The Ii chain is degraded into a small fragment
called class II-associated Ii chain peptide (CLIP) and binds to
MHC-II in the late-endosome or the lysosome (30). The CLIP
on MHC-II is driven out by interaction with another
nonconventional MHC-II, called HLA-DM in humans and H2-
M in mice (30). Then, MHC-II complexes can bind to antigen
peptides and be presented on the cell surface (30). The expression
of the peptide-MHC-II complex on the cell surface and its turnover
by ubiquitination in DCs is essential for their ability to efficiently
prime CD4+ T cells (31, 32).
Molecular Basis of Antigen
Cross-Presentation Pathway
Specific APCs are thought to take up extracellular antigens
through endocytosis or phagocytosis and load peptides onto
MHC-I for presentation to CD8+ T cells, a process called antigen
cross-presentation (3). The extracellular antigen degradation
Frontiers in Immunology | www.frontiersin.org 3
pathway is mainly divided into the “vacuolar pathway”,
through which the peptide is degraded in the endosome, and
the “cytosolic pathway” which is responsible for the transport of
degraded protein through SEC61 from the endosome to the
cytosol (33) (Figure 2).

Vacuolar Pathway of Antigen Cross-Presentation
In the vacuolar pathway, extracellular antigens are endocytosed
by APCs and degraded into peptide fragments by proteases in the
compartment. Cathepsin S plays a crucial role in antigen
degradation in the endosomes of bone marrow-derived DCs
(BMDCs) (34). It has been shown that cathepsin S plays a key
role in priming CD8+ T cells to Influenza A virus (IAV) peptides
loaded on MHC-I in the vacuolar pathway (34). In DCs,
cathepsin S is also a crucial protease for MHC-II-dependent
presentation to CD4+ T cells (18, 35) whereas cathepsin L in the
thymic cortical epithelium (35) and cathepsin F in macrophages
likely correspond to proteases in the vacuolar pathway (36). The
degraded peptide by cathepsins forms a complex with MHC-I in
the endosome, and the peptide-MHC-I complex is transported to
the cell surface. However, it is not clear whether cathepsins are
required for antigen degradation in all lung APCs during
pathogen infection.

Cytosolic Pathway of Antigen Cross-Presentation
In the cytosolic pathway, phagocytosed or endocytosed antigens
are translocated from the endosomal compartments to the
cytosol via Sec61 (33) and degraded to peptide fragments by
the proteasome in the cytosol (37, 38). Phagosomes and
FIGURE 2 | Antigen cross-presentation on MHC-I molecule. Extracellular antigens are presented via “vacuolar pathway” or “cytosolic pathway” in the cross-presentation
pathway. In the vacuolar pathway, endocytosed antigen peptides are degraded by cathepsin S and bind to MHC-I in the endosomal compartment. In the
cytosolic pathway, endocytosed or phagocytosed extracellular antigens are translocated to the cytosol via Sec61 and degraded by proteasome. The degraded
peptides are transported into the ER or the endosome via TAP and trimmed by ERAP (in the ER) or IRAP (in the endosomes). TAP form PLC with MHC-I, ERp57
and calreticulin. Afterward, the trimmed peptides bind to the MHC-I and transported to the cell surface. The MHC-I in the endosomes is recruited from the
plasma membrane through Rab11a+ recycle endosome, the ER, or the ERGIC. Antigen degradation regulated by the acidification in the endosome, the
phagosome, and the lysosome by V-ATPase. On the other hand, NADPH oxidase NOX2 regulates phagosomal alkalization and is recruited to the phagosomes
by Rab27a-dependent pathway.
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endosomes are mainly acidified via V-ATPase for degradation
(39), which is regulated by Toll-like receptor (TLR) signals and
other maturation signals (40), and restriction of antigen in these
compartments by acidification is important for peptide
degradation in the cytosolic pathway. DCs lacking the NADPH
oxidase NOX2 show enhanced phagosomal acidification and
increased antigen degradation, resulting in impaired antigen
presentation (41, 42). The recruitment of NOX2 to these
compartments is prevented by deficiency of Rab27a, which
causes acidification of phagosomes, limiting antigen
degradation (43).

The cytosolic pathway is further categorized to two pathways;
“ER-dependent pathway” and “Endosomal pathway”. The ER-
dependent pathway is the most common route to ER for antigen
peptide. Antigen peptides in the cytosol are transported into the
ER mainly through transporter associated with antigen
processing (TAP) and form peptide-MHC-I complexes in the
ER. On the other hand, peptides degraded by the proteasome in
the cytosol are transported back to the endosomes through TAP
in the endosomal pathway. MHC-I molecules are recycled in the
cells. MHC-I molecules in the endosome are transported from
the plasma membrane through the Rab11+ recycling endosomes
(44) and are also recruited from the ER or the ER-Golgi
intermediate compartment (ERGIC) (3, 45). Transported
peptides are loaded on MHC-I by the peptide loading complex
(PLC) the in the ER or the endosomes (46). PLC consists of TAP,
oxidoreductase ERp57, MHC-I heterodimer, and calreticulin
(46). PLC is recruited to phagosomes or endosomes via the
Sec22b-ERGIC pathway (47). PLC is also recruited from the
recycle endosomes after TLR activation (44). In contrast, the N
terminal anchor residues of the peptides are trimmed by ER-
resident N-aminopeptidases (ERAP1 and ERAP2 in humans,
and ERAAP in mice). Insulin regulated aminopeptidase (IRAP),
an aminopeptidase similar to ERAP, trims the peptide in the
endosomes (48, 49). These peptide trimming proteins are crucial
for efficient antigen peptide binding to MHC-I and contribute to
cross-presentation (50–52). Although cytosolic peptides shuttle
into the ER through TAP1 in the cytosolic pathway, TAP1
blockade in DCs leads to antigen presentation by MHC-I
translocation from ERGIC in a Sec22b-dependent manner
rather than the Rab11+ recycle-endosome pathway (53).
DCs and MACs in the Lung
DCs in the lung consist of heterogeneous subsets that exert
different functions (54, 55). Lung DCs are largely divided into
three major subsets and are broadly subdivided into
plasmacytoid DCs (pDCs) and conventional DCs (cDCs).
Murine cDCs express high levels of integrin CD11c and are
further divided into CD103+ DC and CD11b+ DCs. CD103+ DCs
and CD11b+ DCs are also referred to as cDC1s and cDC2s,
respectively (55–58). Although CD11b and CD11c have been
utilized for the separation of DC population, cDCs separation
was proposed as two main subsets cDC1s and cDC2s based on
the transcription factor expression (59, 60). Interferon regulatory
factor 8 (IRF8) and Batf3 drive the development of cDC1s which
are separated as XCR1+Cadm1+CD172a− cDC1s (61–69). On the
Frontiers in Immunology | www.frontiersin.org 4
other hand, IRF4 drives the development of cDC2 which are
separated as XCR1−Cadm1−CD172a+ cDC1s (67, 69–76). pDCs
develop in the presence of transcription factor 4 (E2-2) and the
Ets family transcription factor Spi-B (77–79). In the steady-state,
cDC1s associate with airway rather than alveoli in the lung (80,
81). cDC2s are located in the airway and lung parenchyma (82–
84). Monocyte-derived DCs (moDCs) have been described as
another DC population that accumulates in the lungs during
inflammation and viral infection (85–87). MoDCs are also
known as inflammatory DCs and monocyte derived cells (88–
91). These DCs are subdivided based on the presence of surface
markers and recent progress in the technology for single-cell
RNA sequencing revealed that the cDC2s population in the lung
is subdivided based on expression markers with functional
differences, whereas pDCs and cDC1s are a unique population
(92–94).

MACs in the lungs consist of two major populations: alveolar
MACs (AMs) and interstitial MACs (IMs). AMs are located in
the alveolar space of the lungs and are in close contact with the
type I and II epithelial cells of the alveoli. AMs are the first line of
defense against pathogens for host defense in the lung, with a
higher engulfment capacity against antigens and pathogens (95).
AMs produce cytokines such as TGFb, IL6, and type I interferon
during pathogen infection and inflammation (95, 96). In
addition, AMs play a central role in homeostasis and tissue
remodeling. Pulmonary surfactant is a mixture of lipids and
proteins secreted into the alveolar space by AT II cells. The
surfactant is covered with an interface of alveolar epithelial cells
in the lungs to reduce the physical tension during breathing. In
addition, the engulfment of surfactant and cell debris by AMs is
important for the clearance and maintenance of lung
homeostasis. Accumulation of pulmonary surfactant in the
absence of AMs causes the development of pulmonary alveolar
proteinosis (PAP) (97–99). GM-CSF and TGF-b induce PPAR-g,
a crucial transcription factor for AM development (100).
Interstitial macrophages (IMs) reside in the parenchyma
between the microvascular endothelium and alveolar
epithelium. However, compared with AMs, the role of IMs in
lung homeostasis remains poorly understood. Like AMs, IMs
engulf bacteria and foreign particles and secrete IL-1, IL-6, IL-10,
and TNFa (101–104). IMs form a heterogeneous population that
is further subdivided based on surface markers with distinct
functions (103, 105).

The lung is composed of a complex tissue structure that
exchanges gas and is exposed to outer space. The combination of
crosstalk between DCs and MACs effectively protects against
inhaled pathogens by inducing acquired immunity (Figure 3).
cDC1s, cCD2s and IMs express high levels of MHC I/II with co-
stimulatory molecules CD80 and CD86 (106). However, AMs
express lower levels of MHC-II. Based on the expression of
molecules for antigen presentation, it is revealed that each cells
display antigen presentation capacity against specific infectious
pathogens and allergic materials in the lungs.

Antigen Presentation by pDCs
pDCs are professional cells that secrete type I IFN through the
stimulation of innate immune receptors. It is widely accepted
May 2022 | Volume 13 | Article 860915
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that the production of type I IFN by pDCs in the lungs is
important for host defense against pathogens. An Aspergillus
fumigatus infection model in the lung demonstrated that pDCs
are essential for host defense and neutrophil effector activity
(107). Antigen presentation by pDCs in the lungs is controversial
during pathogen infection. Resting pDCs are weak antigen-
presenting cells, but appear to be functionally specialized for
their ability to capture and present viral antigens to CD4+ T cells
in the presence of CpG DNA or virus stimulation (108, 109).
Transplantation of pDCs in an IAV infection model showed that
pDCs infected with IAV promote antigen presentation to CD8+

T cells (110). In contrast, ablation of pDCs does not have a
significant impact on the production of IAV-specific CD8+ T
cells and viral clearance, indicating that pDCs have weak or no
antigen cross-presentation capacity in vivo (111). Other groups
have shown that pDCs in other peripheral tissues cooperate with
cDC2s to promote their maturation and cross-presentation
activity and induce antiviral CD8+ T cells, suggesting that
pDCs indirectly induce antigen-specific CD8+ T cells (112, 113).

Antigen Presentation by cDC2s
cDC2s are localized in the lungs under a steady-state condition,
and a large number of cDC2s are accumulated in the lungs in
response to inflammation induced by viral infection (114) or
antigen immunization (115). IAV infection induces
accumulation of cDC2s, and the depletion of these cells reduces
the number of virus-specific CD8+ cells and mortality (85–87).
These results indicate that accumulated cDC2s migrate to the
lymph nodes and present antigens to CD8+ T cells. However,
Frontiers in Immunology | www.frontiersin.org 5
cDC1 analysis using Batf3-deficient mice indicated that cDC2s
have a weak cross-presentation capacity in vivo and support the
proliferation of CD8+ T cells in the lung during IAV infection
(116). Initial antigen-specific T cell differentiation is induced in the
tissue-draining lymph nodes, and lung cDC2s are less migratory
than cDC1s (117). During the inflammation, cDC2s in the lungs
have shown to prime CD4+ Th2 cells but not CD8+ T cells
responses (69, 75, 76). cDC2s also have shown to prime CD4+

Th17 cells response during Aspergillus fumigatus infection (74). T
follicular helper (Tfh) cells are a subset of CD4+ T cells that
promote antibody production during vaccination. cDC2s carry
antigen into the lymph node where cDC2-dependent Tfh cells
prime antibody-mediated protection from IAV challenge (67).
cDC2s also locate in lymphoid organ, skin intestine and others
organs as same with lung cDC2s, and cDC2s in the other organs
efficiently promote the differentiation of CD4+ T cells into effector
helper T cells during infection with Nippostrongylus brasiliensis,
Aspergillus fumigatus or Citrobacterior rodentium (70–73). These
results suggest that cDC2s are more specialized in polarizing CD4+

T helper cell responses and providing help to B cells, rather than in
inducing CD8+ T cells activation.

cDC2s consist of heterogeneous subpopulations although it is
unclear whether the same subpopulation of cDC2s induces both
Th2 and Th17 cells (71, 74, 94). Single-cell RNA and cytometry
by time-of-flight (CyTOF) analyses revealed that cDC2s consist
of five distinct clusters. Ly-6C+CD301b– cDC2s promote Th17
differentiation, and CD200+cDC2s induce the differentiation of
Th2 but not Th17 cells (94). In addition, there are conflicting
reports on how moDCs and CD11b+DCs interact with and
FIGURE 3 | Antigen presenting cells in the lung. The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria
that invade the lungs upon breathing. The lungs are protected by various types of immune cells and epithelial cells. Lung DCs are largely divided into three major
subsets and are broadly subdivided into pDCs, cDC1s and cDC2s. MACs in the lungs consist of two major populations: AMs and IMs. LECs consist of ATI and ATII
cells in the alveoli, and the endothelial cells and other types of cells constituting the bronchial airway epithelium. Monocytes migrate to the lungs in response to
inflammatory stimuli in a CCR2-dependent manner and these cells differentiate to moDCs or AMs. Small blood vessels allow oxygen to be extracted from the air into
the blood, and carbon dioxide to be released from the blood into the air. The cells lining the inner surface of blood vessels are the pulmonary endothelial cells. These
cells function as APCs that engulf pathogens through endocytosis or phagocytosis and present their peptides on major MHC-I or MHC-II protein complex to CD8+

or CD4+ T cells.
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regulate T cell responses (118). A recent report indicated that
inflammatory cDC2s (inf-cDC2s) express the Fc receptor CD64
shared with moDCs and IRF8 shared with cDC1s and are
infiltrated to present antigen to CD4+ and CD8+ T cells during
respiratory virus infection (92). TNFR2− cDC2 subpopulation
drives moDCs maturation to generate T follicular helper (Tfh)
cells in the lung (119).

Antigen Cross-Presentation by cDC1s
Many studies have shown the importance of cDC1s in the
initiation of antiviral T cell response following influenza
infection. Particular subsets of cDC1s, such as CD8a+ and
CD103+ cDC1s, play specific roles in naïve T cell activation
and differentiation (10, 120–122). CD8a+ cDC1s in the spleen
and lymphoid organs are known as the cross-presenting subset
(123–125). CD103+ cDC1s are migratory DCs that cross-present
antigens in peripheral tissues, including the lungs (126, 127).
Both CD103+ cDC1s in the lungs and CD8a+ cDC1s in lymph
nodes share the expression of various genes, including
transcription factors IRF8, BATF3, and ID2, and both of these
DC subtypes are developed in the presence of Flt3 (128).

cDC1s directly present antigen to naive CD4+ T cells (129)
and cDC1s could prime Th2 and Th17 differentiation by
producing IL4, IL12, IL13 and IL17 induction during allergic
airway inflammation (130, 131). A mouse model of invasive
pulmonary aspergillosis infection showed cDC1s induces Th17
response by producing IL-2 in the lung (132). Other reports
postulate that cDC1s promote airway tolerance by the induction
of FoxP3+ Tregs in antigen induced airway inflammation (133) or
by inducing IL-10 without Treg-induction (134). Although
cDC1s can present antigens and stimulate CD4+ T cells, they
are well known for their ability to cross-present antigens to CD8+

T cells (127, 132). Lung cDC1s preserve viral antigens in their
endocytic compartments and control the induction of virus-
specific CD8+ T cells through antigen cross-presentation (116,
135). Lung cDC1s migrate to mediastinal LNs after viral
infection, where they directly present antigens to naïve CD8+ T
cells or transfer captured antigens to CD8a+ cDC1s, which
present antigens and activate naïve CD8+ T cells (86, 136,
137). In addition to cDC1s, cDC2s have the potential to
migrate to mediastinal LNs (MLNs) (117), however, cDC2s do
not present antigens efficiently in the MLNs (138). The cytotoxic
activity of CD8+ T cells plays a critical role in viral clearance in
the lungs. Initial virus-specific CD8+ T cells in the LNs are
induced by cDC1s migrating from the infected lung, and the
virus-specific CD8+ T cells then traffic back to the infected lung
to mediate their effector function (10, 11, 139).

Antigen Presentation by moDCs
Chemokine receptor CCR2- and Ly6C-expressing inflammatory
monocytes infiltrate into the lung during pathogen infection
including Aspergillus fumigatus (140) and IAV (141), and
differentiate rapidly into moDCs. MoDCs in other organs are
also capable of presenting antigen and priming to CD4+ T cells
(142, 143) and CD8+ T cells (88). However, the precise function
of moDCs to regulate T cells response in lung is controversial.
CCR2-deficient mice impair moDCs recruitment and exhibit
Frontiers in Immunology | www.frontiersin.org 6
reduction of effecter CD8+ T cell response in the lung after IAV
infection (85). moDCs depletion by CD11c-cre-Irf4f/f mice
reduces CD8+ memory precursor cells and TRM cells during
IAV infection (144). MoDCs in the lung prime IFN-g-producing
antigen-specific CD4+ T cells in pulmonary aspergillosis (140).
MoDCs also promote Th1 and Th17 cell polarization through
antigen presentation during allogeneic responses (118) and
induce Th2 type CD4+ cells during house dust mite allergy
(145). Report using CD26 as a maker for separation of moDCs
indicated that moDCs have poor capacity to migrate to lymph
node and prime CD4+ T cells and CD8+ T cells (92, 117, 146).

Antigen Presentation by Macrophages
AMs develop during embryogenesis, and then predominantly
maintain their populations by self-renewal (147–149) and are
specialized in the removal and recycling of surfactant molecules.
Although AMs are the most abundant immune cells in the lungs
and have been suggested to play a functional role in antigen
presentation during tuberculosis and Cryptococcus neoformans
infection in humans (150, 151), supportive evidence for antigen
presentation by AMs has not been reported in mice. Certain IM
subsets have been contributed to lung immune homeostasis by
spontaneously producing the immunosuppressive cytokine IL-10
and preventing the development of aberrant type 2 allergic
responses against inhaled allergens (101, 104). IMs are separated
by a distinct subpopulation based on the surface expression
pattern (103, 152) and single-cell RNA sequencing (153, 154),
some of which express antigen-presenting genes and may mediate
antigen presentation to CD4+ T cells in the lungs. Accumulated
Ly-6C+ monocytes develop to exudative macrophages (exMACs)
during Cryptococcus (155), Streptococcus (156) and IAV infection
(157). ExMACs produce high levels of TNF-a and NOS2 and
stimulate the proliferation of memory CD4+ T cells (157).
Antigen Presentation by Monocytes
Two types of monocytes have been identified with different
phenotypes and functions: Ly6C+ classical monocytes and Ly6C−

non-classical monocytes. Ly6C+ monocytes constitutively enter to
lung tissues in the steady state and a large number of these cells
migrate to the lungs in response to inflammatory stimuli in a CCR2-
dependent manner (158, 159). Ly6C+ monocytes develop to
moDCs, IMs, exMACs or monocyte-derived AMs in the lungs
during inflammatory stimulation, but in the steady state, monocytes
continuously migrate to non-lymphoid organs including lung
without differentiating into other types of cells and may exit lung
via the lymphatics or undergo local apoptosis and cleared (160).
Ly6C+monocytes have been shown to produce large amounts of IL-
1, IL-6, and TNFa, and have an ability to drive adaptive immune
responses through antigen presentation (160). Ly6C+ monocytes in
other tissues reported that these cells have an ability to present
antigen to both CD4+ and CD8+ cells. Ly6C+ monocytes regulate
early host response to Aspergillus lung infection by taking up
conidia and trafficking them into the draining LN to prime CD4+

T cells (140). Cross-presentation by Ly6C+ inflammatory
monocytes in lymphoid organs has been reported in the presence
of TLR agonists, especially TLR7 (161). Once recruited into the
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lungs, Ly6C+ monocytes further differentiate into moDCs and
monocyte-derived AMs. Recent evidence have shown that CCR2-
deficient mice, which are defective in monocyte trafficking to the
lung, exhibit decreased number of virus-specific lung resident
memory CD8+ (TRM) cells by the antigen presentation on
monocytes (162).

Antigen Presentation by Epithelial and
Endothelial Cells
As lung epithelial cells directly interact with the external
environment, these cells are thought to be critical regulators of
barrier immunity (163, 164). The alveoli are composed of two
distinct lung epithelial cell types: AT I cells, which are thin and cover
approximately 95% of the internal surface of the lung, and AT II
cells, which are cuboidal secreting cells located between type I cells
(165). AT I cells are specialized in gas exchange and alveolar fluid
regulation, whereas type II cells secrete surfactants and constitute
the progenitor cells of the epithelium (166). There is increasing
evidence that epithelial cells in the lung contribute to adaptive
immune responses in the lungs. AT II cells express MHCII and
present antigen. In vitro co-culture experiments AT II cells with
antigen specific hybridoma suggested that AT II cells activate CD4+

cells to induce IFNg in the presence of peptide antigen, and deletion
of MHC-II on AT II cells results in a modest worsening of
respiratory virus disease following influenza and Sendai virus
infections (167). Surfactant Protein C (SPC)lowMHC-IIhigh AT II
cells function as APCs to induce CD4+ TRM cells (7). Antigen
presenting AT II cells primes naïve CD4+ T cells in vitro and induce
regulatory T (Treg) cells (168); however, it is unclear whether AT II
cells prime naïve CD4+ T cells in vivo (169). In addition to CD4+ T
cells activation, barrier epithelial cells recruit and maintain CD8+

TRM cells near the sites of antigen encounter and reactivate them in
the tissues via local antigen presentation (12, 170).
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Small blood vessels, known as capillaries, come in close contact
with the alveoli, allowing oxygen to be extracted from the air into
the blood, and carbon dioxide to be released from the blood into
the air. The cells lining the inner surface of these capillaries are
known as the pulmonary endothelial cells (171). Lung endothelial
cells cross-present malaria antigen to antigen specific reporter cells
in vitro and a mouse model of malaria infection by Plasmodium
berghi ANKA (PbA) induces IFNg positive CD8+ T cell. These
results demonstrate that lung endothelial cells cross-present
malaria antigen to CD8+ T cells, although it is unclear whether
these cells activate naive CD8+ T cell in vivo (172).
PERSPECTIVE AND CONCLUSION

Lungs are protected by various types of APCs that stimulate
antigen-specific CD4+ and CD8+ T cells against infectious
pathogens. cDC1s and cDC2s work as professional APCs in
the lung. Sub-population of cDCs has been investigated by deep
separation using single RNA sequence and CyTOF technology
and have shown to process and present antigen. In addition,
there has been increasing evidence for antigen presentation by
resident APCs such as epithelial cells, epithelial cells in the lungs.
The relation of pathogen and inflammation model to APCs was
shown in Table 1. Although MACs express MHC and
costimulatory molecules with higher engulfment capacity, the
role of MACs in the lung as APCs is still unclear.

To initially prime antigen-specific T cells, antigen-captured
DCs and migratory APCs need to traffic to lung-draining LNs
where they encounter naïve T cells to select antigen-specific T
cells. Following a program of proliferation and differentiation of
T cells in LNs, antigen-specific effector or memory T cells
migrate back to the infected lung to mediate their effector
TABLE 1 | Lung APCs and their roles in T cell responses.

Model T cell type Reference

Influenza virus cDC2 Tfh Krishnaswamy et. al. (67)
pDC CD8 Hemann A. et. al. (110)
cDC1 CD8 Helft et. al. (116), Waithman et. al. (135), Low et. al. (12), Jenkins et. al. (139), Kim and Braciale (10),

Kohlmeier et. al. (11)
moDCs CD8 TRM Ainsua-Enrich et. al. (144)
epithelial cells CD4 Toulmin et. al. (167)
epithelial cells CD8 TRM Wein et. al. (170), Low et. al. (12)
monocyte CD8 TRM Dunbar et.al. (162)

House dust mite cDC2 CD4 (Th2) Tussiwand et. al. (75), Williams et. al. (76)
cDC2 CD4 (Th2,

Th17)
Tussiwand et. al. (75), Izumi et. al. (94)

moDC CD4 (Th2) Plantinga et.al. (145)
Aspergillus fumigatus monocyte CD4 Hohl et. al. (140)

cDC2 CD4 (Th17) Schlitzer et. al. (74)
cDC1 CD4 (Th17) Zelante et. al. (132)

Mycoplasma pneumonia cDC1 CD8 Sun et. al. (127)
Pneumonia virus cDC2 CD8, CD4 Bosteels et. al. (92)
Maralia(Plasmodium berghi
ANKA)

endothelial cell CD8 Claser et. al. (172)

Lung inflammation by
transgenic mice

epithelial cells CD4 Gereke et. al. (168)
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function (10, 11). At the same time, antigen-specific effector or
memory T cells are reactivated by APCs, including monocytes,
epithelial cells and endothelial cells in the lungs, with support of
cytokine production and the local microenvironment (12).
Among the antigen specific memory type cells, CD4+ and
CD8+ TRM cells in the lung provide protection against
pathogen infection and retain for long time period in the
peripheral tissue. Pulmonary antigen encounter is necessary for
the establishment of TRM during IAV infection in the lung (173),
and antigen presentation by DCs with cytokines such as TGF-b
and IL15 is shown to be important for TRM development in the
lung (174–176). Various types of APCs in the lungs contribute to
pathogen clearance against viruses, fungi, and bacteria; therefore,
APCs perform their function depending on the pathogen
infection, and further studies are needed to clarify the role of
individual APCs in the lungs.
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