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Abstract

Electronic health record (EHR) systems offer an exceptional opportunity for studying many diseases and their associated
medical conditions within a population. The increasing number of clinical record entries that have become available
electronically provides access to rich, large sets of patients’ longitudinal medical information. By integrating and comparing
relations found in the EHRs with those already reported in the literature, we are able to verify existing and to identify rare or
novel associations. Of particular interest is the identification of rare disease co-morbidities, where the small numbers of
diagnosed patients make robust statistical analysis difficult. Here, we introduce ADAMS, an Application for Discovering
Disease Associations using Multiple Sources, which contains various statistical and language processing operations. We
apply ADAMS to the New York-Presbyterian Hospital’s EHR to combine the information from the relational diagnosis tables
and textual discharge summaries with those from PubMed and Wikipedia in order to investigate the co-morbidities of the
rare diseases Kaposi sarcoma, toxoplasmosis, and Kawasaki disease. In addition to finding well-known characteristics of
diseases, ADAMS can identify rare or previously unreported associations. In particular, we report a statistically significant
association between Kawasaki disease and diagnosis of autistic disorder.
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Introduction

The latter half of the twentieth century and to a greater extent

the beginning of the twenty-first century saw a prolific and rapid

expansion in the transition of clinical record systems from paper to

electronic. Health care systems stand to benefit signficantly from

the switch to electronic health record (EHR) systems as more

clinical data become more easily captured and accessed. The

complex nature of health care and of how patient information is

reported makes EHR systems extremely challenging to implement.

We are only now beginning to see their power and to learn how

they can be effectively mined for information. Governments are

pushing for the adoption of EHR systems because of their

burgeoning importance in effective care and treatment. In the

United States, for example, the 2009 American Recovery and

Reinvestment Act has allocated $19 billion to research into health

information systems [1], and in the United Kingdom, a large

project to modernise the National Health Service and to move all

patient records to a centralized database is currently underway

[2–4]. It is important to understand how the large amounts of data

being archived in these systems can be correctly and effectively

interpreted.

EHRs not only facilitate improvements in quality of care [1],

they also facilitate clinical research and epidemiological studies,

particularly as they increase the availability of patients’ medical

information [5,6]. The Rare Disease Act of 2002 defines a rare

disease as any disease or condition that affects fewer than two

hundred thousand persons in the United States [7]. Therefore, by

definition, there are a minimal number of people suffering from

any particular rare condition, making rigorous statistical analyses

of these patient cohorts complex. EHRs offer some of the most

enriched data sets available for studying rare diseases in detail, in

particular for studying associated risks to determine if there are

factors that may exacerbate conditions.

The New York-Presbyterian Hospital (NYPH) has been using

an electronic health record system for the past twenty years. Each

patient gets a descriptive, longitudinal record describing what

happened during each patient encounter. The record details

attending consultations, case histories, diagnoses, lab test results,

medications, and procedures. Therefore the EHR at NYPH has

become the de facto method for storing information about patients

and an important means of carrying out analyses of patient data.

The amount of data entered into the NYPH EHR has been

increasing at an exponential rate, with data entry doubling every

eight years (Fig. 1), making it a large and comprehensive EHR

system.

Finding information on rare diseases in the NYPH EHR is a

data mining problem. Processing several hundred million records
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requires an automated extraction and classification process. The

NYPH EHR system can be loosely divided into two parts: one that

archives physician notes in a textual format, and one that describes

patients’ states using code descriptors in the form of proprietary

internal codes or codes from the International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM).

Textual notes provide the greatest amount of information about a

patient; however, they contain natural language, which can be

ambiguous and context-based with relatively complex grammar,

thus making accurate information extraction hard. ICD-9-CM

codes, on the other hand, are easy to process, but they are not

necessarily comprehensively descriptive. Missing and incomplete

data also make discerning signal more difficult, since EHRs may not

be fully up to date, depending on the frequency of patient visits.

Textual sources can be data mined to understand whether local

EHR findings have been observed elsewhere. Journal articles can

complement EHR data for studying disease associations by

providing an aggregate of published information from around

the world. Data mining journal articles has become a feasible

method for determining relationships between concepts [8]. The

National Center for Biotechnology Information (NCBI) maintains

PubMed, an extensive Internet-based journal archive of biological

papers [9]. Data mining and natural language processing (NLP)

have previously been used to analyze journal articles [10–13].

Web sites such as Wikipedia provide another source of information

on diseases and have recently started to be data mined [14,15].

Although considered less reliable than journal sources, web sites

contain data on many subjects and serve as a proxy to summarize

multiple sources.

Previous studies have used EHR systems to research diseases;

however, they primarily use the EHR as the sole data source (for

example see [16–18]). In this paper, we present ADAMS, an

Application for the Discovery of Disease Associations using

Multiple Sources. It combines rigorous multiple hypothesis testing

and false discovery rate analysis of relational diagnosis tables and

NLP processed textual discharge summaries, in addition to the

information retrieved from PubMed and Wikipedia. We apply

ADAMS to the NYPH EHR to investigate the co-morbidities

associated with Kaposi sarcoma, toxoplasmosis, and Kawasaki

disease.

Kaposi sarcoma is a tumor caused by human herpesvirus 8, also

known as Kaposi sarcoma-associated herpesvirus [19]. The

condition came to prominence with the AIDS epidemic of the

1980’s as it was seen to be a frequent and aggressive disease in

AIDS patients. It also has been closely associated with immuno-

suppressed patients [20,21]. We chose to apply our methodology

to Kaposi sarcoma because of the high risk and important role it

plays in patients with HIV/AIDS.

Toxoplasmosis also affects immunocompromised individuals,

either through HIV infection or immunosuppressive therapy. It is

caused by the obligate intracellular parasitic protozoon toxoplasma

gondii. It was selected to study whether the signs and symptoms

from congenital infection and immunocompromise could be

identified. Furthermore, comparing Kaposi sarcoma with toxo-

plasmosis could allow for the study of ICD-9-CM codes specific to

each as opportunistic infections [22].

We also selected a rare disease for its peak incidence in a narrow

age group. Kawasaki disease, also known as mucocutaneous

lymph node syndrome, is an acute vasulitis that most commonly

occurs between one and four years of age. It is generally benign

and self-limited, although it is associated with coronary artery

aneurysms and an overall case-fatality rate of 0.5–2.8% [23–25].

Figure 1. The amount of data entered into the NYPH EHR database each year has been increasing at an exponential rate since 1990
with data entry doubling every 8 years.
doi:10.1371/journal.pone.0021132.g001
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This disease was selected because of the predominant distribution

in children and to evaluate ADAMS’s ability to identify

predisposing risk factors and sequelae of the disease.

To account for background noise in the data, control groups

were required, for which we chose cohorts of post-traumatic stress

disorder (PTSD) patients and influenza patients. PTSD is a

psychiatric condition that can affect people who experience

traumatic events. PTSD is a fitting control disease because it is

regarded as the ‘‘common cold’’ of psychiatric disorders [26].

Exposure is common, with two-thirds of the population exposed to

a traumatic event at least once throughout their lives. Most people

who experience traumatic events will not develop PTSD, as the

lifetime prevalence of PTSD in the general population is around

7%. Half of the people who develop PTSD recover within a year

without professional help, but 15% will not recover despite

receiving treatment [27].

Influenza patients are suitable as a control cohort since

influenza is a broadly contracted infectious disease. While

influenza virus can infect individuals without causing acute

symptomatic disease, some people do suffer sufficiently acute

symptoms to visit the hospital. These people who come to the

hospital would be sicker than those who can stay home; the NYPH

EHR would have a bias toward sicker influenza patients. Since

influenza is a control, this bias would make statistically significant

case associations less likely among the ICD-9-CM codes that occur

more often among sicker influenza patients.

It is a difficult problem to define a representative background

control set of patients against which to compare a case disease.

Ideally the background would be as comprehensive as the case

histories of every person in the world; however, we are limited by

the information present in the EHR and its biases. Using two

control cohorts with different etiologies should expose most data

biases within each control by comparing each case cohort to both.

Although less than the ideal, being aware of each control group’s

biases will allow for broader and more nuanced analyses of the

case diseases.

Methods

ADAMS is an application that can compare case and control

disease cohorts within an EHR and then generate statistical

analyses that can be compared to external data sources. Based on

each case-control pairing, ADAMS can generate a list of all ICD-

9-CM codes within the case cohort along with their respective p-

values and false discovery rates (FDR). At any given FDR

threshold, ADAMS can generate a network diagram of statistically

significant ICD-9-CM codes that can be tied to other data sources.

The data sources used for this paper were:

1. The NYPH EHR ICD-9-CM coded diagnoses;

2. The NYPH EHR natural language processed discharge

summaries;

3. Article abstracts mentioning the rare diseases from the

National Center for Biotechnology Information (NCBI)

PubMed repository;

4. Wikipedia articles on the rare diseases.

Diagnosis ICD-9-CM tables
The NYPH IRB protocol for this project was marked as Non

Human Subject Research and thus was exempt from the

requirement of formal approval by the IRB. The NYPH EHR

was de-identified in accordance with HIPAA regulations, and all

data that could uniquely identify patients were removed before the

study was commenced. This limited data set comprises multiple

tables containing diagnoses, procedures, lab results, prescription

orders, and demographic information encoded using ICD-9-CM

codes [28] and proprietary medical codes. ICD-9-CM codes form

a hierarchy to describe conditions in increasingly finer granularity.

The codes are limited in expression and do not describe all

conditions. They are not always accurate indicators of medical

conditions [29,30]; but in the case of the diseases discussed in this

paper, which generally have specific, well-defined names, we

assume that the ICD-9-CM codes are accurately assigned to

patients because the code descriptions clearly contain the disease

names (Table 1). Incomplete data inherent within the EHR mean

that the number of patients from this data set provides the lower

bound for the actual number of patients at NYPH with each

disease.

Discharge summaries
In addition to the diagnosis tables, which primarily record out-

patient visits, the limited NYPH EHR also includes de-identified

in-patient discharge summaries, which were parsed for disease

associations. Discharge summaries are textual reports written by

physicians. These were processed using Medical Language

Extraction and Encoding System (MedLEE), an NLP system

[31]. The NLP reports contain disease terms found within the

discharge summaries that were coded using the National Library

of Medicine (NLM) Unified Medical Language System (UMLS)

[32]. The discharge summary data were made available at an

aggregated level. A search was done to identify the discharge

summaries that contained the UMLS codes of the diseases of

interest. After the reports were identified, all of the unique UMLS

codes across the reports were listed. The NIH NLM mappings

between ICD-9-CM and UMLS codes were used, but the

mappings were not comprehensive. Many UMLS codes are

unmapped to ICD-9-CM codes, and many ICD-9-CM codes are

unmapped to UMLS codes [33]. In order to capture the

unmapped codes, the UMLS codes were mapped to ICD-9-CM

codes using the procedure outlined in Fig. 2 so that a consistent

description language was used for medical terms. To be as

comprehensive as possible, we used the NYPH discharge

summaries recorded between 1991 and 2009. Because the

discharge summary data were at an aggregated level, it was not

possible to combine ICD-9-CM data and discharge summary data

at the patient level.

PubMed articles
The National Center for Biotechnology Information (NCBI)

PubMed resource is a centralized Internet repository of biological

and medical journal articles [9]. Data mining the site involved

collating all articles whose title or abstract mentioned our rare

diseases of interest and then searching against a list of diseases

(compiled from ICD-9-CM codes) to find co-occurrences of words.

Abstracts were chosen as the primary method of determining

associations because of time constraints precluding comprehensive

natural language processing of the full texts of journal articles.

MedLEE was used to extract disease terms from the abstracts. The

results of NLP were in the same aggregated output format as for

the discharge summary results. UMLS terms were matched to

ICD-9-CM codes with the same method used for discharge

summaries.

Wikipedia articles
Wikipedia was used as a proof of concept that can be mined for

rare disease information. Pages of case diseases were downloaded

and mined automatically using the Wikipedia application

Disease Associations in Electronic Clinical Data
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programmers interface (API) [34]. We ensured that only the latest

revision of each page was downloaded and analyzed for

occurrences of ICD-9-CM code descriptions. For a Wikipedia

page to be tagged as having a given ICD-9-CM code, an exact

match of that code’s full description would have to be found in the

page’s text. Wikipedia was chosen as a source because of its

convenient API and its explicit lack of intellectual property

restrictions.

Table 1. ICD-9 codes used to retrieve the sets of patients of the three rare diseases and the two control groups from NYPH EHR
(2004–2009).

Rare disease ICD-9 codes Number of patients

Kaposi sarcoma 176, 176.0, 176.1, 176.2, 176.3, 176.4, 176.5, 176.8, 176.9 221

Toxoplasmosis 130, 130.0, 130.1, 130.2, 130.3, 130.4, 130.5, 130.7, 130.8, 130.9 138

Kawasaki disease 446.1 213

Post-traumatic stress disorder (control) 309.81 1281

Influenza (control) 487, 487.0, 487.1, 487.8 2582

doi:10.1371/journal.pone.0021132.t001

Figure 2. Outline of how search terms are mapped against ICD-9 code descriptions, using malignant lymphoma as an example.
Firstly the search term (S1) is broken down into words which are matched against the target phrase (S2) using regular expressions. Starting with every
word in S1, S1 and S2 are compared and if there is no match, words are repeatedly removed from the match expression until only one word remains.
If no match is found, a Levenshtein distance function is used to compare the terms for equality and if it scores lower that a threshold t the terms are
considered as matching.
doi:10.1371/journal.pone.0021132.g002
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ADAMS methodology
ADAMS functions as a pipeline of discrete, automated stages

where each stage enriches data generated from previous stages.

The major steps involved in determining disease assocations using

our algorithm can be summarized as follows:

1. Identify diseases of interest for both case and control cohorts.

2. Identify patients with diseases of interest.

3. Load the ICD-9-CM code history of patients with diseases of

interest into each disease cohort.

4. Run ADAMS to establish statistically significant associations.

5. Search for disease association data in other data sources such as

PubMed and NLP discharge summaries.

6. Draw network diagram combining ICD-9-CM data with data

from other sources.

Patients with the diseases of interest were identified using ICD-

9-CM codes. Any patient whose medical history included any

ICD-9-CM codes that denoted a disease of interest within

calendar years 2004–2009 were included in the respective disease

cohorts. Using ICD-9-CM codes allowed for broader selection of

patients since both inpatient and outpatient records in the NYPH

EHR have ICD-9-CM codes.

Once a patient was identified as having a disease of interest, all

of that patients ICD-9-CM code data from 2004–2009 were

loaded into the respective cohort table. These ICD-9-CM lists

served as the basis for finding statistically significant positive

associations.

On the ADAMS interface (Fig. S3), the case and control cohorts

are selected. ADAMS is also able to limit time intervals for data,

but for the purposes of this paper no time limits were specified; the

entire time period of 2004–2009 was under evaluation.

Within ADAMS, the hypergeometric distribution was used to

calculate the p-value of each ICD-9-CM code in the case cohort

versus the control cohort. The cumulative distribution function

(cdf) was calculated based on the number of patients with a given

code and the total number of patients in each cohort. If a code

existed in the case cohort but not the control cohort, the control

cohort was assigned a code patient count of zero. The p-value for

each code (p�) was calculated as (1 - cdf). Because the

hypergeometric cdf is asymmetrical, this test identifies positive

associations that are statistically significant; negative associations

are not identified.

To test for multiple hypotheses, we followed the bootstrapping

method described in Khiabanian et al. [35]. Bootstrapping

involved creating randomized case and control sets based on the

observed case and control cohorts. For each case and control

cohorts pairing, the case and control patients were placed into a

consolidated pool of patients. A patient was selected at random

with replacement from the pool. That patient then was assigned to

the bootstrap case group. This process was repeated until the

bootstrap case group reached the same number of patients as the

observed case group. The same process of random selection was

done for the bootstrap control group until it reached the same

number of patients as the observed control group.

Similar to the previous step, within each bootstrap data set, the

hypergeometric value for each ICD-9-CM code was calculated.

The number of p-values less than each p� was counted and then

divided by the number of bootstraps. This quotient represented

the expected count of p-values less than each p�. The expected

count was divided by the observed count for each p�. The quotient

of expected count divided by observed count defined the false

discovery rate (FDR) per p�. The FDR cutoff was set at less than

0.05. The desired number of bootstraps is entered, which for this

paper was one hundred thousand. Clicking on the ‘‘Search’’

button in ADAMS begins the process of statistical analysis.

Network diagrams
The statistical analysis described thus far applies only to the

ICD-9-CM coded data. The other three data sources (discharge

summaries, PubMed, and Wikipedia) act as references for

comparing patterns observed in the EHR with documented

findings in the literature. ADAMS combines the four data sources

to create a visual network diagram that draws links between

common associations among them. The diagram is ICD-9-CM

centric; only the intersections between ICD-9-CM-derived

associations and associations from each of the other data sources

were included. Thus any associations reported in the other sources

that were absent in the ICD-9-CM associations were not shown.

1. Each graph begins with the ICD-9-CM coded set of diseases,

C, that are associated with the disease of interest.

2. First a node for the disease of interest, D, is added to the graph.

3. For each co-occurrence Ms [ Cs, where Cs is the set of the

statistically significant co-occurrences with D and Cs(C,

create a graph node for Ms along with an edge connecting D to

Ms.

4. Each of the three ancillary data sources are then queried

separately to find the set Cx of associated co-occurrences with

D.

5. For each co-occurrence Ms [ Cs and Mx [ Cx, the terms are

compared and if a match is found between Ms and Mx, Mx is

added as a graph node and an edge between Ms and Mx is

created.

6. If the nodes and edge do not already exist, a node Sx

representing the ancillary data source that contains Mx and a

connecting edge from Mx to Sx are added.

Despite efforts such as the UMLS to unify ontologies, mapping

between different medical vocabularies is non-trivial. Each of the

four data sources has its own terminology for particular diseases, so

it is not always possible to create perfect mappings between terms.

ADAMS uses a fuzzy matching procedure to compare terms in

different data sources to reduce the number of unmatched terms

(Fig. 2). If an exact match cannot be made, partial terms are made

by repeatedly removing individual words from a term and

converting plural nouns into their singular form. These partial

terms are then matched to each other. Finally, if this fails to yield

matches, a Levenshtein distance function [36,37] is used to

calculate the number of insertions, deletions, and changes between

the terms; and if this is below a threshold t, the terms are classed as

matching.

The number of records in each data source is given in Table 2.

Adjusting granularity of network diagrams
Although network diagrams contain only statistically significant

associations, the number of nodes can still be prohibitively large.

To address this issue, custom super nodes can be defined, which

subsume existing nodes to adjust the granularity of the network.

For example, in the case of Kaposi sarcoma, multiple types of

malignant neoplasms can be collapsed into a single ‘‘malignant

neoplasms’’ super node (Fig. S1). Super nodes are defined by

keywords, against which nodes are matched. As the network is

built, each node in a link is compared to the database of super

nodes and terms. If a super node match is found, edges are

redirected to the super node. Links between super nodes can be

Disease Associations in Electronic Clinical Data
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suppressed if desired, since this feature can produce misleading

links between super nodes when in reality the link occurs because

of a node within the category and not the category itself.

Results

For each rare disease (Kaposi sarcoma, toxoplasmosis, and

Kawasaki disease), a cohort of patients was constructed and was

compared to each of two control cohorts: one cohort of patients

with PTSD and one with influenza (Table 1). The coded data used

in the analyses covered years 2004 to 2009 since this time period

has the richest and most complete record sets in the hospital.

Discharge summary data from 1991 to 2009 were used. Relevant

PubMed and Wikipedia articles from any year of publication were

analyzed. Table 3 shows a selected list of highly statistically

significant associated medical conditions with these rare diseases

compared to either or both control cohorts. (A complete list of all

significant associations are shown in Tables S1, S2, S3, S4, S5, S6.)

Fig. 3 and Fig. S1 and S2 show the results of combining all four

data sources for determining significant disease associations

compared to influenza. (Similar diagrams obtained with PTSD

are not shown.) Associated diseases can be split into two sets: those

that confirm known relationships where the results from the

diagnoses, PubMed articles, and Wikipedia overlap, and novel

associations that occur only in the diagnoses or NLP reports.

The EHR codes associated with a case disease can be divided

into the following groups: 1) codes of well-known characteristics of

the disease; 2) codes related to well-known disease associations and

their manifestations; 3) codes of disease treatments and their

sequelae; 4) codes related to treatment of associated diseases and

their sequelae; 5) confounded, rare, or previously unreported

disease associations.

ADAMS identified a total of 303 ICD-9-CM codes associated

with Kaposi sarcoma that were statistically significant across both

PTSD and influenza control groups. Of these codes, 178 were

shared between both control groups, 82 codes were associated only

with influenza, and 43 were associated only with PTSD. A total of

88 codes were different types of specific malignant neoplasm, 19 of

which were associated only with flu, whereas only 1 was associated

only with PTSD.

The ICD-9-CM codes directly related to Kaposi sarcoma

include ‘‘176.0 Kaposi sarcoma skin,’’ ‘‘176.3 Kaposi sarcoma

gastrointestinal sites,’’ ‘‘176.4 Kaposi sarcoma lung,’’ and ‘‘280.0

Iron deficiency anemia secondary to blood loss (chronic).’’ Since

Kaposi sarcoma is strongly associated with HIV infection, many

codes related to HIV and opportunistic infections appear: ‘‘117.5

Cryptococcosis,’’ ‘‘136.3 Pneumocystosis,’’ ‘‘031.2 Disseminated

mycobacterium.’’ Liposomal anthracyclines are among the

treatments for Kaposi sarcoma [38]. One of their known side

effects is cardiotoxicity: ‘‘427.89 Other specified cardiac dysrhyth-

mias.’’ The mainstay treatment of HIV-infected individuals is

HAART. Known side effects of HAART include: ‘‘250.00

Diabetes mellitus without complication type ii or unspecified type

not stated as uncontrolled,’’ ‘‘272.4 Other and unspecified

hyperlipidemia,’’ and ‘‘357.6 Polyneuropathy due to drugs.’’

Kaposi sarcoma is also found to be associated with ‘‘282.60 Sickle-

cell disease unspecified,’’ for which there is limited describing

literature.

ADAMS identified a total of 162 ICD-9-CM codes associated with

toxoplasmosis that were statistically significant across both PTSD and

influenza control groups. Of these codes, 86 were shared between

both control groups, 23 codes were associated only with influenza,

and 53 were associated only with PTSD. ADAMS identified 15 codes

associated with toxoplasmosis that were statistically significant

compared to Kaposi sarcoma as the control group; and 35 codes

associated with Kaposi sarcoma that were statistically significant

compared to toxoplasmosis (Table 4 and Table S7).

The ICD-9-CM codes directly related to toxoplasmosis include

‘‘130.0 Meningoencophalitis due to toxoplasmosis,’’ ‘‘130.1

Conjunctivitis due to toxoplasmosis,’’ ‘‘130.3 Myocarditis due to

toxoplasmosis,’’ ‘‘130.4 Pneumonitis due to toxoplasmosis,’’

‘‘130.7 Toxoplasmosis of other specified sites,’’ and ‘‘130.8

Multisystemic disseminated toxoplasmosis.’’ Since toxoplasmosis

is strongly associated with HIV infection, many codes related to

HIV complications and opportunistic infections appear: ‘‘287.5

Leukocytopenia,’’ ‘‘799.4 Cachexia,’’ ‘‘112.84 Candidal esopha-

gitis,’’ ‘‘078.5 Cytomegaloviral disease.’’ Codes suggestive of

peripartum complications and congenital deformities consistent

with congenital toxoplasmosis include ‘‘130.2 Chorioretinitis due

to toxoplasmosis,’’ ‘‘646.83 Other specified antepartum compli-

cations,’’ ‘‘648.91 Other current conditions classifiable elsewhere

of mother with delivery,’’ and ‘‘655.41 Suspected damage to fetus

from other disease in the mother affecting management of mother

with delivery.’’ TMP-SMX is among the first line treatments for

toxoplasmosis, and as a sulfa drug it is known to cause exfoliative

dermatitis as an adverse drug reaction: ‘‘693.0 Dermatitis due to

drugs and medicines taken internally.’’

ADAMS identified a total of 53 ICD-9-CM codes associated

with Kawasaki disease that were statistically significant across both

PTSD and influenza control groups. Of these codes, 12 were

shared between both control groups, none were associated only

with influenza, and 41 were associated only with PTSD.

The ICD-9-CM codes directly related to Kawasaki disease

include ‘‘372.30 Conjunctivitis unspecified,’’ ‘‘414.11 Aneurysm of

coronary vessels,’’ ‘‘780.6 Fever and other physiologic disturbanc-

es of temperature regulation,’’ and ‘‘782.1 Rash and other

nonspecific skin eruption.’’ The differential diagnosis of Kawasaki

disease would include other infectious and rheumatic diseases,

such as ‘‘034.1 Scarlet fever,’’ ‘‘446.0 Polyarteritis nodosa,’’ ‘‘446.7

Takayasu’s disease,’’ ‘‘710.0 Systemic lupus erythematosus,’’ and

‘‘714.30 Chronic or unspecified polyarticular juvenile rheumatoid

arthritis.’’ Codes more likely to occur as a result of the workup for

Kawasaki diseases include ‘‘746.1 Tricuspid atresia and stenosis

congenital’’ and ‘‘746.85 Coronary artery anomaly congenital.’’ A

code that has not been described extensively is ‘‘299.00 Autistic

disorder current or active.’’

Discussion

The associations identified by ADAMS mostly describe known

characteristics of each disease, including symptoms and manifes-

tations, treatments, and possible confounders. Most interestingly,

ADAMS identified associations with limited or no reporting in the

existing literature.

Table 2. Data source sizes.

Data Source Records

EHR ICD-9-CM patients 768903

NLP records 406158

PubMed Kaposi sarcoma 1025

PubMed Kawasaki disease 598

PubMed Toxoplasmosis 960

Wikipedia One page per search term, if one exists.

doi:10.1371/journal.pone.0021132.t002

Disease Associations in Electronic Clinical Data

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21132



Kaposi sarcoma has been seen as a frequent and aggressive

disease in AIDS patients [39]. Although the vast majority of the

associations for Kaposi sarcoma (Tables S1 and S2) can be

explained by associations described in the literature, complications

related to neoplasms, HIV infection, risk factors for HIV infection

(sexually trasmitted infections, drug abuse), diseases associated

with HIV infection, and side effects of neoplasm treatment and

highly active antiretroviral therapy (HAART), the results showed

Kaposi sarcoma is also possibly associated with sickle cell anemia,

for which there has been limited research to confirm the links. This

relationship, however, may be a reflection of the biases in the

patient population at NYPH.

Toxoplasmosis is usually asymptomatic in immunocompetent

hosts, hence its most frequent manifestation is as an opportunistic

infection in immunocompromised hosts. Most of the ICD-9-CM

codes from the intersection of PTSD and influenza comparisons

demonstrate findings that are most consistent with HIV patients

(Tables S3 and S4), similar to Kaposi sarcoma above. The

intersection also contains codes related to complications during

the delivery of babies and to neurotoxoplasmosis, e.g., chorioret-

initis, which occurs more often in the setting of congenital infection.

The codes do not directly implicate a specific disease as the cause of

complications during pregnancy or delivery, but they do indicate

congenital complications secondary to diseases of the mother, which

would be consistent with toxoplasmosis infection during pregnancy.

Because the EHR does not track relationships between patients, it

was not possible to tie the children with congenital complications to

the mothers who had complicated pregnancies or deliveries.

The ICD-9-CM codes from the comparison of toxoplasmosis to

influenza yield more psychiatric disease codes, whereas the codes

from the comparison to PTSD have more codes that can be

associated with infectious diseases in general. These findings

Table 3. A selected list of significantly associated diseases with Kaposi sarcoma, toxoplasmosis, and Kawasaki disease, determined
from the NYPH EHR, compared against either or both control groups of influenza and PTSD patients.

ICD-9 Description Odds ratio P-value FDR

Kaposi sarcoma vs. influenza and PTSD

176.0 Kaposi’s sarcoma skin N/A v0.001 v0.001

176.1 Kaposi’s sarcoma soft tissue 116.83 v0.001 v0.001

176.2 Kaposi’s sarcoma palate N/A v0.001 v0.001

Kaposi sarcoma vs. influenza only

110.3 Dermatophytosis of groin and perianal area 15.58 0.001 0.005

110.4 Dermatophytosis of foot 3.46 0.005 0.022

112.2 Candidiasis of other urogenital sites 7.79 0.005 0.023

Kaposi sarcoma vs. PTSD only

078.5 Cytomegaloviral disease 23.19 0.002 0.007

786.3 Hemoptysis 9.66 0.003 0.012

284.1 Pancytopenia 4.83 0.014 0.044

Toxoplasmosis vs. influenza and PTSD

136.3 Pneumocystosis 24.95 v0.001 v0.001

176.0 Kaposi’s sarcoma skin N/A 0.003 0.022

176.4 Kaposi’s sarcoma lung N/A 0.003 0.023

Toxoplasmosis vs. influenza only

070.32 Chronic viral hepatitis b without hepatic coma without hepatitis delta 12.47 0.001 0.011

070.54 Chronic hepatitis c without hepatic coma 3.85 0.004 0.029

054.10 Genital herpes unspecified 6.24 0.007 0.041

Toxoplasmosis vs. PTSD only

038.0 Streptococcal septicemia 13.92 0.008 0.047

038.8 Other specified septicemias 13.92 0.008 0.047

038.19 Other staphylococcal septicemia N/A 0.009 0.048

Kawasaki vs. influenza and PTSD

372.30 Conjunctivitis unspecified 3.67 v0.001 v0.001

034.1 Scarlet fever 10.39 v0.001 0.015

299.0 Autistic disorder current or active state 15.15 v0.001 0.017

Kawasaki vs. PTSD only

462 Acute pharyngitis 2.28 v0.001 0.003

446.5 Giant cell arteritis 24.06 0.002 0.020

447.8 Other specified disorders of arteries and arterioles N/A 0.003 0.034

If there are no patients with a diagnosis code in the control groups, odds ratio is not calculated (i.e. N/A). Kawasaki vs. influenza yields no significant associations not
already found in Kawasaki vs. PTSD.
doi:10.1371/journal.pone.0021132.t003
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demonstrate the value of using two control groups: the intersection

of significant codes shows consistency in the paper’s methods; and

the codes not in the intersection illustrate the biases inherent in the

controls. The influenza control group comparison identifies codes

that exclude non-specific signs and symptoms when sick with

infectious diseases, and the PTSD control group identifies codes that

exclude psychiatric associations. Moreover, life-threatening diseases

qualify as traumatic events for the diagnosis of PTSD [40,41],

therefore it can be inferred that PTSD patients are more likely to

have neoplasms than influenza patients; neoplasm associations will

more likely be statistically insignificant with the PTSD cohort as the

control. Otherwise, the majority of the associations for toxoplas-

mosis can be explained by associations described in the literature,

complications related to mass effects in the brain, HIV infection, risk

factors for HIV infection (sexually trasmitted infections, drug abuse),

diseases associated with HIV infection, and side effects of highly

active antiretroviral therapy (HAART).

A comparison of Kaposi sarcoma with toxoplasmosis and vice

versa should then identify ICD-9-CM codes specific to each

while excluding codes related to HIV infection. This is indeed

the case (Table 4 and Table S7). Kaposi sarcoma compared to

toxoplasmosis as the control cohort shows neoplasms and other

findings specific to Kaposi sarcoma. Toxoplasmosis compared

to Kaposi sarcoma as the control cohort shows classical findings

of toxoplasmosis. Toxoplasmosis is still associated with the

disease code for HIV infection when compared to Kaposi

sarcoma. This observation is reasonable given that toxoplasmo-

sis occurs when CD4 counts fall below one hundred cells per

cubic millimeter of blood, indicating significant immunocom-

promise, whereas Kaposi sarcoma can occur in non-HIV-

infected individuals. It stands to reason that toxoplasmosis is

more dependent on severe immunocompromise in order to

manifest, hence its stronger association with HIV infection than

Kaposi sarcoma’s. [42,43].

Figure 3. The network of interactions of statistically significant diseases associated with Kawasaki disease compared to influenza
combined with results from NLP reports, PubMed articles and Wikipedia articles. Diseases linked to the diagnoses from either PubMed
(green links) or Wikipedia (blue links) are documented associations. Diseases associated purely from diagnoses (red links) or NLP reports (gold links)
are novel associations that have not been reported before.
doi:10.1371/journal.pone.0021132.g003
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These findings show that choosing a sicker control cohort makes

statistical testing less sensitive and more specific, while choosing a

less sick cohort does the converse. A sicker control cohort would

have greater counts of patients with ICD-9-CM codes related to

that disease than a less sick cohort of the same disease. For those

codes to be statistically significant associations with the case

disease, the case cohort would have to have even larger counts of

patients with the same ICD-9-CM codes; or the control cohort

would have to be larger with the same proportion of patients with

the same ICD-9-CM codes. It then becomes necessary to choose

control cohorts carefully in order to be aware of their inherent

biases since these biases directly affect the results and guide

interpretation. Thus using multiple control cohorts whose biases

are known can provide richer results and interpretations than

using control cohorts that are created by random sampling of

patients where biases are more uncertain.

In the case of Kawasaki disease, ADAMS identified codes that

reflected the known signs and symptoms of the disease (Tables S5

and S6). The disease codes found by comparing to influenza were

a complete subset of those found by comparing to PTSD. The

codes are highly specific to Kawasaki disease and demonstrate

associations with other autoimmune diseases. The remaining

codes found by comparing to PTSD represent non-specific

findings of sickness from infectious etiology.

Among the intersection of significant ICD-9-CM codes were

scarlet fever, juvenile rheumatoid arthritis, Takayasu disease, and

systemic lupus erythematosus. Scarlet fever is part of the

differential diagnosis since both scarlet fever and Kawasaki disease

present with strawberry tongue and rash [44,45]. The others are

rheumatological diseases that can present with similar symptoms

[46–48]. Were the coded data for a longer longitudinal period, the

associations could be observed as diseases that occurred in the

same individuals later in life, thus changing the interpretation from

differential diagnosis to disease association. The statistically

significant associations with ‘‘746.1 Tricuspid atresia and stenosis

congenital’’ and ‘‘746.85 Coronary artery anomaly congenital’’

reflect bias from the workup for Kawasaki disease, which includes

echocardiography to establish a baseline for possible coronary

artery aneurysm.

Most importantly, the statistically significant association with

‘‘299.00 Autistic disorder current or active’’ state may reflect a

sequela from the systemic inflammation of Kawasaki disease that

thus far has not been well described. A case study by Tabarki et. al.

[49] suggested a possible link between Kawasaki disease and autistic

behavior for which we report a statistical evidence of an association

at NYPH, which has a much larger patient cohort. Definitive

neurological complications of Kawasaki disease have been de-

scribed but are limited to the acute setting. Long-term complications

of autism as a result of Kawasaki disease or autistic individuals being

more susceptible to Kawasaki disease have not been described

extensively. There is literature on the controversy of whether autism

and Kawasaki disease are complications of vaccines [50–54]. It is

possible that the inflammatory response that underlies Kawasaki

disease may effect neurological changes that result in autism, or the

susceptibility to the underlying pathophysiology may lead to both

diseases occurring independently in the same individual. The

limitation of the current study of ADAMS does not evaluate the

time course of disease. Further study of the clinical histories of the

patients with both Kawasaki disease and autism as identified by

ADAMS merits further pursuit. With respect to the network

diagrams for Kawasaki disease, it should be noted that there are no

connections from external sources to autism despite the Tabarki

case report. The lack of connections occurred because autism was

described only in the body of the paper and not in the abstract;

natural language processing was done only on abstracts.

The NYPH EHR suffers from data biases. First, there are

multiple ways that information can be entered into the system, and

each department within the hospital can follow its own set of

guidelines for data entry. Second, NYPH mainly serves patients in

Manhattan and to a lesser extent the other four boroughs, so its

EHR is mostly representative of the population of New York City.

While we can draw conclusions of clinical interest from this

population, they may not necessarily represent disease associations

at a national or global level.

Table 4. Significantly associated diseases with toxoplasmosis, compared to Kaposi sarcoma (FDRv0.05).

ICD-9 Description Odds ratio P-value FDR

130.0 Meningoencephalitis due to toxoplasmosis 70.46 v0.001 v0.001

130.7 Toxoplasmosis of other specified sites 72.07 v0.001 v0.001

780.39 Other convulsions 5.52 v0.001 v0.001

042 Human immunodeficiency virus (hiv) disease 1.90 v0.001 v0.001

130.8 Multisystemic disseminated toxoplasmosis N/A v0.001 v0.001

323.9 Unspecified cause of encephalitis N/A v0.001 0.004

345.10 Generalized convulsive epilepsy without intractable epilepsy 16.01 v0.001 0.005

345.90 Epilepsy unspecified without intractable epilepsy 3.20 0.001 0.011

130.2 Chorioretinitis due to toxoplasmosis N/A 0.001 0.012

348.8 Other conditions of brain N/A 0.001 0.012

784.0 Headache 2.31 0.003 0.021

363.00 Focal chorioretinitis unspecified N/A 0.003 0.025

364.3 Unspecified iridocyclitis 12.81 0.003 0.025

644.10 Other threatened labor unspecified as to episode of care 12.81 0.003 0.025

648.91 Other current conditions classifiable elsewhere of mother with delivery 6.41 0.009 0.050

Table S7 shows the significantly associated diseases with Kaposi sarcoma, compared to toxoplasmosis. If there are no patients with a diagnosis code in the control
groups, odds ratio is not calculated (i.e. N/A).
doi:10.1371/journal.pone.0021132.t004
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ADAMS is by current design ICD-9-CM centric. It takes

knowledge from coded hospital records and corroborates the

findings with other data sources. Therefore, it should be noted that

there may be links between medical conditions that ADAMS

cannot identify because those conditions lack coded descriptions.

Future work will be focused on analyzing the relationships for

diseases that have no clear ICD-9-CM codes, especially using

textual reports that have undergone natural language processing.

ADAMS can be applied to the analysis of less rare diseases. It

would find more associations, since more common diseases would

have larger cohorts and thus be more likely to have different

comorbidities across all the individuals. To cope with the larger

number of associations, the FDR cutoff can be set to a lower

threshold in order to reduce the number of statistically significant

findings. Otherwise, investigators with clinical expertise will have

to spend more time analyzing the longer list to rule out

confounding. This may still be fruitful, albeit time consuming,

since there may be true associations that would be excluded by a

stricter FDR cutoff. By focusing on rare diseases in this paper, the

burden of many associations and confounding was intrinsically

limited, which made analysis and interpretation easier and more

manageable.

In conclusion, ADAMS confirms relationships between these

three rare diseases and other medical conditions that have already

been reported in PubMed or Wikipedia. This means our method is

capable of detecting signal amid the noise in the NYPH EHR with

greater confidence than simply using statistical multiple hypothesis

testing methods. In particular, the starting points for further

investigations are the results reported only in the EHR that have

not been previously described in the literature. Although ADAMS

by itself is not a diagnosis tool, we suggest that it could be further

refined into a tool for health professionals as an effective means to

confirm descriptions in existing literature and to identify under-

recognized or undiscovered associations for further clinical

inquiry.
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Figure S1 The network of interactions of statistically
significant diseases associated with Kaposi sarcoma
compared to influenza combined with results from NLP
reports, PubMed articles and Wikipedia articles. Diseases

linked to the diagnoses from either PubMed (green links) or

Wikipedia (blue links) are documented associations. Diseases

associated purely from diagnoses (red links) or NLP reports (gold

links) are novel associations that have not been reported before.

Here, we have used custom categories feature (Methods) to aid

clarity.
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Figure S2 The network of interactions of statistically
significant diseases associated with toxoplasmosis com-
pared to influenza combined with results from NLP
reports, PubMed articles and Wikipedia articles. Diseases

linked to the diagnoses from either PubMed (green links) or

Wikipedia (blue links) are documented associations. Diseases

associated purely from diagnoses (red links) or NLP reports (gold

links) are novel associations that have not been reported before.

(PDF)

Figure S3 The interface of ADAMS application, where
the case and control cohorts are selected. ADAMS is also
able to limit time intervals for data. The desired
number of bootstraps is also entered here. Clicking on

the ‘‘Search’’ button in ADAMS begins the process of statistical

analysis.

(PDF)
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sarcoma, compared to the influenza control cohort
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the control groups, odds ratio is not calculated (i.e. N/A).
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Table S2 Significantly associated diseases with Kaposi
sarcoma, compared to the PTSD control cohort
(FDRv0.05). If there are no patients with a diagnosis code in

the control groups, odds ratio is not calculated (i.e. N/A).

(PDF)

Table S3 Significantly associated diseases with toxo-
plasmosis, compared to the influenza control cohort
(FDRv0.05). If there are no patients with a diagnosis code in the

control groups, odds ratio is not calculated (i.e. N/A).

(PDF)

Table S4 Significantly associated diseases with toxo-
plasmosis, compared to the PTSD control cohort
(FDRv0.05). If there are no patients with a diagnosis code in

the control groups, odds ratio is not calculated (i.e. N/A).
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saki sdisease, compared to the influenza control cohort
(FDRv0.05). If there are no patients with a diagnosis code in the

control groups, odds ratio is not calculated (i.e. N/A).
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Table S6 Significantly associated diseases with Kawa-
saki disease, compared to the PTSD control cohort
(FDRv0.05). If there are no patients with a diagnosis code in the

control groups, odds ratio is not calculated (i.e. N/A).
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Table S7 Significantly associated diseases with Kaposi
sarcoma, compared to toxoplasmosis control cohort
(FDRv0.05). If there are no patients with a diagnosis code in the

control groups, odds ratio is not calculated (i.e. N/A).
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