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Background: An increasing proportion of patients with diabetic kidney disease (DKD) has
been observed among incident hemodialysis patients in large cities, which is consistent
with the continuous growth of diabetes in the past 20 years.

Purpose: In this multicenter retrospective study, we developed a deep learning (DL)-
based automatic segmentation and radiomics technology to stratify patients with DKD
and evaluate the possibility of clinical application across centers.

Materials and Methods: The research participants were enrolled retrospectively and
separated into three parts: training, validation, and independent test datasets for further
analysis. DeepLabV3+ network, PyRadiomics package, and least absolute shrinkage and
selection operator were used for segmentation, extraction of radiomics variables, and
regression, respectively.

Results: A total of 499 patients from three centers were enrolled in this study including 246
patients with type II diabetes mellitus (T2DM) and 253 patients with DKD. The mean
intersection-over-union (Miou) and mean pixel accuracy (mPA) of automatic segmentation
of the data from the three medical centers were 0.812 ± 0.003, 0.781 ± 0.009, 0.805 ± 0.020
and 0.890 ± 0.004, 0.870 ± 0.002, 0.893 ± 0.007, respectively. The variables from the renal
parenchyma and sinus provided different information for the diagnosis and follow-up of DKD.
The area under the curve (AUC) of the radiomics model for differentiating between DKD and
T2DM patients was 0.674 ± 0.074 and for differentiating between the high and low stages of
DKD was 0.803 ± 0.037.
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Conclusion: In this study, we developed a DL-based automatic segmentation, radiomics
technology to stratify patients with DKD. The DL technology was proposed to achieve fast
and accurate anatomical-level segmentation in the kidney, and an ultrasound-based
radiomics model can achieve high diagnostic performance in the diagnosis and follow-up
of patients with DKD.
Keywords: ultrasound, radiomics, deep learning, diabetic kidney disease, multicenter
INTRODUCTION

Diabetic kidney disease (DKD) is a common microvascular
complication in patients with diabetes and is the primary cause
of kidney failure in ∼40% of diabetic patients (1, 2). In China, an
increasing proportion of patients with DKD has been observed
among incident hemodialysis patients in large cities, which is
consistent with the continuous growth in diabetic patients in the
past 20 years (3). DKD diagnosis is based on estimated
glomerular filtration rate (eGFR), urinary abnormalities such
as proteinuria and microhematuria, and kidney biopsy, which is
often avoided in the early stages of DKD.

In patients with suspected kidney function injury, ultrasound
imaging is the first imaging technique to be performed for the
diagnosis and follow-up of its progression (4). Researchers have
demonstrated that certain parameters such as cortical
echogenicity and thickness in B-mode ultrasonography,
resistance index in color Doppler sonography (4, 5),
elastography scores (6) and time-intensity curve parameters in
contrast-enhanced ultrasound imaging (7) can effectively reflect
the kidney function in patients with chronic kidney disease
(CKD). Ultrasound is frequently applied as an available and
noninvasive technology for the diagnosis and follow-up of DKD
in patients suffering from type II diabetes mellitus (T2DM) for a
long duration. However, a conventional ultrasound examination
is limited owing to the visual grayscale image, which reduces its
potential for identifying a large amount of valuable information.
Furthermore, the interpretation of ultrasound images is variable
and unreliable owing to inexperienced sonographers, especially
in the diffused form of the disease.
ease; DL, deep learning; DN, diabetic
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Radiomics is a rapidly growing discipline based on
quantitative image analysis that reflects image textures and
morphology using gray values, which provides a quantitative,
solid, and objective foundation for analytic standardization to
inform clinical decisions (8). In radiomics technology, a
delineated region of interest (ROI) is vital for extracting
radiomics variables; however, the accurate anatomical
segmentation of ROIs is a time-consuming and experience-
dependent process. Recent advances in image segmentation,
classification, and registration through deep learning (DL) have
considerably expanded the scope and scale of medical image
analysis (9). A state-of-the-art network “DeepLabV3+” was
reported for semantic image segmentation, which achieved
high accuracy when compared to other networks (10).

Therefore, this multicenter retrospective study aimed to
achieve an automatic anatomical-level segmentation of the
kidney in T2DM patients with/without DKD and to build an
ultrasound-image-based radiomics model for diagnosis and
follow-up of patients with different stages of DKD. This
method can extensively utilize the information contained in
conventional ultrasound images and achieve acceptable
accuracy, resulting in a quick process that uses easily available
resources and demonstrates the potential for further clinical use.
MATERIALS AND METHODS

Study Design and Patients
This study was registered at ClinicalTrials.gov No.
NCT05025540 and the informed consent requirement was
waived due to the retrospective study design. This multicenter
retrospective study was approved by the ethics consultant
committee of the Second Affiliated Hospital of Zhejiang
University School of Medicine (SAHZU), the People’s Hospital
of Yingshang (PHYS) and Tianjin Third Central Hospital
(TJTCH), and 162 DKD and 131 T2DM patients were
consecutively enrolled in this study between January 2016 and
December 2020 and January 2018 and December 2020,
respectively, as the control group from SAHZU. Moreover, 35
DKD and 52 T2DM patients from the People’s Hospital of
Yingshang (PHYS) and 56 DKD and 63 T2DM patients from
Tianjin Third Central Hospital (TJTCH) were also
enrolled consecutively.

The following parameters were used to define DKD: 1)
urinary albumin-to-creatinine ratio (UACR) > 30 mg/24 h,
with an increase greater than twice the original value in three
subsequent examinations conducted over 3-6 months; 2) eGFR
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< 60 ml min-1 for more than three months; 3) pathological result
of kidney biopsy shows evidence of DKD.

Clinical Stage of Diabetic Kidney
Disease (DKD)
The clinical stage of DKD was defined based on the Chinese
guidelines for the diagnosis and treatment of DKD (11, 12). DKD
stage I, called as high-filtration stage, was defined as having normal
or a marginally elevated eGFR (> 90 mL/min/1.73 m2) and negative
microalbuminuria; DKD stage II, called as microalbumin stage, was
defined as having a urinary albumin excretion rate (UAER) of
approximately 20-200 mg/min or 30-300 mg/24 h and eGFR > 60
mL/min/1.73 m2; DKD stage III, called as massive albuminuria
stage, was defined as having normal UACR >300 mg/g, UAER
> 200 ug/min or >300 mg/24 h and eGFR > 15 mL/min/1.73 m2;
DKD stage IV, called as renal failure stage, was defined as having
eGFR < 15 mL/min/1.73 m2. In this study, we defined the low DKD
stage as the stage lower than stage II and high DKD stage as the
stage higher than stage III.

The low-stage DKD was defined as the DKD stage that is
lower than stage III; moreover, high-stage DKD was defined as
the DKD stage that is higher than or equal to stage III.

Kidney Ultrasound Scan
A 3-5 MHz convex probe was used for the adult kidney scans.
For the kidney, patients with left/right lateral or dorsal positions
were scanned in the coronal plane, and B-mode images were
recorded. The maximum longitudinal kidney images with the
renal sinus and parenchyma were saved. Both sides of the kidney
were recorded per patient.

Inclusive and Exclusive Criteria
Inclusive Criteria
Patients were enrolled according to the following criteria: 1)
patients with a clinical diagnosis of T2DM and DKD; 2) patients
with clear B-mode ultrasound images on both sides of the kidney
(left and right); 3) there were no missing values of the selected
clinical data such as eGFR and UACR in the electronic
medical records.

Exclusive Criteria
The following criteria were considered for excluding patients: 1)
patients with large kidney-space-occupying diseases, such as
kidney renal cysts and tumors; 2) ultrasound images with
severe shadows or incomplete kidney borders.

Data Extraction and Model Building
First, we manually and automatically delineated the ROI of the
renal parenchyma and sinus.

The radiologists for ROI are at least three years in ultrasound
diagnosis. Besides, the labelme software in python is used to
draw ROIs. Then, collected images was transformed into JPG
image format and imported into PyCharm software. Third, the
radiomics data were extracted using the Python package
PyRadiomics (13) and 1682 radiomics variables from each side
of the kidney (841 parenchyma and 841 sinus) were extracted in
this study. Moreover, we calculated the intraclass correlation
Frontiers in Oncology | www.frontiersin.org 3
coefficient (ICC) between the extracted data from the manually
and automatically delineated ROIs. The ICC values of variables
that were higher than 0.7 were selected for further model
building. Least absolute shrinkage and selection operator
(LASSO) regression was used to select the significant features
(14). Finally, the radiomics scores were calculated and the
diagnostic performance was compared using the receiver
operating characteristic (ROC) curve (Figure 1A).

Deep Learning (DL) Algorithm
DeepLabV3+ improves pyramid-shaped hole pooling, cascaded
multiple hole convolutions, and extensively uses batch
normalization. First, DeepLabV3+ uses an atrous spatial pyramid
pooling structure to mine multiscale contextual content
information. The decoding structure gradually reconstructs the
spatial information to capture object boundaries more effectively.
Second, a new decoding module was added to reconstruct the
boundary information. Third, we attempted to use MobileNet
module as the backbone of the network to reduce the number of
parameters and increase the speed of the network. The network
structure of DeepLabV3+ is shown in Figure 1B.

Data Enhancement
In the training set for DeepLabV3+, we first used the data
enhancement strategies to extensively use ultrasound images,
such as random horizontal flip, random scale change, and
random Gaussian blur. After data enhancement, a five-fold
increase in the number of pictures was achieved.

Experimental Environment
The DeepLabV3+ network was built using PyTorch version 1.9.0
with Compute Unified Device Architecture (CUDA) version 11.1
(15). NVIDIA GeForce RTX3070 Ti platform was used in a
Windows 10 operating system. Statistical modeling (LASSO) was
performed using R and RStudio.

Statistical Analysis
Continuous data with normal distribution are shown as mean ±
standard deviation, and data with a non-normal distribution are
shown as median (quartile interval). Categorical data are expressed
as a number (percentage). The distributions of our data were
measured using the Shapiro-Wilk test. In univariate analysis,
continuous data were compared using Student’s t-test, one-way
analysis of variance, Mann–Whitney U test, or Kruskal–Wallis H
test, and categorical variables were compared using the c2 test.
Multiple comparisons were performed using Tukey correction.
RESULTS

Baseline Characteristics Among the Three
Medical Centers
A total of 499 patients were enrolled in this study: 131 T2DM
patients and 53, 91, 18 patients with DKD stages II, III, IV,
respectively, from SAHZU; 63 T2DM patients and 25, 31
patients with DKD stages II, III, respectively, from TJTCH; 52
July 2022 | Volume 12 | Article 876967
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T2DM patients and 13, 20, 2 patients with DKD stages II, III, IV,
respectively, from PHYS.

The average ages were 57 (51–64), 59 (48-65), 57 (46-69)
years for T2DM patients and 60 (51-68), 63 (51-75), 60 (49-70)
years for DKD patients among the three datasets, respectively.
Moreover, the percentages of male patients were 61.8, 57.1, and
25.0% among the T2DM patients and 59.3, 51.8, and 42.9%
among the DKD patients in the three datasets, respectively.

In addition, among the three datasets, the average fasting
blood glucose levels were 8.8 (6.4-12.2), 7.46 (5.72-9.99), 9.7 (7.0-
12.0) mmol/L in T2DM patients, 7.4 (5.6-10.1), 8.8 (5.6-12.1), 9.4
(7.4-11.9) mmol/L in DKD patients, respectively. Further, among
the three datasets, the eGFRs were 105.8 (94.8-115.8), 104.7
(85.7-123.8),100.2 (84.2-107.8) ml/min/1.73m2 in T2DM
patients, 69.0 (33.3-105.3), 83.9 (47.0-99.1), 83.4 (47.9-100.4)
ml/min/1.73m2 in DKD patients, respectively (Table 1).

DL-Based Anatomical-Level Segmentation
Two radiologists independently delineated the kidney border,
renal parenchyma, and renal sinus in ultrasound images,
Frontiers in Oncology | www.frontiersin.org 4
and the inconsistency was resolved through discussions. The
DeepLabV3+ network was applied as an automatic anatomical-
level segmentation technology, whose structure is illustrated in
Figure 1B. As shown in Figure 2, the trained DeepLabV3+
model showed good segmentation ability in patients with clear
ultrasound images (Patient Nos. 1 and 2). To further verify the
robustness and accuracy of DL technology, we tested the model
using the ultrasound images of patients with inferior ultrasound
images (Patient Nos. 3 and 4). The trained model showed that it
could compensate for the missing border caused by inferior
ultrasound windows and maintain high segmentation accuracy.

Moreover, we verified the segmentation ability of DeepLabV3+
on a separate test set (N=50) from SAHZU and two independent
test datasets from TJTCH and PHYS. From Figure 3,Table 2, it can
be observed that the mean intersection-over-union (Miou) and
mean pixel accuracy (mPA) of the SAHZU test set were 0.812 ±
0.003 and 0.890 ± 0.004, respectively. Moreover, theMiou andmPA
of the TJTCH dataset were 0.781 ± 0.009 and 0.870 ± 0.002,
respectively, and those of the PHYS dataset were 0.805 ± 0.020
and 0.893 ± 0.007, respectively (Table 2). These results demonstrate
A

B

FIGURE 1 | The scheme of this study. (A) Flowchart of the Study; (B) Network Structure of DeepLabV3+; L, left; R, right; GLCM, gray level co-occurrence matrix;
GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; First_order, first order statistics; NGTDM, neighboring gray tone difference matrix; GLDM,
gray level dependence matrix. Conv: Convolution layer; Hospital A: The Second Affiliated Hospital of Zhejiang University School of Medicine, SAHZU; Hospital B:
Tianjin Third Central Hospital, THTCH; Hospital C: The People’s Hospital of Yingshang, PHYS.
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that high robustness and accuracy can be achieved by DL-based
technology, thus providing a faster method for delineating the ROI.

Correlation Between Extracted Radiomics
Variables
In total, 3364 radiomics variables were extracted per patient,
including 841 from the renal parenchyma and 841 from the renal
sinus per kidney.

First, we calculated the correlation between the extracted
variables from the parenchyma and sinus. The extracted
variables were completely irrelevant, with ICC values of 0.236
(0.142-0.356) and 0.249 (0.133-0.374) in T2DM and DKD
patients, respectively (Figures 3A, B). These results demonstrate
that different parts of the kidney can provide different information.

Next, we calculated the ICC between radiomics variables
extracted using manual and DL-based automatic methods to
select robust variables for further analysis. As expected, the
variables extracted using manual and automatic methods were
highly correlated. Moreover, the median and interquartile range
of ICC in the parenchyma and sinus were 0.871 (0.728-0.937)
and 0.860 (0.779-0.927), respectively (Figures 3C, D). The
radiomics variables with ICC > 0.7 were selected in this study;
thus, 2066 radiomics variables, including 974 and 1092 variables
Frontiers in Oncology | www.frontiersin.org 5
extracted from parenchyma and sinus, respectively, were used in
the model building step.

Utilization of Radiomics Variables From
Parenchyma and Sinus for Stratifying DKD
Patients
The kidneys of patients with a high DKD stage tend to show
higher echogenicity in both the parenchyma and sinus
(Figure 4A), which can provide evidence that the radiomics
variables have the potential to stratify DKD patients.

To reduce the dimensions of the variables, the LASSO
procedure was performed. A total of 94 variables were selected,
including 24 from the feature class of gray level co-occurrence
matrix, 12 from gray level run length matrix, 12 from gray level
size zone matrix, 16 from first order statistics, 3 from neighboring
gray tone difference matrix, 6 from gray level dependence matrix,
and 21 from wavelet decompositions (Figure 4B, Table 3).

Note that 73 variables from parenchyma and 21 from sinus were
selected (Figure 4B), as illustrated in the density plot (Figure 4C),
and the value distribution of wavelet-H_Firstorder_Entropy
(WHFE) and gradient_glcm_lmc2 (GGL) from the parenchyma
were shifted to the left in the high DKD stage, whereas the value of
wavelet-H_glrlm_shortRunEmphasis (WHGS) was shifted to the
TABLE 1 | The Basic Characteristics of Study Patients in Three Medical Centers. SAHZU.

Variables SAHZU TJTCH PHYS P

T2DM 131 (44.7%) 63 (52.9%) 52 (59.8%) <
0.05

DKD Stage II 53 (18.1%) 25 (21.0%) 13 (14.9%)
DKD Stage III 91 (31.1%) 31 (26.1%) 20 (23.0%)
DKD Stage IV 18 (6.1%) 0 (0.0%) 2 (2.3%)
Demographics: T2DM DKD T2DM DKD T2DM DKD P
Age 57

(51-64)
60

(51-68)
59

(48-65)
64

(53-75)
57

(46-69)
61

(50-72)
P1

# P2*

Male (%) 81
(61.8%)

96
(59.3%)

36
(57.1%)

29
(51.8%)

13
(25.0%)

15
(42.9%)

P1* P2
#

BMI 24.5
(22.6-26.1)

25.3
(23.4-27.2)

25.9
(22.4-29.3)

26.1
(22.8-29.4)

25.6
(22.2-29.0)

25.7
(22.2-29.2)

P1* P2
#

Hypertension 56
(42.7%)

130
(80.2%)

36
(57.1%)

41
(73.2%)

20
(38.5%)

18
(51.4%)

P1
# P2*

DM duration 3285
(1825-5475)

3650
(2555-7118)

2555
(1095-4745)

3650
(1095-6388)

2920
(1095-3650)

3650
(1060-5475)

P1
# P2

#

Biochemical value T2DM DKD T2DM DKD T2DM DKD
HbA1c 8.9

(7.8-10.3)
8.4

(7.0-10.1)
8.3

(7.3-10.5)
9.1

(7.0-11.2)
9.7

(7.6-11.8)
8.8

(6.7-10.9)
P1* P2

#

FBG 8.8
(6.4-12.2)

7.4
(5.6-10.1)

7.5
(5.7-10.0)

8.6
(5.8-11.4)

9.7
(7.0-12.0)

9.3
(7.4-10.5)

P1* P2
#

Urea nitrogen 4.3
(5.1-6.2)

8.2
(5.2-12.2)

4.7
(4.0-5.4)

6.5
(4.7-8.5)

5.7
(4.4-7.1)

7.2
(4.9-10.5)

P1* P2*

Creatinine 59.5
(47-71)

94
(60.5-200)

62
(55.5-70.5)

76
(59-113)

59.2
(47.9-70.6)

75
(61-110)

P1
# P2

#

Uric acid 300
(257-350)

382
(307-449)

281
(229-331)

319
(200-437)

241
(161-322)

288
(236-364)

P1* P2*

ACR 13.5
(8.9-18.0)

429.0
(58.0-2653)

5.6
(3.8-13.1)

244.9
(72.1-1166.4)

10.6
(4.3-17.0)

411.1
(57.0-2070.3)

P1* P2
#

eGFR 105.8
(94.8-115.8)

69.0
(33.3-105.3)

104.7
(85.7-123.8)

83.9
(47.0-99.1)

100.2
(84.2-116.2)

83.4
(47.9-100.4)

P1* P2
#

July 2022 | Volume 12 | Article
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mass index; DM, diabetes mellitus; HbA1c, glycated hemoglobin A1c; FBG, fasting blood-glucose; ACR, Albumin-to-Creatinine Ratio; eGFR, estimated glomerular filtration rat.
876967

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Auto-Segmentation Radiomics in Diabetic Kidney
right in the high DKD stage. Moreover, the value of
glrlm_shortRunHighGrayLevelEmphasis (GSHGLE) was shifted
to the left in the high DKD stage, whereas the value of
glszm_GrayLevelNonUniformyNormalized (GGLNUN) was
shifted to the right in the high DKD stage. Further, the
distribution of the value of wavelet-H_gldm_GrayLevelVariance
(WHGGLV) in the high DKD stage was more spiculate than in the
low DKD stage.

These results demonstrated that the variables extracted from
both the parenchyma and sinus could provide positive diagnostic
value in the diagnosis and follow-up of DKD, particularly in the
low- and high-stage DKD (Figure 4).

Diagnostic Performance of Ultrasound-
Based Radiomics in Stratifying DKD
Patients
We randomly separated the data of the 499 patients from the
three medical centers into three parts: 424 (85%) patients were
Frontiers in Oncology | www.frontiersin.org 6
divided into training and validation datasets and 75 (15%)
patients were divided into independent test datasets. In the
model building step, a k-fold cross-validation method was
applied to the training and validation datasets to calculate the
area under the curve (AUC), and the differences between the
groups were compared. After the previous step, the best model
was tested using independent test datasets, and the ROC and
AUC were plotted and calculated.

While differentiating between DKD and T2DM patients, the
radiomics model achieved moderate diagnostic performance
with AUCs of 0.674 ± 0.074 in the parenchyma + sinus model,
0.6561 ± 0.0537 in the parenchyma model, and 0.6457 ± 0.0514
in the sinus model (Figure 5A). No statistical differences were
found among the three models (all P > 0.05). In the independent
test set, the AUCs of parenchyma + sinus, parenchyma, and sinus
were 0.6779, 0.6536, and 0.6593, respectively (Figure 5B).

When differentiating between the high (≥ stage III) and low (≤
stage II) DKD stages, the radiomics model that combined the
FIGURE 2 | Manual and Automatic Segmentation using Ultrasound Images of the Patients.
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information from parenchyma and sinus achieved the highest
diagnostic performance with AUC = 0.803 ± 0.037 (all P<0.05)
after k-fold validation. Moreover, the AUCs of the radiomics model
using only parenchyma and sinus variables were 0.75695 ± 0.038
and 0.716 ± 0.026, respectively (Figure 5C). In the independent test
set, the AUCs of the models using parenchyma + sinus,
parenchyma, and sinus variables were 0.8235, 0.7851, and 0.7304,
respectively (Figure 5D).

In this study, the T2DM patients were a mix of T2DM
patients without kidney function disorders and DKD stage I
patients. These results demonstrated that the ultrasound images
of patients in the early stage of DKD are similar to those of
T2DM patients, which results in a moderate diagnostic
performance of the radiomics model. However, the ultrasound-
based radiomics model demonstrates good potential in
differentiating between the low and high DKD stages, which is
more useful for the stratification of patients with DKD.
Frontiers in Oncology | www.frontiersin.org 7
Diagnostic Performance of DL-Based
Automatic Segmentation, Radiomics for
DKD
To further study the performance of the DL-based automatic
segmentation, radiomics model in identifying DKD patients, we
calculated and compared the AUC between the manual and
automatic methods.

After k-fold cross-validation, the AUCs of the manual and
automatic methods when differentiating between DKD and
T2DM patients were 0.6797 ± 0.058 and 0.6626 ± 0.0547,
respectively. Moreover, the AUCs of the manual and automatic
methods of differentiating between patients at high and low DKD
stages were 0.7967 ± 0.054 and 0.7732 ± 0.05478, respectively.
There was no statistically significant difference between the
AUCs of the manual and automatic methods (all P <0.05)
Further, the AUCs of T2DM/DKD and high/low DKD stage
while using manual and automatic methods were 0.692, 0.689,
0.8235, 0.7859, respectively, on the independent test set
(Figure 6). The results demonstrated that manual and
automatic segmentation, radiomics models achieved similar
diagnostic performance.
DISCUSSION

Ultrasonography is an ideal evaluation tool and is widely used for
the identification and analysis of several diseases (16). Although,
A B

DC

FIGURE 3 | Interclass Correlation Coefficients and Density Plots between Extracted Radiomics Variables. The Interclass Correlation Coefficients plot (A) and Density
Plots (B) between parenchyma and sinus in T2DM and DKD group. The Interclass Correlation Coefficients plot (C) and Density Plots (D) between manual and
automatic ROI drawing methods in T2DM and DKD group.
TABLE 2 | Mean Intersection-over-union and Mean Pixel Accuracy in Three
Medical Centers.

Dataset Miou mPA

SAHZU 0.812 ± 0.003 0.890 ± 0.004
TJTCH 0.781 ± 0.009 0.870 ± 0.002
PHYS 0.805 ± 0.020 0.893 ± 0.007
Miou, mean intersection-over-union; mPA, mean pixel accuracy; SAHZU, Second
Affiliated Hospital of Zhejiang University School of Medicine; TJTCH, Tianjin Third
Central Hospital; PHYS, People’s Hospital of Yingshang.
July 2022 | Volume 12 | Article 876967

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Auto-Segmentation Radiomics in Diabetic Kidney
researchers can identify abnormal renal echogenicity, renal size,
and other features in the diagnosis of kidney dysfunction
through ultrasonography (17–19), the interpretation of
ultrasound images by the naked eye is subjective and certain
Frontiers in Oncology | www.frontiersin.org 8
high-dimensional information can be missed; these problems
can be solved using radiomics technology. However, accurate
anatomical segmentation of the ROI, which is a time-consuming
and experience-dependent process, is vital for effective utilization
TABLE 3 | Class of Extracted variables.

Variables Class Sinus Parenchyma

GLCM 7 17
GLRLM 2 10
GLSZM 3 9
First_order 5 11
NGTDM 1 2
GLDM 0 6
Wavelet 3 18
July 2022 | Volume 12 |
GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; First_order, first order statistics; NGTDM, neighboring gray tone
difference matrix; GLDM, gray level dependence matrix.
A

C

B

FIGURE 4 | Variables extracted from Parenchyma and Sinus. (A) The ROI of parenchyma and sinus in two DKD stage patients. (B) The Mean-square error plot of
LASSO regression in parenchyma and sinus model. (C) The Density Plots between Extracted Radiomics Variables in parenchyma and sinus.
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of radiomics technology. Therefore, in this retrospective
multicenter study, we developed a DL-based automatic
segmentation, radiomics technology to evaluate the diagnostic
performance of radiomics technology for DKD patients and
evaluated its potential for clinical application.

Moreover, in underdeveloped regions or primary clinics, it
may be costly and challenging to train or recruit experienced
Frontiers in Oncology | www.frontiersin.org 9
doctors to fulfill the large medical demand. One of the solutions
is fifth generation communication technology, which can
achieve remote medical systems by connecting experienced
doctors with patients online. In addition, the DL-based
automatic segmentation, radiomics technology can perform
the role of an intelligent machine doctor, which is portable if
configured using a handheld ultrasound device and can quickly
A B

C D

FIGURE 5 | Diagnostic Performance of ultrasound-based radiomics to stratify DKD patients. The diagnostic performance to differentiate DKD and T2DM patient in
cross-validation datasets (A) and in independent test set (B). The diagnostic performance to differentiate high (≥ stage III) and low (≤ stage II) DKD stages in Cross-
validation datasets (C) and in independent test set (D). AUC, Area under curve; *P < 0.05, **P < 0.01, ***P < 0.001; ns, no significance.
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and effectively determine the results. This work demonstrates
significant potential for achieving automatic labor-free
diagnosis and follow-up of DKD, and is our further
research focus.

However, this study has certain limitations. First, the
retrospective nature of the study may have influenced the
accuracy of the diagnostic performance to a certain extent.
Second, the heterogeneity among the three medical centers
may affect the degree of accuracy. Third, patients with stage I
DKD were unavailable in this study. The clinical definition of
these patients is primarily defined by pathologic findings that are
difficult to access in clinical practice. This resulted in a mixture of
T2DM patients without kidney function injury and DKD stage I
patients in the dataset of T2DM participants.

In summary, we first verified the robustness of the automatic
segmentation method using the DeepLabV3+ network. This
result is supported by the research work of Yin et al. (20) the
DL-based classification network can achieve good segmentation
of the kidney. Moreover, we identified that the renal parenchyma
and sinus can provide different information to support the
classification model. Accurate anatomical-level segmentation
was achieved in this study. The automatic segmentation
network achieved superior performance in the segmentation of
ultrasonography images with both good and bad ultrasound
windows. The Miou and mPA of the automatic segmentation
method were high for the independent test set and the datasets
from the other independent medical centers. In fact, the DL-
based segmentation could reduce the time for hand annotation
from 1 h to lower than a few seconds for 100 images, which
significantly reduces labor costs. Second, we demonstrated that
the ultrasound-based radiomics model achieves a high diagnostic
value when differentiating between different DKD stages and has
the potential to stratify patients with DKD. The diagnostic
Frontiers in Oncology | www.frontiersin.org 10
performance of artificial intelligence (AI) technology has been
supported by the work of Sudharson et al. (21) for certain kidney
disorders. Moreover, the work of Chin-Chi Kuo et al. also
supported our result (22) in which the authors reported that
the prediction of the eGFR and accuracy (85.6%) by an AI-based
model was higher than that by experienced nephrologists (60.3-
80.1%). The AUC of ROC in our study was 0.803 ± 0.037, which
is marginally lower than that reported by Chin-Chi Kuo et al.
This may be due to the different clinical definitions of DKD and
CKD and the relatively smaller number of patients with severe
kidney dysfunctions (eGFR < 30 mL/min/1.73 m2) in our study
(22). Li et al. reported that 3D ultrasound also has potential value
in the diagnosis of diabetic nephropathy (DN) and may act as an
auxiliary diagnosis for DN (23), which suggests that 3D
ultrasound radiomics can be considered in future studies.
CONCLUSION

In this study, we developed a DL-based automatic segmentation,
radiomics technology to stratify DKD patients, which could
reduce the time for hand annotation from few hours to less
than a few seconds for 100 images and could achieve satisfactory
diagnostic performance in the diagnosis and follow-up of
DKD patients.
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