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Sepsis is a lethal syndrome with a high incidence and a weighty economy burden. The 
pathophysiology of sepsis includes inflammation, immune dysfunction, and dysfunction 
of coagulation, while sepsis-induced cardiomyopathy (SIC), defined as a global but 
reversible dysfunction of both sides of the heart induced by sepsis, plays a significant 
role in all of the aspects above in the pathogenesis of sepsis. The complex pathogenesis 
of SIC involves a combination of dysregulation of inflammatory mediators, mitochon-
drial dysfunction, oxidative stress, disorder of calcium regulation, autonomic nervous 
system dysregulation, and endothelial dysfunction. The treatments for SIC include the 
signal pathway intervention, Chinese traditional medicine, and other specific therapy. 
Here, we reviewed the latest literatures on the mechanisms and treatments of SIC and 
hope to provide further insights to researchers and create a new road for the therapy 
of sepsis.

Keywords: sepsis-induced cardiomyopathy, mechanisms, treatments, inflammatory mediators, Chinese 
traditional medicine

inTRODUCTiOn

Sepsis is a lethal syndrome induced by infection, which has a reported annual death of 200,000 in 
the United States (1). The pathophysiology of sepsis includes inflammation, immune dysfunction, 
and coagulation disorders. Though studies have confirmed the immunosuppression in the late 
stage as the leading cause of mortality of septic patients; however, the septic shock in the early 
onset of sepsis, which induced by cytokine storm and cardiac dysfunction, is also an important 
cause of death for septic patients, especially for the young patients with toxic shock syndrome or 
meningococcemia (2).

Heart, as the pump organ, plays a key role in the pathology of septic shock. With the development 
of tissue Doppler imaging, perfusion echocardiography myocardial, and hemodynamics monitoring 
(3), the definition of sepsis-induced cardiomyopathy (SIC) has been summarized as a global (systolic 
and diastolic) but reversible dysfunction of both the left and right sides of the heart, which is induced 
by myocardial depressants released from pathogen and host, and global ischemia after peripheral 
vasodilation, arterial and capillary shunting in septic distributive shock (4). A retrospective cohort 
study reported that SIC developed in 13.8% of patients with sepsis and septic shock (5), which could 
be used as an outcome predictor in the septic patients (6). The mechanisms of SIC includes the 
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preload deficiency during distributive shock, heart–lung interac-
tions during mechanical ventilation, and ventricular– arterial 
coupling in the presence of vasopressors (7); however, here, we 
focus on the mechanisms of cardiomyocyte dysfunction and 
treatments of SIC and hope to provide further insights for the 
management of SIC.

THe MeCHAniSMS OF SiC

Pathogen-Associated Molecular Patterns 
(PAMPs)
Pathogen-associated molecular patterns released by infecting 
organisms not only bind immune receptors on inflammatory 
cells but also bind receptors on cells in the heart (8). Endotoxin is 
released by the lysis of Gram-negative bacteria. A research from 
healthy volunteers showed that there was a reduction in left ven-
tricular ejection fraction (LVEF) and LV performance after the 
injection of endotoxin (9). The endotoxin-induced myocardial 
dysfunction probably depends on the toll-like receptor (TLR) 
4-induced cytokines release as a delay in onset of myocardial 
depression after endotoxin administration (10). Circulating 
Pneumolysin, another common PAMP produced by Streptococcus 
pneumoniae, induced cardiomyocyte injury through triggering 
profound calcium influx during pneumococcal infection (11).

Toll-Like Receptors
Toll-like receptors are transmembrane glycoproteins, which 
recognize many PAMPs with extracellular domains and aggravate 
the exaggerated inflammatory response to bacterial infection 
through activating nuclear factor (NF)-κB (12). TLR4 is the 
most studied member in the SIC study among the TLRs family. 
A research from TLR4-deficient mice confirmed the essential 
role of TLR4 in mediating neutrophil migratory phagocytic 
functions, attenuating inflammation, reducing reactive oxygen 
species generation, and enhancing bacterial clearance (13). Other 
TLR-related genes (TLR2, 3, and 9) were demonstrated to be 
involved in sepsis-induced cardiac dysfunction from recent stud-
ies. TLR2 increased the myocardium and serum cardiodepressant 
cytokines level and weakened the neutrophil migratory function, 
which sharpened the SIC (14). TLR3 played a deleterious role 
in mediating cardiac dysfunction in sepsis by increasing cecal 
ligation and puncture (CLP)-induced cardiomyocytes apoptosis 
and Fas and Fas ligand expression in the myocardium (15). CpG 
oligodeoxynucleotide, the TLR9 ligand, through activating both 
phosphoinositide 3 kinase/Akt and extracellular signal-related 
kinase signaling, attenuated cardiac dysfunction in polymicrobial 
sepsis (16). However, a recent research demonstrated that erit-
oran, an anti-TLR4 to terminate MD2/TLR4-mediated signaling, 
did not significantly improve outcome for patients with severe 
sepsis and septic shock (17). Additional studies are needed to 
explain the detailed mechanisms of SIC regulated by TLRs.

Cytokines
The main inflammatory mediators that might contribute to SIC 
are tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6. 
In 1992, Eichenholz et al. demonstrated that TNF-α in plasma had 

a dose-dependent relationship with the depression of LVEF from 
a canine model of septic shock (18). At the same year, Vincent 
et al. showed that the administration of murine monoclonal anti-
TNF antibodies could transiently improve ventricular function 
in patients with septic shock (19). IL-1, cooperated with TNF-α, 
decreased the myocardial contractility, and played an active role 
in septic myocardial dysfunction. In a recent study from children 
with meningococcal septic shock (20), Pathan et  al. confirmed 
the negative inotropic effects created by IL-6 via a p38 mitogen-
activated protein kinase pathway and suggested a novel therapy 
to reverse myocardial dysfunction. However, as the half-lives 
of TNF-α, IL-1, and IL-6 are less than 6 h, it seemed that these 
cytokines did not induce SIC independently, and the detailed 
mechanisms still need further investigations.

Damage-Associated Molecular Patterns 
(DAMPs)
Extracellular Histones
Circulating extracellular histones in plasma have been detected in 
septic patients, and it interacts with TLR2 and TLR4 on a variety 
of different cell types and contributes to endothelial dysfunc-
tion, organ failure, and death in experimental sepsis (21, 22). A 
recent study showed that high levels of histones in plasma were 
significantly associated with cardiac injury and dysfunction in 
septic patients and high level of histones predicted a worse out-
come (23), and another study from septic mice demonstrated that 
neutralizing histones antibodies or drugs, which block histones 
interactions with cardiomyocytes might represent an effective 
strategy to prevent or ameliorate SIC (24). However, it is unclear 
that whether the histones in plasma are the cause or the result of 
SIC as histones occur inside the nucleus and can be released into 
circulation because of cytokines storm and cellular death during 
sepsis. Further researches are needed to confirm the exactly roles 
played by histones in the pathogenesis of SIC.

Heat Shock Proteins (HSPs)
Heat shock proteins, a group of highly selective proteins produced 
by cells in reaction to stress, appear to play a critical role in the 
development of thermotolerance and protection from cellular 
damage associated with stresses (25). Early research has shown 
that HSP72 can reverse the cardiac dysfunction of septic model 
induced by CLP (26). Some researches subsequently unveiled 
that HSP20-attenuated endotoxin-induced myocardial dysfunc-
tion and apoptosis via inhibition of NF-κB activation (27), while 
HSPA12B reduced the leukocytes infiltration into the myocar-
dium and prevented SIC through preserving activation of PI3K/
Akt signaling (28). Later, Hsu et  al. confirmed that exogenous 
HSC70 pretreatment attenuated LPS-induced myocardial dys-
function in septic rats (29). The detailed protective mechanisms 
of HSPs in sepsis still require further studies.

High-Mobility Group Protein B (HMGB)1
High-mobility group protein B1, a non-histone nuclear protein, 
serves as an alarmin to drive the pathogenesis of inflammatory 
and autoimmune disease (30). The serum level of HMGB1 in 
septic patients induced by severely burn is significantly increas-
ing, and it is associated with the fatal outcome of sepsis (31).  
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Xu et al. demonstrated that HMGB1 could also be produced by 
viable cardiomyocytes in septic mice, and it mediated the LPS-
induced myocardial dysfunction through a TLR4/PI3Kγ signal-
ing pathway (32). Zhang et  al. showed that HMGB1 enhanced 
sarcoplasmic reticulum Ca2+ leak through TLR4-reactive oxygen 
species signaling pathway, and decreased systolic Ca2+ transient 
and cardiomyocytes contractility, both contribute to the mecha-
nisms underlying the HMGB1-induced SIC (33).

nitric Oxide (nO)
Nitric oxide, a small and highly reactive molecule with a half-
life of a few seconds, is produced from all types of cardiac cells 
and has a multitude of cardiovascular effects in cardiovascular 
homeostasis. NO is produced from nitric oxide synthese (NOS), 
which exists in two forms: constitutive (NOS1, NOS3) and induc-
ible (NOS2). NOS1 and NOS3 relevantly contribute to bioactive 
NO pool (34) and culprit in early septic myocardial depression, 
whereas NOS2 may mediate myocardial depression that occurs 
in late sepsis (35). The mechanisms of NO-induced SIC include 
vasodilatation with resulting changes in preload, afterload, and 
cardiac perfusion, downregulating β-adrenergic receptors (36), 
depression of mitochondrial respiration, and further release of 
pro-inflammatory cytokines (37). Another adverse effect of NO 
on myocardial depression is the peroxynitrite, produced by NO 
metabolism, which interacts with lipids, DNA, and proteins (38) 
and affects the function of mitochondrial permeability transition 
pores, with subsequent mitochondrial dysfunction (39). Removal 
of peroxynitrate improved the myocardial performance in the 
study of cytokine-induced myocardial depression (40).

Mitochondrial Dysfunction and  
Oxidative Stress
Mitochondrial dysfunction plays a significant role in the patho-
genesis of sepsis and the degree of mitochondrial dysfunction 
is correlated with outcomes. Cardiomyocytes demonstrate 
mitochondrial ultrastructural damage in both septic animals 
and patients (41). Studies have shown that non-competitive 
inhibition of cytochrome C oxidase developed during sepsis, 
which interrupted the inhibition of oxidative phosphorylation 
and decreased production of ATP, leading to sepsis-associated 
myocardial depression (42). Low T3 syndrome, a very common 
phenomenon in septic patients, could also induce the mito-
chondrial dysfunction and sharpen the myocardial depression 
(43). When mitochondrial dysfunction persisted, ROS were 
generated in cardiomyocytes from septic heart, while oxidative 
stress induced by ROS mediated mitochondrial damage, which 
accelerated the mitochondrial dysfunction (44). The administra-
tion of superoxide scavenger compounds (44) and the inhibition 
of mitochondrial dysfunction (45) have been shown to prevent 
mitochondrial abnormalities and improve cardiac function and 
reduce mortality.

Disorders of Calcium Regulation
In the normal state, extracellular calcium enters the cardiomyo-
cytes via L-type channels and releases intracellular calcium from 
sarcoplasmic reticulum, which binds to troponin and activates 
the contraction proceeds with ATP hydrolysis (46). In the 

complex situation of SIC, the density of calcium L-type channels 
decreased, calcium sequestration is in disorder as the phospho-
rylation of phospholamban is in turbulence, and myofilament 
calcium sensitivity and responsiveness of the ryanodine receptor 
to calcium reduced (47). Furthermore, DAMPs, like HMGB-1, 
enhances SR calcium leak through the TLR4–ROS signaling 
pathway, then calcium transients and cardiomyocytes contrac-
tility decreased. Hence, inhibiting TLR4 or using antioxidant 
prevents the enhancement of the SR calcium leak, resulting in 
alleviating myocardial dysfunction (48).

Autonomic nervous System Dysregulation
Autonomic dysregulation, which includes resistance to catecho-
lamines and the loss of heart rate variability in septic state plays 
a significant role in the sepsis-induced cardiac depression. Some 
studies have demonstrated that septic animal performance a state 
of catecholamines resistance, which was mediated by the decreased 
density of myocardial adrenoceptors, the increased expression of 
inhibitory G-protein, and the disrupted signal transduction (49), 
despite elevated circulating levels of catecholamines. Hoyer et al. 
(50) confirmed that the loss of heart rate variability indicated a 
high probability of progression to multiple organs failure with poor 
outcomes. When sepsis occurred, apoptosis of neuronal and glial 
within cardiac autonomic centers increased (51), sepsis-induced 
uncoupling of the sinoatrial node from cholinergic neural control 
(52), and the direct current blockade of the sinoatrial node by the 
elevated cytokines of plasma (53), all contributed to the loss of 
heart rate variability (Figure 1).

endothelial Dysfunction
Sepsis induces the endothelial abnormalities, which is another 
important aspect that leading to SIC. Endothelial cells secrete more 
adhesion molecules, which assist injurious neutrophilic infiltra-
tion to cardiomyocytes and increase the leukocyte–endothelium 
interaction in response to inflammatory cytokines in sepsis (54). 
Vascular cell adhesion molecule 1 (VCAM-1), as the most common 
example, has been demonstrated in the coronary endothelium 
and cardiomyocytes of murine models of septic shock. Blockade 
of VCAM-1 abrogates neutrophil accumulation and prevents the 
cardiac dysfunction in sepsis (55). Calpain is over activated in 
cardiac tissue in the setting of sepsis, and the inhibition of Calpain 
decreases the leukocyte–endothelium interaction and improves 
sepsis-induced cardiac dysfunction (56). Both of them suggest 
that VCAM-1 and Calpain may serve as therapeutic targets for 
SIC. Physical disruption of endothelial cells is another mecha-
nism for the SIC. The injured endothelial cells secrete intercellular 
adhesion molecule, E-selectin, and thrombomodulin, which lead 
to the failure of vascular relaxation and are prognostically related 
to cardiac systolic and diastolic dysfunction (57).

THe TReATMenTS OF SiC

Hemodynamic Stabilization
When septic shock occurs, PAMPs, DAMPs, oxidative stress, 
mitochondrial dysfunction, disorders of calcium regulation, 
autonomic nervous system dysregulation, and endothelial  
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FigURe 1 | The mechanisms in the sepsis-induced cardiomyopathy. (A) PAMPs and cytokines (TNF-α, IL-1, and IL-6) contribute to sepsis-induced cardiomyopathy 
(SIC). (B) Damage-associated molecular patterns (HMGB1, HSP, and histone) induce SIC through different mechanisms. (C) NO and NOS are involved in SIC. (D) 
Autonomic dysregulation play a significant role in SIC. PAMP, pathogen-associated molecular pattern. TNF-α, tumor necrosis factor-α. IL-1, interleukin-1. IL-6, 
interleukin-6. TLRs, toll-like receptors. NF-κB, nuclear factor-κB. LVEF, left ventricular ejection fraction. HMGB1, high mobility group protein B1. HSP, heat shock 
protein. ROS, reactive oxygen species. VCAM, vascular cell adhesion molecule. NO, nitric oxide. NOS, nitric oxide syntheses.
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dysfunction all contribute to the pathogenesis of SIC. On the other 
hand, the consequence of SIC is an insufficient supply of oxygen 
to meet tissue demand, which causes global tissue hypoxia and 
accelerates the process of septic shock (58). Thus, focusing on 
hemodynamic stabilization is the foremost step in patients with 
SIC apart from the proper management of infection.

Rapid and effective fluid therapy guided by monitoring fluid 
response parameters to remedy hypovolemia is recommended as 
the cornerstone of sepsis treatments (58). Crystalloids is recom-
mended as the initial fluid in the resuscitation of sepsis; however, 

a research from septic animal demonstrated that albumin and 
hypertonic saline were more beneficial on cardiac function com-
pared with normal saline (59).

Inotropic drugs are suggested for the septic patients with low 
cardiac output after optimization of fluid therapy. Norepinephrine 
is the first choice from the current guidance, while dobutamine 
and dopamine are only used in highly selected patients. The use 
of dopamine was associated with a greater number of adverse 
events (60). Levosimendan, a calcium-sensitizing drug, sensitizes 
troponin C to calcium and enhances the effects of calcium on 
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TABLe 1 | Treatments, mechanisms, and types of study of sepsis-induced cardiomyopathy.

Treatments Mechanisms Study type Details of sepsis no. of sepsis/total (%) Reference

Levosimendan Calcium-sensitizing, inhibiting reactive oxygen 
species

Critically ill 
patients

Clinical diagnosis of sepsis 9/25 (36) (59)

Annexin A5 Binding to TLR4, mitogen-activated protein 
kinase and Akt signaling↓

Animal Intraperitoneal endotoxin 52/103 (50) (63)

Peroxisome proliferator-
activated receptor (PPAR)γ

Activation of PPARγ Animal Intraperitoneal endotoxin 14/28 (50) (64)

Neuregulin-1 (NRG-1) NRG-1/ErbB↑ Animal Cecal ligation and puncture (CLP) 22/27 (81) (65)
Paeoniflorin NF-κB↓ Animal intraperitoneal endotoxin 24/48 (50) (66)
Selective β1-blockade NF-κB↓ Animal CLP 18/24 (75) (71)
EPO β-common receptor activation Animal Intraperitoneal endotoxin, CLP 112/153 (73) (72)
miR-146a NF-κB↓ Animal CLP 12/24 (50) (75)
miR-21-3p Regulating SH3 domain-containing protein 2 Animal Intraperitoneal endotoxin 12/24 (50) (76)
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myofilaments during contraction. Different with dobutamine and 
dopamine, levosimendan does not stimulate β-adrenergic receptor 
and cause adverse effects. Studies have shown that levosimendan 
could preserve septic heart function through cooling down the oxi-
dative burst of circulating cells and inhibiting the release of reactive 
oxygen species (61). However, a recently randomized clinical trial 
showed that the addition of levosimendan in adult with sepsis was 
not associated with lower mortality, and it decreased the probability 
of successful weaning from mechanical ventilation and increased 
the risk of supraventricular tachyarrhythmia (62).

Signaling Pathways intervention
Multiple signaling pathways are involved in the pathogenesis 
of SIC, and therapies of targeting signaling pathways have been 
researched always. Annexin A5, a 35-kDa phospholipid binding 
protein, decreases cytokine expression and improves cardiac 
function during endotoxemia treatment through inhibiting LPS 
binding to TLR4 and leading to reductions in mitogen-activated 
protein kinase and Akt signaling (63). Peroxisome proliferator-
activated receptor (PPAR), a nuclear receptor, regulates cardiac 
fatty acid oxidation. Drosatos et al. demonstrated that activation 
of PPARγ prevented cardiac dysfunction and mortality in spite 
of development of cardiac inflammation and downregulation of 
PPARα in LPS-treated mice (64). Neuregulin-1 (NRG-1), a mem-
ber of the family of epidermal growth factors, improved cardiac 
function and protected cardiomyocytes of rats from sepsis via the 
activation of NRG-1/ErbB signaling axis (65). However, there are 
some difficulties present in this treatment strategy. First, almost 
all attempts from signaling pathways intervention are researched 
from animal models. Second, a single pathway possesses a lot of 
biological activities. Third, the related pathways influence each 
other through a complex network of regulatory interactions. All 
these difficulties remind us the therapy to SIC from signaling 
pathways intervention still have a long way to go.

Traditional Chinese Medicine (TCM)
Traditional Chinese medicine has been used for treatment of 
sepsis in China for many years, and some of them have been 
confirmed to have beneficial effects for the SIC. Paeoniflorin, one 
of the major bioactive components of paeony root, attenuates 
cardiac dysfunction in septic mice via the inhibition of NF-κB 

(66). The salutary effects of resveratrol rescue animals from SIC 
through reversing sepsis-dependent downregulation of PPARγ 
co-activator 1α, and preserving mitochondrial integrity (67). 
Xuebijing injection (XBJ) is a complex traditional prescription, 
which is extracted from several herbs with immune modulating 
functions. XBJ has a significant efficacy in the therapy of sepsis 
through promoting septic macrophage polarization (68), which 
has the potential effect in regulating cardiac function in sepsis. 
With the quick development of pharmaceutical analysis, more 
and more TCM were analyzed and the detailed mechanisms 
were gradually revealed, which has a great potential for the 
researches of SIC.

Others
β-adrenoreceptor antagonist has been rarely used in the 
treatment of patients with septic shock as the existence of 
SIC. It will potentially decrease the blood pressure, perform 
negative inotropic effects, and cause pump failure in the already 
depressed heart. Recently, with the mechanisms of pathological 
catecholamine excess in SIC was revealed, increasing experi-
mental evidences have suggested that β-adrenergic regulation 
may improve cardiac function during septic shock (69). The 
use of esmolol was associated with reduction of heart rates, 
and no increased adverse events in septic shock patients (70). 
Adjunction of selective β1-blockade enhances intrinsic cardiac 
contractility and vascular responsiveness to catecholamine 
through anti-inflammatory, lowers heart rate for better ven-
tricular filling during diastole, and performs cardiac protective 
effects in septic animals (71). However, more large clinical trials 
with different risk subsets and timing of administration are 
needed to confirm its effects.

Erythropoietin (EPO) is widely used for the treatment 
of anemia in patients, especially the anemia in patients with 
chronic kidney disease. The administration of EPO attenuated 
the impaired systolic contractility in experimental sepsis via 
activation of the β-common receptor (72). As the complex and 
strong interaction between EPO and βcR (73), selectively activat-
ing the tissue-protective βcR-EpoR heterocomplex represents a 
new therapeutic approach to SIC.

microRNAs (miRNAs) are a class of small 21–23 nucleotides 
long RNAs molecules, which have been identified as novel 
regulators of gene expression at the posttranscriptional level. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Liu et al. SIC: Mechanisms and Treatments

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 1021

miRNAs play strong regulatory effect in almost all cardiovas-
cular processes, like myocardial infarction and heart failure 
phases (74). Recent studies have shown that miRNAs played a 
critical role in sepsis-induced cardiac dysfunction. Gao et al. used 
lentivirus-expressing miR-146a to transfect before subjecting to 
CLP and results showed that miR-146a attenuated SIC by pre-
venting sepsis-induced NF-κB activity, attenuating inflammatory 
cytokine production and decreasing sepsis-induced neutrophils 
infiltration and macrophages into the myocardium (75). Wang 
et al. used LPS to induce SIC and provided strong evidence that 
miR-21-3p controlled SIC via regulating SH3 domain-containing 
protein 2 and inhibition of miR-21-3p might be a potential 
strategy to treat SIC (76). It can be seen that miRNAs-targeting 
therapy might open a new era for the treatment of SIC (Table 1).

COnCLUSiOn AnD PeRSPeCTive

Sepsis-induced cardiomyopathy has been defined as a global but 
reversible dysfunction of heart, and it has been always the topic 
of intensive research for last four decades. The complex patho-
genesis of SIC involves a combination of dysregulation of inflam-
matory mediators, mitochondrial dysfunction and oxidative 
stress, disorder of calcium regulation, autonomic nervous system 
dysregulation, and endothelial dysfunction. Although much 
progress has been made in the therapies of SIC, like signaling 

pathways intervention, TCM, β-adrenoreceptor antagonist, EPO, 
and microRNA, there is still no efficient treatment in patients 
with SIC.
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