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Introduction
In the last 10 years, genome-wide association studies (GWASs) 
have become an important approach for unbiased discovery 
of common genomic loci, represented by selected single- 
nucleotide polymorphisms (SNPs) that are associated with 
complex diseases or traits.1,2 Associations between common 
SNPs and various diseases have been extensively studied,3–6 
but most of them either have small effects on disease risk or 
only explain a small fraction of the susceptible population.7,8 In 
a typical GWAS analysis, a large number of SNPs are evalu
ated for their statistical associations with a certain phenotype.9 
But, because of the need for multiple testing corrections, 
only very few SNPs can successfully surpass the significance 
threshold and be selected for the further investigation.10,11 In 
such a context, one is very likely to miss some crucial infor-
mation contained in the filtered-out SNP data. On the other 
side, since many complex diseases are the outcome of the joint 
action of multiple genes, many real biomarkers that have a sig-
nificant risk effect in combination but not individually often 
fail to be detected by a typical GWAS.12,13 Thus, there has 

been increasing demand in developing methods to reanalyze 
GWAS datasets and to study associations of high-order SNP 
combinations with complex phenotypes.14,15

Recently, a gene-level knowledge-based strategy that uti-
lizes prior biological knowledge at the gene level to facilitate 
GWAS dataset analysis has emerged as a potentially more 
powerful approach. One of the first attempts to utilize genetic 
information is gene-based GWAS analysis, in which all SNPs 
within a candidate gene are considered jointly.16 The pioneering 
method to combine SNPs in multiple genes is pathway-based 
GWAS analysis, in which SNPs located in diverse genes of the 
same pathway are examined jointly for their association with 
a disease or trait.17 In this method, genes in a specific path-
way are treated as an exchangeable set. In a newly developed 
pathway-based method, a Markov random field model was pro-
posed to incorporate the topological structure information of a 
pathway.18 Considering that current data sources of pathway 
cover only less than 20% of proteins and genes, network-based 
approaches on a larger scale have recently been developed to 
integrate network information to prioritize genes.19,20
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In this paper, we make an attempt in an alternative 
direction on how to reasonably utilize the genetic informa-
tion to assist GWAS dataset analysis. Different from previous 
gene-based approaches that usually first map an SNP to a gene, 
we establish a general framework to map different sources of 
gene interaction information (such as protein–protein interac-
tion, gene coexpression, or any types of functional associa-
tions) to SNP-tagged genomic loci, and sequentially construct 
a mutual SNP association network based on this information. 
Proven by large-scale experiment datasets (such as HapMap21 
and HiC22) and known disease-related SNP data,23 this SNP 
association network (SAN) is able to reflect the real functional 
associations between genomic loci, which may facilitate the 
analysis of GWAS datasets. In order to test this, we devel-
oped a disease-related SNP prediction method by the use of 
a random walk with restart (RWR) strategy.24 Compared 
with the prediction based on the Human Protein Reference 
Database (HPRD) network, the prediction based on SAN 
shows a significant improvement (AUC: 0.81 vs 0.66). We 
further test our SAN by reanalyzing the GWAS dataset of 
age-related macular degeneration (AMD).25 By referring to 
Google’s PageRank algorithm, we developed a new method 
that combined the AMD GWAS dataset with the SAN topo-
logical information to rerank the relevance between SNPs 
and AMD. According to our reranking result, we found new 
AMD-related SNP candidates, which is in agreement with 
reports in the literature.

Result
General idea of SNP association network construction. 

In GWASs, when an SNP is connected with a specific disease, 
it actually means that the chromosomal region around this 
SNP has one or more function elements, such as protein-coding 

genes, that are related to this disease.26 Considering that those 
genes that are involved in the same disease tend to have closer 
functional interactions in the gene interaction network (GIN) 
than other genes,27 we can exploit the gene interaction infor-
mation to evaluate functional associations between genomic 
loci. Figure  1  shows a simple example of how SAN is con-
structed for three SNP-tagged genomic loci based on gene 
interactions. We can calculate the SNP association score (SAS, 
Formula 1 in the Method section) between each pair of SNPs 
and obtain a symmetric SAS matrix for all SNP pairs. SAS is 
calculated based on the connectivity between genes inside of 
the loci. The higher the score, the more the possibility that is 
there a functional association between these two loci. For this 
SAS matrix, we can further test the significance of each SAS 
by random permutation. After filtering out SNP pairs with 
nonsignificant SAS, we can finally construct the SAN.

Parameter setting for the SNP association network 
construction. Several parameters need to be set in the con-
struction of SAN in order to best utilize the information. The 
first parameter is the length of the genomic locus that each 
SNP represents. Based on the datasets of known disease-
related genes and SNPs that are involved in coronary heart 
disease, prostate cancer, and schizophrenia, we tested vari-
able lengths of genomic range (from 1 K to 1M). As shown in 
Figure 2A, when the length is increased, more disease-related 
genes can be embraced into the represented neighboring region 
of the known disease-associated SNPs; at the same time, 
the proportion of disease-related genes among total genes is 
decreased. We finally chose 100 kb (50 kb each from upstream 
and downstream of a SNP site) as the neighborhood of this 
SNP to balance both the coverage and specificity of disease-
related genes in the SNP-represented regions. Furthermore, 
we clustered SNPs whose neighborhoods cover the same gene 
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Figure 1. The general idea of SAN construction: an example network. Gi (or Gj) represents a gene set in the chromosomal region of SNPi (or SNPj). 
The computing method for SAS is as shown in Formula 1.
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Figure 2. (Continued)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Liu and Xuan

60 Cancer Informatics 2015:14(S2)

18

19

20

21

22

x

y

1

2

3

4

5

6

78

9

10

11

12

14

15

16

17

13

E

Figure 2. (A) Percentages (y-axis) of SNPs with disease-related genes located in varied flanking regions (x-axis) of either known disease-related SNPs 
(DS, pink) or randomly selected SNPs (DSR, red). It also shows the percentages of disease-related genes located in the varied length of flanking regions 
(x-axis) of either DS (DG, yellow) or DSR (DGR, blue). The disease-related genes and SNPs were collected from coronary heart disease. We found 
similar patterns in prostate cancer and schizophrenia also. (B) Cumulative distribution of negative log-transformed diffusion kernel scores between the 
disease-related genes (red) and genes from random background with the same degree in SAN (blue). (C) The impact of different SAS P-value thresholds 
on the size of SAN. (D) The degree distribution of the SAN. P(k) ∼ k–1.87; R2 = 0.84. (E) The SAN in a circular layout. The four rings from outside to inside 
are ordered by (a) all human chromosomes, including 1–22 autosomes, X and Y chromosome, in units of 1M, (b) the density of SNPs, (c) the density of 
genes, and (d) the density of SAN edges. The inside lines represent SAN edges between chromosome loci in 1M unit; the increased linking numbers are 
represented by grey, red, orange, yellow, green, blue, and purple in order.
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set into one SNP cluster, as they could not be distinguished in 
the calculation of functional association. Hence, in the SAN, 
an SNP cluster can be labeled as one node and represents one 
genomic locus.

The second parameter is a control parameter in the dif-
fusion kernel method.28 In order to control the noise and to 
capture the long-range relationships between genes, we used 
the diffusion kernel method (Formula 2)28 to transfer the 
HPRD network29 into an inter-gene association matrix. In 
the diffusion kernel formula, the parameter β controls the 
extension of “diffusion”. To obtain an optimal value of β for 
multiple diseases, we tested different β values (from 0.01 to 2) 
using known disease-related genes from coronary heart dis-
ease, prostate cancer, and schizophrenia (Fig. 2B). Compared 
with random background, genes involved in a certain disease 
are likely to be connected closely, that is, larger scores in the 
diffusion kernel matrix. We chose 0.5 as the optimal β value 
because it gives the largest differences of cumulative distribu-
tions of diffusion kernel scores between disease-related genes 
from these three diseases and random background.

The third parameter is the P-value cutoff for selecting the 
statistically significant associations. Because different genomic 
loci contain different numbers of genes, which also have dif-
ferent degrees in the HPRD network, we cannot compare the 
SASs with each other directly. So for the SAS of each SNP clus-
ter pair, we use permutation to generate a random background 
distribution and convert each SAS into an empirical P-value 
(Formula 3). The significant SASs can be determined based on a 
P-value cutoff. As shown in Figure 2C, we assessed the impact 
of different P-value thresholds on the size of the SAN and chose 
a P-value less than 1 × 10–4 as the threshold for further study.

In this way, we obtained a SAN with 13,217 nodes 
(genomic loci) and 153,235  interactions (significant associa-
tions). According to the distribution of degrees, the SAN is 
approximately a scale-free network,30 which means there are 
hub nodes in the network (Fig. 2D). These hub nodes represent 
the hotspots on chromosomes, which tend to have more inter-
actions with other genomic loci. In the circular layout31 of SAN 
(Fig. 2E), we can find that those hotpots are mainly located on 
chr1, chr11, chr12, chr17, and chr19. The density of interactions 
in the genome is positively correlated with the gene density 
(ρ = 0.53, P , 2.2 × 10–16, Spearman correlation test), but with 
no significant correlation to the density of SNP in the genome 
(ρ = –0.035, P = 0.092, Spearman correlation test).

Linkage disequilibrium of SNP cluster nodes in the 
SNP association network. In population genetics, linkage 
disequilibrium (LD) is the nonrandom association of alleles at 
different loci on chromosomes.32 In the human genome, adja-
cent SNPs mostly have strong LD, forming the so-called LD 
block, whereas SNPs on different chromosomes or SNPs on the 
same chromosome but with long distance are not. In the SAN, 
about 92% of the interactions are inter-chromosomal while 
only 8% are intra-chromosomal. Interestingly, although most 
of the interacting nodes in the SAN are located on different 

chromosomes that do not exist in proximal LD blocks, they 
are likely to have a stronger LD compared with background 
distribution (Fig.  3A, P-value of Kolmogorov–Smirnov test 
(KS test) , 2.2 × 10–16, genotype data from HapMap). In the 
SAN, the median of LD between interacting nodes is 0.151, 
while the random background is 0.098 (P-value of Wilcox 
test , 2.2 × 10–16). The significantly stronger LD of interact-
ing node pairs in the SAN raises the possibility that these 
node pairs are likely to have profound associations with simi-
lar functions or phenotypes.

Figure 3B shows a representative example of LD between 
two connected SNP cluster nodes SC13676 (on chromo-
some 7) and SC5103 (on chromosome 2). Both SC13676 and 
SC5103 have existing LD blocks in their own loci. Interest-
ingly, the SNP pairs between these two loci, which are on 
different chromosomes, also display strong LD. There are two 
genes, TWIST1 and GLI2, on the corresponding genomic loci, 
respectively. TWIST1 and GLI2 do not interact directly in the 
HPRD network; they are coupled by the gene GLI3. Both 
GLI2 and GLI3 are members of GLI family of transcription 
factors and are crucial actors for normal development in the 
Sonic hedgehog–Patched–Gli (Shh-Ptch-Gli) pathway.33,34 
Dysregulation of the Shh-Ptch-Gli pathway leads to sev-
eral human diseases, including birth defects and cancers.35,36 
Recent researches have shown that TWIST, a developmental 
regulatory gene and potential oncogene, does appear to be 
linked to Shh signal transduction.37,38 Mouse Twist protein 
can activate transcription of human GLI1, another member 
of GLI family of transcription factors, by interacting with the 
E-boxes in GLI1’s first intron.39 More interestingly, nonsense, 
missense, deletion, and insertion mutations in several regions 
of the human TWIST gene have been shown to cause the 
Saethre–Chotzen syndrome, an autosomal dominant disease 
whose clinical phenotype partially overlaps with Shh-pathway- 
related human diseases.40,41 All of these facts indicate that 
there is a strong functional association between these two 
genomic loci (represented by SC13676 and SC5103), which is 
well worth further joint analysis.

HiC interaction between SNP cluster nodes in the SNP 
association network. The functional association of genomic 
loci with long distance in the genome may also connect with 
the direct long-range physical interaction of chromatins. The 
three-dimensional folding of chromosomes can bring dis-
tant functional elements such as a promoter and an enhancer 
into close spatial proximity. Such long-range interaction can 
be detected by the recently developed HiC technique in an 
unbiased and genome-wide manner.22 Here, we compared the 
genomic loci pairs that have direct interactions in the SAN 
with that in the human HiC data (Table  1). It was shown 
that, compared with randomly selected genomic loci pairs, the 
long-range chromatin interactions detected by HiC exhibit a 
clear dominance in genomic loci pairs that are directly inter-
acting in the SAN (KS test P-value , 2.2 × 10–16). About 30% 
of the interacting SNP cluster pairs in the SAN can be found 
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Figure 3. (A) Cumulative distribution of linkage disequilibrium score (R2) between randomly picked SNP cluster pairs (Background, green), SNP cluster 
pairs interacting in SAN (Network, red), and SNPs in one SNP cluster (Local, blue). For each SNP cluster pair, we calculated R2 for all SNP pairs between 
the two SNP clusters in the pair, and used the maximum as R2 for this SNP cluster pair. (B) LD blocks between SNP clusters SC13676 and SC5103. Pale 
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with HiC interactions. This frequency reduces to about 20% 
in the random background and increases to 40% for interact-
ing SNP cluster pairs related to the same disease. Nearly 1.5% 
of the interacting SNP cluster pairs are supported by over 
three HiC interactions, which is 50% higher than that in the 
random background. For those interacting SNP cluster pairs 
that are involved in the same disease, this proportion reaches 
2.6%. These results indicate that at least some functional asso-
ciations between the SNP clusters in the SAN are established 
by the direct physical interaction between the corresponding 
chromosomal regions.

Close correlation of known disease-related SNP cluster 
nodes in the SNP association network. In the SAN, there are 
a number of nodes that correspond to known disease-related 
SNPs. Our results show that the distance distribution between 
SNP cluster nodes related to the same disease is significantly 
smaller than that from randomly selected nodes (Table 2). We 
have checked 13 different types of diseases (each with more 
than 20 nodes in the SAN). Eleven diseases showed signifi-
cantly shorter distances between nodes while comparing with 
the random background (t-test, P , 0.05), with two diseases 
(prostate cancer, Type 2 diabetes) as exceptions. The smaller 
distances in SAN are also found in nodes that are related to 
the similar subtypes of diseases. Autoimmune diseases are 
caused by inappropriate immune responses of the body against 
substances and tissues normally present in the body.42 It has 
been shown that different autoimmune diseases are likely to 
share etiological similarities and underlying mechanisms.43 In 
the SAN, 251 nodes are related to different subtypes of auto-
immune diseases. Compared with the random background, 
the nodes related to the same subtype of disease form a more 
closely connected subnetwork. In the autoimmune-disease-
related subnetwork, there are 183 edges and the size of the 
maximally connected subgraph is 64 (Fig. 4A), while in the 
random background the average number of edges is only 
92 and the average size is 20 (both P-value =  0 by random 
sampling).

As the closely connected subnetworks in the SAN are 
likely associated with the same disease or phenotype, we can 
use the topological information of the SAN, such as the clus-
tering coefficient and the shortest distance between nodes, to 
discover the potential high-order SNP combinations that are 
relevant to a disease or phenotype. For example, we examined 

the autoimmune-disease-related subnetwork and found two 
quasi-cliques (QC1 and QC2) that are separately comprised 
of eight nodes with 25 edges (Fig. 4B) and eight nodes with 
24 edges (Fig.  4C). Studies had shown that these closely 
linked nodes in both cliques are related to autoimmune dis-
eases. Thus, we inferred that the SAN nodes that have a close 
connection with nodes in QC1 and QC2 are also involved in 
autoimmune diseases. There are 7 and 33 SNP cluster nodes in 
SAN, respectively, that have direct connections with over one-
half of the nodes in QC1 or QC2 (the SNP cluster nodes that 
are already in the autoimmune-disease-related subnetwork are 
excluded). For those seven SNP cluster nodes connected with 
QC1, there exist 12 genes of which 10 have been proven to 
be correlated to autoimmune diseases (P = 1.80 × 10–11, bino-
mial test). For example, STAT3 has been found to be essential 
for the differentiation of TH17 helper T cells in a variety of 
autoimmune diseases,44 while, of those 33 SNP cluster nodes 
connected with QC2, 17 of 33 genes are proven to have a rela-
tionship with autoimmune diseases (P = 2.56 × 10–13, bino-
mial test), such as CTSL1 and HLA-DQA1.45,46

Prediction of novel disease-related SNPs based on the 
SNP association network. Guilt by association (GBA) is a 
proven approach for identifying novel disease genes based on 
the simple idea that genes that are associated with or interact-
ing in a GIN are more likely to be associated with similar 
traits.47,48 Similar to that of GIN, the genomic locus in the 
SAN, which has dense connections with the genomic loci 
that are proven to be related to certain diseases, is probably 
associated with this disease too. Therefore, we can explore 
known data of disease-related SNPs and the SAN topological 
structure to predict novel disease-related SNPs, with no need 
for introducing a new GWAS dataset. Based on the RWR 
strategy,24 we developed a prediction algorithm by using the 

Table 1. The distributions of HiC interactions between interacting 
SNP clusters in the SAN (SAN-link), randomly picked SNP clusters 
(random), and interacting SNP clusters in the SAN that are related to 
the same diseases (disease-link).

SAN-link Random Disease-link

1HiC interactions 29.6% 23.5% 41.6%

3HiC interactions 1.49% 0.99% 2.6%

Mean HiC interactions 0.39 0.30 0.55
 

Table 2. The disease-related SNP clusters from different diseases 
having significant shorter distances than those randomly selected 
clusters in SAN.

Disease P-value

Attention deficit hyperactivity disorder 3.7e-02

Bipolar disorder 9.2e-03

Coronary heart disease 2.9e-02

Crohn’s disease 3.0e-03

Parkinson’s disease 1.7e-02

Psoriasis 3.8e-02

Rheumatoid arthritis 4.5e-06

Schizophrenia 1.3e-02

Systemic lupus erythematosus 1.4e-04

Type 1 diabetes 1.3e-02

Ulcerative colitis 4.9e-03

Prostate cancer 0.93

Type 2 diabetes 0.51
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Figure 4. (A) The maximally connected SAN subnetwork related to autoimmune diseases. Different colors mean different autoimmune diseases. SNP 
clusters in red contain SNPs related to multiple autoimmune diseases. (B) Quasi-clique QC1 (right) and its closely connected neighbors (left) that have 
connections with more than four nodes in QC1. Red: autoimmune-disease related. Yellow: others. (C) Quasi-clique QC2 (right) and its closely connected 
neighbors (left) that have connections with more than four nodes in QC2. Red: autoimmune-disease-related. Yellow: others.
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known disease-related genomic loci as seeds to predict new 
disease-related SNP cluster candidates. RWR is a rank-
ing algorithm that simulates a random walker of proceeding 
coequally from each known disease-related seed node and 
then moving forward randomly to the immediate neighbors 
at each step. Meanwhile, the random walker can return at a 
probability “r” to the original seed nodes at each step. Thus, 
after several rounds of steps, the random walking will reach 
a steady state. All the nodes in the graph are then ranked by 
the probability of the random walker reaching the destination, 
which will evaluate the closeness between these nodes and the 
known disease-related seed nodes.

We tested our method (RWR-SAN) on known lung-
cancer-related SNPs collected from the GWAS Catalog and 
the Lung Cancer Database.23,49 For comparison, we also 
implemented a similar RWR procedure on the HPRD net-
work (RWR-HPRD). In the SAN, the known lung-cancer-
related SNPs were mapped into the corresponding SNP 
clusters, which are marked as disease-related nodes. In the 
HPRD network, these known lung-cancer-related SNPs were 
mapped into the nearest genes in the genome and also marked 
as disease-related nodes. We then used leave-one-out cross-
validation to examine how well these algorithms recover the 
disease-related nodes. In each round of cross-validation, we 
selected one of the known disease-related nodes and used the 
rest of them as seed nodes. The held-out node and other 99 
randomly picked nodes were ranked by the RWR algorithm. 

Here, we used the receiver operating characteristic (ROC) 
analysis to compare the two algorithms.50 Sensitivity is the 
frequency of a disease-related node that was ranked above a 
particular threshold. Specificity is the frequency of a non-
disease-related node ranked below this threshold. In order to 
compare different curves obtained by ROC analysis, we cal-
culated the area under the ROC curve (AUC) for each case. 
As shown in Figure 5, the AUC value of RWR-SAN is much 
higher than that of RWR-HPRD (0.81 vs 0.66), which indi-
cates that the prediction capability of RWR-SAN is much 
better than that of RWR-HPRD.

We further applied RWR-SAN to predict novel lung-
cancer-related SNP clusters. All known lung-cancer-related 
nodes are treated as seed nodes to run RWR-SAN. For the 
top10 predicted SNP clusters (Table 3), four genomic loci had 
been proven to contain genes related to lung cancer and the 
other six loci also have reported evidences related to lung can-
cer. For instance, the gene FHL2 on SC485751 is a hub gene in 
the HPRD that has interactions with other 39 genes. Among 
them, 18 have been related to lung cancer. Another example 
is the tumor suppressor gene VBP1 on SC1449, which has 
direct protein–protein interaction with VHL, another known 
lung-cancer gene.52 A more interesting example is the gene 
SLC6A4 on SC7161, which is involved in primary pulmonary 
hypertension (PPH).53,54 Recent studies have shown that the 
genesis and progression of PPH is likely consistent with the 
model of tumorigenesis.55,56
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Figure 5. ROC curves of RWR-SAN and RWR-HPRD in lung cancer data.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Liu and Xuan

66 Cancer Informatics 2015:14(S2)

that bHLH genes play decisive roles in the generation of the 
diverse cell types during the development of the retina.62–64 
The gene on genomic locus of SC962 is CDH18, which 
belongs to CDH gene family, a family of calcium-dependent 
cell–cell adhesion molecules.65,66 CDH genes mediate neural  
cell–cell interactions and may play important roles in neural 
development. For example, CDH3, a member of CDH fam-
ily, had been proven to be associated with ectodermal dyspla-
sia, ectrodactyly, and macular dystrophy (EEM syndrome).67 
Another member of CDH family, CDH8, has been also found 
related to retinal survival/protection.68 More interestingly, in 
our SAN-assisted reanalysis, the rank of SNP cluster SC688, 
which contains the gene CDH8, is also boosted greatly, from 
rank 171 to rank 12. These results indicate that the reanalysis 
of GWAS data with our SAN may identify more potential 
disease-associated genes.

Discussion
So far, large-scale GWAS studies have produced mas-
sive data; therefore, how to further reanalyze these data 
has become an important issue. One reanalysis strategy of 
GWAS data is meta-analysis, which was originally developed 

Table 4. The Reranking of top10 SNP clusters of the AMD GWAS 
dataset.

SCID Genes Rank_New Rank_Old

SC7581 CFHR3, CFH 1 1

SC9345 BHLHE41, SSPN 2 541

SC10154 SGCD 3 18

SC3466 VAC14 4 6

SC1673 TRPC4 5 7

SC962 CDH18 6 244

SC11017 TCF7L2 7 10

SC12214 C2ORF88, PMS1 8 2

SC1004 SGCZ 9 24

SC9695 ANKS1B 10 3

Table 3. The top10 prediction of lung-cancer-related SNP clusters.

SCID Genes Function note Reference

SC7161 SLC6A4 Involved in primary pulmonary hypertension 53,54

SC6160 CR1, CR2 CR1 mediate the immune adherence phenomenon 81

SC1692 CD46 CD46 is lung-cancer-related 82,83

SC13278 MSH4 A meiosis-specific MutS homolog, interacting with the lung-cancer-related gene MLH1 84,85

SC10057 CD55, CR2 CD55 is lung cancer related 82,83,86

SC11236 CR2 Autoimmunity development, a potential role in systemic lupus erythematosus 87

SC7768 TRIM29 TRIM29 is lung-cancer-related 88,89

SC1449 VBP1 Tumor repressor, interacted with lung cancer-related gene VHL 52,90

SC4857 FHL2 Hub gene, interacting with 18 lung-cancer-related genes 51

SC9865 PCNA Lung-cancer-related 91,92
 

SAN-assisted reanalysis of an age-related macular 
degeneration GWAS dataset. The topological informa-
tion in SAN can be used as an external information source 
to assist GWAS data analysis. Borrowing from the Google’s 
PageRank algorithm, we can reanalyze the GWAS dataset by 
integrating the typical GWAS data analysis method with the 
topological information in the SAN. We tested the perfor-
mance of our SAN-assisted reanalysis on an AMD GWAS 
dataset.25 Here, we adopted the iterative ranking method 
(details in Method section), in which a SNP cluster’s score is 
calculated from an initial score (which is from typical GWAS 
analysis) and the normalized scores of its neighbors (which 
are iteratively updated).57 According to our reanalysis, each 
SNP cluster receives a revised score with contributions from 
both direct evidence from the typical GWAS analysis and 
indirect evidence from the neighbors in the SAN. Then, we 
can rerank the SNP clusters based on their revised scores; the 
higher the rank of the SNP cluster, the closer its correlation 
with AMD.

In the GWAS analysis of the AMD dataset, Klein et al. 
found only one significant SNP, rs380390.25 In our SAN-
assisted reanalysis, SNP cluster SC7581 corresponds to SNP 
rs380390 and is still on the top of the list. Compared with 
the ranking by using the initial scores from GWAS analysis, 
the ranks of some SNP clusters get a significant boost after 
integrating the topological information of SAN (Table 4). For 
instance, there are two SNP clusters, SC9345 and SC962, 
whose ranks go up dramatically, with a jump from 541 in the 
original order to 2  in the reanalysis order for SC9345, and 
from 244 to 6 for SC962. AMD usually affects older adults 
and results in a loss of vision in the center of the macula 
because of damage to the retina.58 The genomic region of 
SC9345 contains two genes, bHLHE41 and SSPN. bHLHE41 
is the member of basic helix–loop–helix (bHLH) transcrip-
tion factor family, which makes important contributions to 
the control of the proliferation and development during dif-
ferentiation, particularly in neurons.59–61 Studies employed in 
diverse experimental systems from various species have shown 
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for pooling the results from a set of similar clinical trials but 
is now widely used to combine different types of studies.69–71 
Another strategy is to introduce new information into 
GWAS data analysis to improve the detection power. It is 
very attractive to combine GWAS data with gene-interaction 
information, because the latter can provide us some hints 
on how to measure the association between SNPs. In this 
work, we established a general framework to integrate dif-
ferent sources of gene-interaction information to measure 
the association between SNPs. Although we only used the 
HPRD network as data resource in this work, our method 
is capable of integrating different types of gene-interaction 
information. By using gene-interaction data from different 
sources (such as protein interaction data, gene coexpression 
data), our SAN network can investigate SNPs’ correlation 
in different aspects. Systematically integrating SANs con-
structed from multiple data sources will allow us to obtain 
better effect on SAN-based prediction.

Over the last decade, GWAS have revealed a large number 
of disease- or trait-predisposing SNPs, but most of them are 
located within noncoding regions.72 Besides being the regula-
tory regions in a coding gene (such as enhancer), these SNPs 
are likely associated with some functional noncoding RNAs. 
For instance, there are two coronary-artery-diseases-related 
long noncoding RNAs, myocardial-infarction-associated 
transcript (MIAT), and antisense noncoding RNA in the 
INK4 locus (ANRIL) found in GWAS.73 Recently, a database, 
named lncRNASNP, also collected such lncRNA-related 
SNPs, and found that 142 human lncRNA-related SNPs are 
GWAS-tag SNPs and 197,827 lncRNA-related SNPs are in 
the GWAS LD regions.74 In our SAN, we studied only the 
coding region in the genome. But, if we exploit the coding–
noncoding gene interaction/coexpression network into our 
SAN,75 it can be further extended to SNPs-tagged noncod-
ing region and be used to annotate lncRNA-related SNP’s 
function.

The studies of SAN can not only perform auxiliary 
GWAS analysis but also offer biologically meaningful infor-
mation by itself. In the known studies on GINs, network 
topology provided important information for function study, 
and a lot of tools mining functional module were applied 
greatly to accelerate protein function prediction.76–78 As to 
how to apply our SAN network structure, here we made a 
preliminary attempt, including analysis of autoimmune-
disease-related quasi-cliques and the RWR method in 
SAN. Instead of inspecting the possible distinctions between 
SAN and known gene-interaction networks, we directly used 
algorithms developed in GIN study. It is believed that by 
combining the numerous disease-related SNPs in GWASs 
with in-depth studies of specific characteristics of the SAN 
network structure, our SAN study can further assist in the 
prediction of potential disease-related chromosome regions 
and allow us to find the possible interactions between differ-
ent diseases.

Methods
SNP association score. As shown in Formula 1, the SAS 

between each pair of SNPi and SNPj is calculated based on the 
connectivity among genes inside of the loci. Gi/Gj represents 
a gene set in chromosomal region of SNPi/SNPj, respectively.  
A GIN is any interaction/association network between genes. 
In this work, we use HPRD network.29 DGIN is a scoring 
function of gene association based on GIN; here we use the 
diffusion kernel matrix of HPRD network.28

'
( , ) ( , , ) ( , ')

i j

GINi j i j
g G g G

SAS SNP SNP f G G GIN D g g
∈ ∈

= = ∑ ∑ 	 (1)

Diffusion kernel on graph. As shown in Formula 2, dif-
fusion kernel of a graph G is a matrix exponential, where kij 
measures the similarity between nodes vi and vj.28 The matrix 
L is the Laplacian of the graph G, defined as E–D, where E is 
the adjacency matrix and D is a diagonal matrix containing the 
nodes’ degrees. The real parameter β controls the magnitude 
of the diffusion, and its optimal value is data-dependent.

Diffusion kernel on graph is a global measure of similar-
ity since it is calculated using the global connectivity infor-
mation (ie, adjacency and degree information). In addition, 
compared with another common measure, namely the shortest 
path distance similarity that is extremely sensitive to random 
insertion/deletion of edges, diffusion kernel is more robust to 
deal with extensive noise in high-throughput datasets.79

	
, , , ...,( , ') ( ) ,abLGIN ab a b nD g g K k eβ == = = 1 2 	 (2)

Empirical P-value of SAS. For each SNP cluster pair 
(i, j) and its SASi,j, we can compute its corresponding empiri-
cal P-value by Formula 3. BKG is the background set of SNP 
cluster pairs that are generated by randomly picking two 
SNP clusters that have the same numbers of genes in their 
neighborhoods, and these genes have the same degrees in the 
HPRD network. µ(SASBKG) is the mean value of all SASs in 
the set BKG, and σ(SASBKG) is the standard deviation of all 
SASs in the set BKG.

	
pvalue SAS pnorm abs SAS SAS
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i j
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( ) ( )
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	 (3)

Random walk with restart. RWR is a ranking algo-
rithm that simulates a random walker who starts on a set of 
seed nodes and iteratively transits from its current node to 
a randomly selected immediate neighbor. At each step, the 
random walker can return to the seed nodes with a certain 
restart probability. Finally, all the nodes in the graph are 
ranked by the probability of the random walker reaching 
this node.24

RWR can be formally defined as Formula 4. The 
parameter gamma ∈ (0, 1) is the restart probability (in our 
application it is set as 0.5). The transition matrix W is the 
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column-normalized adjacency matrix of the graph, and Wij is 
the transition probability from node i to node j. P0 is the initial 
probability vector, which was constructed such that equal 
probabilities were assigned to the seed nodes with the sum 
of the probabilities equal to 1. Pt is a vector in which the ith 
element holds the probability of finding the random walker at 
node i at step t.

After some steps, the probability vector will reach a 
steady state P∞, which gives a measure of proximity to seed 
nodes. If P∞(i) . P∞( j), then node i is more proximate to seed 
nodes than node j. This is obtained by performing the iteration 
until the difference between Pt and Pt + 1 (measured by the L1 
norm) fall below 10−10.

	 P gamma W P gamma Pt t+ = − × × + ×1 01( ) 	 (4)

SAN-assisted GWAS re-analysis. SAN-assisted GWAS  
reanalysis computes a score SC for each SNP cluster C. The 
higher the score, the closer will be its correlation with dis-
eases or traits. First, by Formula 5 in which Φ–1 is the inverse 
cumulative distribution function (CDF) of normal distribu-
tion, all SNPs’ P-values from the original GWAS study will 
be transferred to z-scores; that is, smaller P-values corre-
spond to larger z-scores.80 Second, each SNP-cluster’s score 
SC will be initialized as OC, which is the maximum z-score of 
all SNPs covered. Then, each SNP-cluster’s score SC will be 
iteratively updated by adding the average score of its immedi-
ate neighbors according to Formula 6, where NB(C) is the set 
of immediate neighboring nodes of the SNP cluster C.57 The 
parameter (1 − gamma)/gamma weights the network's con-
tribution to the reanalysis score. Previous work57 has proved 
that this iterative ranking method can converge to a unique 
solution very fast and is not sensitive to the range of (1 − 
gamma)/gamma.5,50 Here, we set it as 5 in our application.

	 z pi i= −−Φ 1 1( ) 	 (5)
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N
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∈

1 1 	 (6)

Data sources. Human SNP dataset: UCSC Genome Browser 
(genome.ucsc.edu, SNP132_common). HPRD network: Human 
Protein Reference Database (www.hprd.org, date 2011–4).

Disease-related SNPs: NIH GWAS catalog (www.
genome.gov/gwastudies, date 2011–6).

HapMap genotype dataset: HapMap (hapmap.ncbi.nlm.
nih.gov, date 2011–11).

HiC dataset: Hi-C Data Browser (hic.umassmed.edu).
Lung cancer database: HLungDB (www.megabionet.

org/bio/hlung).
Coronary heart disease database: CADgene (www.

bioguo.org/CADgene).
Prostate cancer database: DDPC (www.cbrc.kaust.edu.

sa/ddpc).

Schizophrenia database: SZGR (bioinfo.vipbg.vcu.edu: 
8080/SZGR).
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