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Abstract: This article addresses the impact of forward error correction when applied to the report
channel transmissions of a centralized decision fusion cooperative spectrum sensing scheme designed
to detect idle orthogonal frequency division multiple access (OFDMA) subchannels. The OFDMA
signal is transmitted over slow frequency-selective multipath Rayleigh fading channels and sensed
using the maximum eigenvalue detection test statistic. The decisions on the OFDMA subchannel
occupancy are transmitted to a fusion center over report channels represented by a shadowed
fading model combining a three-dimensional spatially correlated shadowing with a slow and flat
multipath Rayleigh fading. Binary Bose-Chaudhuri-Hochquenghem (BCH) and Repetition codes are
used to protect these decisions. Results show that shadowing correlation severely deteriorates the
overall spectrum sensing performance and that error correction may not be able to protect the report
channel transmissions. It can be even worse with respect to the system performance especially at low
signal-to-noise regimes. In the situations in which error correction is effective, the Repetition code is
capable of outperforming the BCH, meaning that the diversity gain may be more relevant than the
coding gain when the spectrum sensing decisions are subjected to correlated shadowing.

Keywords: cognitive radio; correlated shadowing; maximum eigenvalue detection; sensor information
fusion; shadowed fading; spectrum sensing

1. Introduction

The scarcity of radio-frequency spectrum due to the unprecedented increased demand for new
wireless communication systems and services has become a problem of paramount importance,
especially in the case of wide-band communications. As a consequence, the creation of solutions and
new standards in order to alleviate the spectrum occupation and to facilitate system interoperability is
required. Moreover, the current fixed spectrum allocation policy, which only benefits licensed users,
also called primary users (PUs), has been the major reason for the underutilized spectral resources,
since studies have shown that the licensed bands are mostly vacant during certain periods of time and
geographic locations [1].

The cognitive radio (CR) [2] concept has come to take advantage of the spectrum underutilization
by allowing CR-enabled secondary user (SU) terminals to access unoccupied bands that are licensed
to the PUs. The identification of unoccupied bands (also known as white spaces or spectral holes) is
made by means of spectrum sensing [3], which subsequently enables dynamic opportunistic access by
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the SUs forming the secondary network. Thus, the efficiency of radio-frequency spectrum usage is
ameliorated through the spectrum-sharing capabilities provided by this novel dynamic access policy.
Several spectrum sensing techniques have been proposed so far, which can be classified as
narrowband and wideband according to the bandwidth of the spectrum sensed. Narrowband sensing
techniques are limited to detect the presence of primary signals in a single narrow portion of
the spectrum, whereas wideband techniques aim at jointly or sequentially monitoring multiple
contiguous or non-contiguous portions of the spectrum. In what concerns narrowband sensing,
energy detection, matched filter detection, and cyclostationary feature detection are widely discussed
in the literature [3]. For wideband sensing, recent studies point to three major techniques: energy
detection [4,5], wavelet-based detection [6], and compressed (or compressive) sensing detection [7].
An SU with spectrum sensing capability, in addition to possibly taking advantage of a spectrum
occupation database, must be able to identify white spaces accurately to maximize the secondary
network throughput and to avoid harmful interference to the primary network. The spectrum
sensing process can be performed independently by each SU, but this approach suffers from reduced
accuracy due to problems such as receiver uncertainty, multipath fading, and correlated shadowing [8].
Receiver uncertainty occurs when an SU cannot be reached by the PU signal, for instance, due to
signal blockage, and this SU can erroneously decide that the sensed band is vacant. Multipath fading
occurs in mobile communication systems due to the alternation between constructive and destructive
interference among the received signals coming from multiple propagation paths. Shadowing is the
local mean received signal power variations about the area mean PU signal powers received by the
SUs, which is caused by natural or man-made obstacles in the signal path. Since multipath fading and
shadowing may produce low received signal levels, they also contribute to erroneous decisions on the
absence of the PU signal.
The SUs can cooperate to yield more accurate decisions on the occupation state of the sensed band.
This cooperation is called collaborative spectrum sensing, or cooperative spectrum sensing (CSS). It can
be centralized, distributed, or relay-assisted [8,9]. In centralized CSS with data fusion, data collected
by each SU (e.g., samples from the received signal) are sent to a fusion center (FC) through dedicated
control channels, usually referred to as report channels. The FC then processes the received data and
makes a global decision upon the occupation state of the sensed band. In centralized CSS with decision
fusion, only the decision on the channel occupation state made by each SU is transmitted to the FC,
saving resources of the typically low-bandwidth report channels. The global decision is made by the
FC by means of logic operations on all received SU decisions. Typical logic operations are AND, OR,
and majority-voting (hereafter denoted by MAJ) [8,9]. In both centralized schemes, the global decision
is informed back to the SUs, and the access algorithm adopted by the secondary network takes place.
The performance of the spectrum sensing is usually analyzed by means of the probability of
detection and the probability of false alarm. The former is the probability that the sensed band is
considered occupied when it is indeed occupied. The latter is the probability that the band is considered
occupied when it is in fact vacant. The overall spectrum sensing performance is highly dependent on
the conditions of the channels between the PU transmitter and the SUs, as well as on the conditions of
the report channels between the SUs and the FC. For instance, in mobile wireless communications,
which is the main stage for cognitive radio applications, multipath fading, and shadowing arise as
important impairments that limit the spectrum sensing performance [10-13]. In addition, the actual
spectrum sensing dynamics is influenced by SUs that might be moving, and at different distances
from one another. This dynamics not only induces time-varying and spatially varying channel fading
and shadowing but also produces different degrees of spatial correlation of the shadowing process.
Thus, it is essential to assess the spectrum sensing performance when the system is subjected to
such impairments. The three-dimensional (3D) spatially correlated shadowed fading channel model
proposed in [14,15] is adopted in this article to encompass such impairments, and to yield a realistic
assess of the spectrum sensing performance.
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The majority of the third generation (3G) broadband wireless communication systems is based
on direct sequence spread spectrum (DSSS), such as evolution data optimized (EVDO) and high
speed packet access (HSPA). Fourth generation (4G) systems mostly adopt multicarrier transmission
techniques, such as orthogonal frequency division multiplexing (OFDM), sometimes combined with
its access counterpart, the orthogonal frequency division multiple access (OFDMA) [16]. OFDM is
particularly attractive for delivering high speed data, especially over frequency-selective fading
channels. Moreover, combined with the subcarrier nulling flexibility of OFDM signals, OFDM-based
SUs can opportunistically access non-contiguous spectrum holes.

Several waveforms are being considered as potential candidates for the fifth generation (5G) air
interfaces [17]. They include, but are not limited to, the discrete Fourier transform spread-OFDM
(DFT-s-OFDM), which is already used in the 4G LTE uplink, the generalized DFT-spread-OFDM
(G-DFT-s-OFDM) [18], the zero-tail DFT-spread-OFDM (zero-tail DFT-s-OFDM) [19], the unique-word
DFT-spread-OFDM (UW DFT-s-OFDM) [20], the filter bank multi-carrier (FBMC) [17,21], and the
generalized frequency division multiplexing (GFDM) [22].

From above, it can be noticed that the OFDM is prevalent in the 5G candidate waveforms and
shall certainly remain as the root framework for new 5G waveform designs [23,24]. Thus, under
the vision that cognitive radio networks will coexist with, or will be part of, 5G networks, it is of
paramount importance that cognitive SU terminals are capable of sensing OFDM-like signals. The PU
signals considered in the present article are OFDMA signals, a choice that is lined up with the present
and forthcoming technologies.

The subsequent sections of this article are organized as follows: Section 2 explores the spectrum
sensing framework, aiming at enlightening the problem tackled in the article. The related work and
the contributions of the present research are given in Section 3. Section 4 is devoted to the local
spectrum sensing problem, briefly describing the process of detecting idle OFDMA subchannels
under the approach that is discussed at length in [25]. Section 5 is dedicated to the transmission
of the local decisions to the fusion center, describing the report channel and the forward error
correction (FEC) models proposed for assessing the performance of the centralized, decision-fusion
cooperative spectrum sensing when subjected to errors in the report transmissions. Numerical results
and interpretations are given in Section 6. Section 7 concludes the article and suggests some directions
for future related research.

2. Spectrum Sensing Framework

Figure 1 provides an illustrative representation of the spectrum sensing topology considered in
this article. The PU transmitter is part of the primary network, whereas the SUs and the FC belong to
the secondary cognitive network. This figure is the reference for the rest of this section.
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Figure 1. Centralized decision fusion CSS of OFDMA subchannels.
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The OFDMA PU signal is transmitted over slow frequency-selective multipath Rayleigh fading
sensing channels. When the PU transmitter is active, each SU receives a corrupted version of the
OFDMA signal affected by the sensing channel fading and the additive white Gaussian noise (AWGN).

The PU signal is detected in each SU by means of the maximum eigenvalue detection (MED) test
statistic [26], which is formed from the eigenvalues of the received signal sample covariance matrix.
In each SU, the MED test statistic is compared with a local predefined decision threshold, yielding a
local decision about the occupation state of each sensed OFDMA subchannel. The decision threshold
is typically set according to a target constant false alarm rate (CFAR) of the local decisions.

Coded or uncoded SU decisions are sent to the FC through orthogonal report channels using
binary phase-shift keying (BPSK) modulation. Perfect time and frequency synchronization are assumed.
The FC makes coherent detection of the received signals and, for coded transmissions, it performs
decoding of the Repetition or the Bose-Chaudhuri-Hochquenghem (BCH) encoded data. From the
decoded data, the FC applies one of the three binary logic rules (AND, OR, or MAJ) to arrive at the
final decision about the occupation states of the sensed OFDMA subchannels.

The whole process is depicted in Figure 2, where the spectrum sensing and report is illustrated
for a single SU. The same process applies to the other SUs in cooperation.
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Figure 2. Didactic representation of the coded decision fusion process. The spectrum sensing and
report is illustrated for a single SU.

The adoption of the spectrum sensing scenario described herein is justified in the remaining
paragraphs of this section.

Frequency selectivity in the sensing channels is assumed due to the fact that an OFDM signal
has a wide bandwidth, typically larger than the coherence bandwidth of the channel [27] (p. 221).
Assuming that the spectrum sensing interval is smaller than the coherence time of the channel [27]
(p. 222), the slow fading model is justified for the sensing and the report channels. The adoption of the
Rayleigh distribution for the fading magnitude, which yields uniformly distributed phase variations,
is justified by the fact that this type of fading represents a severe condition with no line-of-sight (LOS)
between the PU transmitter and the SUs receivers [27] (p. 212).

It is considered that there is no shadowing affecting the sensing channels. The suppression of the
shadowing from the sensing channel model is due to the following two reasons: (i) for simplicity, the
main focus of this work is on the fusion of the spectrum sensing information; (ii) the influence of the
spatially correlated shadowing on the performance of the local spectrum sensing is well explored in
the literature; see, for instance, [28] and references therein.

The distance from the PU transmitter to the SUs is assumed to be much larger than the distances
among the SUs, so that the distance-dependent propagation path losses from the PU transmitter to the
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SUs receivers can be considered approximately the same, yielding the same average signal-to-noise
ratio (SNR) at the input of each SU receiver.

The report channels, which are the main focus of the present work, are represented by a realistic
channel model grounded on the shadowed fading approach proposed in [14]. This model, which
is based on spatial grid points, capitalizes the well-known two-dimensional (2D) model discussed
in [29], combining a three-dimensional spatially correlated shadowing with a slow flat Rayleigh fading.
The report channel fading is considered flat because such control channels are typically low-rate and
narrowband. This contrasts with the channels between the PU and the SUs, which convey the primary
network wideband OFDMA signals.

The transmissions of the adjacent report bits sent from the SUs to the FC are affected by
independent and identically distributed (i.i.d.) Rayleigh fading samples, since it is assumed that
the report data are subjected to a sufficiently long time-interleaving. This interleaving is feasible since
the report frame structure has many more bits than the report data itself [30,31]. The interleaving
breaks the burst errors caused by the fading channel memory effect, which in turn allows for the
effective operation of the FEC codes; recall that FEC codes reduce their error correction capability if
bit errors are grouped in bursts, which may exceed the maximum number of correctable errors in a
codeword or block [27] (Section 8.2).

Binary BCH and Repetition codes are used to protect the SU decisions. The Repetition code is
a trivial code [32], i.e., it produces no coding gain over a pure AWGN channel, but it is very simple
and does produce diversity gain over fading channels [33,34]. Both codes have been investigated to
allow for a broader analysis concerning the role of the diversity gain and the coding gain in the global
spectrum sensing performance. Moreover, the BCH encoding and decoding process is a matured
technology that is being used for decades in real communication systems [35]. In fact, the pursuit of
efficient decoding algorithms for BCH codes is still and active research topic [36].

Instead of using BCH codes, one could argue why modern error-correcting codes, such as
Turbo [37], low density parity check (LDPC) [38], and Polar codes [39], were not considered in the
present context. These are powerful codes usually referred to as capacity-achieving codes, which can
allow the system operation very close to the Shannon limit. However, this outstanding performance
is achieved at the cost of using very long codewords, typically having tens of thousands bits. The
cooperative spectrum sensing application prevents the use of such long codes for three main reasons:
(i) the sensing interval must be as short as possible in order to maximize the secondary network
throughput and to confer agility to the spectrum sensing task (but not too short to yield poor spectrum
sensing performance); (ii) the short sensing interval is divided into the sensing phase itself and in
the report phase, which in turn is even shorter; (iii) the transmission rate over a report channel is
typically low. The combination of these reasons leads to the conclusion that the number of bits that
can be accommodated within the report interval is small. Hence, the spectrum sensing application
demands the use of short codes. A BCH code with short codewords is a proper candidate, since it can
outperform Turbo, LDPC, Polar, and other powerful codes with similar short lengths [40].

According to [8], when binary local decisions are reported to the FC, applying a linear decision
fusion rule to obtain the global decision is convenient. The Chair—Varshney rule is considered the
optimal one [41], but it demands the knowledge of prior probabilities associated to the primary
transmitter activity. The AND, the OR, and the majority-voting (MA]) suboptimal decision fusion
rules are adopted in the present work, since they are the most common and the most simple ones,
yet do not demand the knowledge of the PU transmitter activity. These rules are special cases of the
general N-out-of-M rule, in which the FC decides in favor of the presence of the PU signal in the
sensed band if, among the M SUs, N or more decides in favor of an active PU transmitter. For N = M,
the N-out-of-M rule becomes the AND rule, for N = 1 it becomes the OR rule, and for N = | M/2+1]
it becomes the MAJ rule, | x| being the largest integer smaller than or equal to x.

After the global decision upon the state of each OFDMA subchannel is reached, the SUs are
informed back by the FC about this state. Subsequently, an appropriate access mechanism is carried
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out by the secondary network if a given subchannel is declared vacant. The channel access and other
posterior tasks are not considered in this article; the analysis is restricted to the overall spectrum
sensing process alone.

3. Related Work and Contributions

Only a few references can be found in the literature when dealing with the design or the
application of FEC schemes to protect the transmissions from the SUs to the FC. For instance, in [42], a
joint channel decoding and decision fusion strategy is applied to the report channel transmissions,
combining a Neyman-Pearson-based test statistic with an extended Hamming code. Similarly to [42],
the joint channel decoding and decision fusion strategy is also applied in [43], but using LDPC codes
instead of extended Hamming codes. The results of these references show that the spectrum sensing
performance can be improved when compared with the case in which channel decoding and decision
fusion are separately made.

A larger number of references can be found in other contexts, for example in sensor network
applications. To mention a few of them, the BCH code is used in [44] to protect video signal
transmissions from the sensor nodes to a central node. In [45], correlated quantities gathered by
the sensor nodes are transmitted to a common destination via AWGN multiple access channels using a
concatenation of a BCH with a low density generator matrix (LDGM) code, with the BCH acting to
reduce the error floor produced by the LDGM.

In [34,46], a memoryless binary symmetric channel (BSC) has been adopted to simulate report
channel errors in a centralized CSS scheme designed to detect OFDMA signals. The eigenvalue fusion
proposed in [25] is confronted with decision fusion schemes under such errors. The eigenvalues
are digitized before transmission to the FC, while the SU decisions are Repetition-coded for error
protection and then sent to the FC. A trade-off analysis on the report channel data traffic and the
spectrum sensing performance is then established, showing that SU decisions are more sensitive
to the report channel errors, but the amount of redundancy added by the channel coding process
does not always lead to a larger report channel data traffic in comparison with the eigenvalue fusion.
Thus, a case-by-case analysis is needed to decide upon which of these two fusion schemes should
be adopted.

A comparative analysis between the performances of hard decision and soft decision approaches
for CSS in the presence of report channel errors is given in [47]. The optimal fusion rule for
the soft decision is derived, and the distribution of the corresponding test statistic is established.
As a complement of [47], the article [48] gives a detailed analysis of the bit error probability walls for
the logic decision fusion rules under the assumption of i.i.d. report channel errors.

It is worth emphasizing that [34,46-52] implicitly or explicitly adopt a simple discrete-time
memoryless BSC model for assessing the influence of report channel errors in the global spectrum
sensing performance. However, the error statistics in real report channels may depart significantly
from those produced by a memoryless BSC model. The main causes of discrepancy are the channel
memory effect and the signal fluctuations caused by the combination of multipath fading and spatially
correlated shadowing. As a consequence, errors may occur in bursts in deep fading circumstances,
and with high probabilities when deep shadowing occurs, impacting the global decisions at the
FC. Moreover, it is well-known that the performance of FEC codes are deeply affected by the error
distribution [53]. Hence, to analyze the influence of report channel errors and to develop proper
countermeasures, it is of major importance to adopt a model capable of closely representing a real
channel. One out of three main approaches can be used in this representation: (i) a discrete-time binary
symmetric channel model with memory, (ii) a continuous-time waveform channel model, or (iii) a
continuous-time-based vector channel model. The accuracy of the first approach depends on how
close the model represents the overall influence of multipath fading and correlated shadowing, which
can lead to a very intricate modeling process. The second approach is simpler, but it is normally more
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demanding in terms of computational burden in simulations. The third is intermediate in terms of

both computational burden and complexity, and for this reason it is adopted in the present work.
This article addresses the performance of a centralized decision fusion CSS scheme designed for

detecting idle OFDMA subchannels in SU networks. The main contributions are as follows:

1. The performance analysis is carried out considering a realistic model to simulate the report
channel behavior. None of the previously described works have adopted such a model;
the prevalent choice was to consider a memoryless binary symmetric channel.

2. Since the report channel impairments affect the global decision made at the FC due to errors
produced in the decisions that are transmitted from the SUs to the FC, FEC codes are applied as an
attempt to protect the SU decisions. The short codes selected reflect the time-limited nature of the
report events. Only a few references have addressed, so far, the problem of protecting the report
channel transmissions under the combined effect of fading and spatially correlated shadowing.

3. From the analyses and results presented in the article, important conclusions are drawn regarding
the overall spectrum sensing performance and the use of FEC codes in the report transmissions,
highlighting the main differences between these transmissions and those made in conventional
digital communication systems. To the best of the authors knowledge, no such analyses have
been made so far.

4. Detection of Idle OFDMA Subchannels

The OFDMA is a multiple access technique that allocates a set or multiple sets of subcarriers to a
given user, allowing for the simultaneous access by several users to the allocated service band. One set
of frequencies is referred to as one subchannel. Basically, a subchannel can be formed according to
two methods: the adjacent subcarrier method (ASM), which groups contiguous subcarriers to form
a subchannel, and the diversity subcarrier method (DSM), in which non-contiguous subcarriers are
grouped to form a subchannel.

When any spectrum sensing scheme is applied to the detection of a primary OFDMA signal,
it typically aims at detecting the signal at the subchannel level, i.e., it aims at detecting if a given
subchannel is vacant or not.

Let an OFDMA signal formed by K’ subcarriers and S subchannels. A number K = K'/S
subcarriers will form a subchannel indexed by s, s = 1,2, ...,S. The spectrum sensing of an OFDMA
time-domain signal performed in each SU at the s-th subchannel level can be formulated as a binary
hypothesis test represented by

_ Jwn(t)  Hos
yn(t) = {hm(t)*X(t)HUm(f) ‘H(l)rs ’ v

where y,, (t) is the continuous-time received signal at the m-th SU, hy,(t) is the impulse response of the
channel between the primary transmitter and the m-th SU, the symbol “*” represents the convolution
operation, x(t) is the continuous-time primary transmitted signal, and w,(t) is the continuous-time
zero-mean AWGN at the m-th SU receiver input. The hypotheses H; and #; ; denote the absence
and the presence of the PU signal in the s-th subchannel, respectively.

The global probability of detection and the global probability of false alarm at the FC,
associated to the s-th OFDMA subchannel, are respectively Pypc s = Pr{decision = H;¢|H1s} and
Prapcs = Pr{decision = H; s|Hos}. The former is the probability that the s-th subchannel is declared
occupied when, indeed, the primary transmitter is active in that subchannel. The latter is the probability
that the s-th subchannel is declared occupied when, actually, it is vacant.

It is assumed that each of the M SUs in cooperation knows the subcarrier allocation map for each
subchannel, an information that can be obtained from the primary network standard specifications.
Thus, all SUs know which portions of the spectrum must be sensed.
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A matrix of order K x | with frequency-domain samples from the s-th subchannel is formed at
the m-th SU according to

s o v
A= ], @)
YEs) - Y (s)

where | is the number of samples collected by each SU in each subcarrier, Yk(T) (s) denotes the j-th

sample collected by the m-th SU in the k-th subcarrier of the s-th subchannel, for j = 1,2,...,],

m=1,2,...,M,and k =1,2,...,K. The next step is to compute S sample covariance matrices of order
K x K, according to

+

R = JAlMAl,

where 1 denotes complex conjugate and transpose.

From the s-th covariance matrix, K eigenvalues are estimated by the m-th SU and ordered as
{AMms > Aoams > -+ > Agms}- The occupation of each subchannel is determined in each SU by
comparing the predefined decision threshold y with the MED test statistic, which is [25]

®)

m) _ Mm,
Rihs = 52 @)

0? being the additive white Gaussian noise variance. If TIS/I"QD s > 7, the s-th subchannel is declared

occupied by the m-th SU; if TIE,I”E)D’S < 7, the m-th SU declares the s-th subchannel vacant.

The S subchannels can be sensed by each SU in a single sensing interval as long as the whole
OFDMA signal is sampled in the frequency domain, and each sample covariance matrix defined in
Equation (3) is formed in parallel to the other ones, by simply selecting the appropriate frequency bins
associated to the corresponding subchannel.

The resulting MS local decisions are sent to the FC, where each group of M decisions are logically
combined by means of the rules AND, OR, or MA]J, yielding the global decision upon the occupancy
of each of the S subchannels.

5. Coded Report Channel Transmissions

This section deals with the transmission of the local SU decisions to the FC, describing the
channel and the FEC models proposed for assessing the performance of the spectrum sensing under
transmission errors.

5.1. The Role of the Error Control on the Global Spectrum Sensing Performance

For any FEC scheme, the relation between the average SNR per coded bit and the average SNR
per uncoded bit is E./ Ny = rEy, /Ny, where r is the code rate, which is the ratio between the message
block length at the input of the encoder and the codeword length at its output, E. is the average energy
per coded bit, in joules, E}, is the average energy per input message bit, in joules, and Ny = 202 is the
AWGN power spectral density, in Watts per hertz. In decibels, E./ Ny = 101log;,(r) + 101log;,(Ey/No)
dB. Thus, channel coding reduces the bit energy from the encoder input to the encoder output,
increasing the probability of a coded bit error. However, the error correction capability of nontrivial
codes can produce a net reduction in the message bit error probability after decoding (hereafter denoted
as the decoded bit error probability), compensating for the increase of the coded bit error probability.
In the case of trivial codes, this compensation does not exist, meaning that there is no coding gain.

Typically, an error-correcting code exhibits a crossing point in the decoded bit error probability
at a given average SNR per bit: below this SNR, the coded error probability is not compensated for
by the error correction capability of the code, and the decoded bit error probability becomes larger
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than the one without channel coding; above this SNR, the coding gain starts to show up, yielding a
decoded bit error probability smaller than the one without channel coding. The value of the SNR in
which this crossing point occurs varies according to the type of code and to its decoding algorithm,
as will be exemplified later on in this paper.

Hereafter assuming that the local spectrum sensing performances achieved by the SUs are the
same and are equal for all OFDMA subchannels, the subscript s can be dropped from the notation.
Thus, let Pygy and Pg,gyy respectively denote the probability of detection and the probability of false
alarm achieved by each SU for any sensed OFDMA subchannel. These probabilities are governed by the
test statistic adopted in each SU, which in this article is the MED defined in Equation (4). When report
channel errors occur, some SU decisions received at the FC are modified, as if the probabilities Pygyy
and Py,gy were different. Denote the corresponding equivalent probabilities seen by the FC, taking
into account the report channel errors, as Pg; and P{,q;. The equivalent and the actual probabilities
of detection and false alarm are related through [5]

Py = Pasu(1 — By) + Py (1 — Pysy), ()
Pgy = Pasu(1 — Py) + Py (1 — Prasu), (6)

where P, is the bit error probability after decoding at the FC, which depends on the report channel
characteristics, on the performance of the adopted error correcting code, and on the modulation.
For instance, if an uncoded transmission with BPSK modulation is made over a slow (i.e., approximately
constant during the modulation symbol) and flat (i.e., no frequency selective) Rayleigh fading channel,
B, is given by [27] (Equation (6.200)), which is

1 r
Pb_2<1_\/1+r>’ 7

where I' = E [#?] E,/ Ny is the average SNR per bit, with E[«?] being the second moment (average
channel power gain) of the Rayleigh fading envelope «.

If the local decisions about the occupation state of each OFDMA subchannel are i.i.d., the global
probabilities of detection and false alarm at the FC under the N-out-of-M rule with hard decisions are,
respectively [5],

M / / -
Parc = ), (g ) (Phsu)' (1 = Phep)™ Y, 8)
(=N
MM\, ;o NM—t
Parc = Y (E > (Pasu) (1 = Pagy)™ )
(=N

The role of the error control coding applied to the report channel transmissions is to reduce
B, in Equations (5) and (6), improving the global spectrum sensing performance metrics given in
Equations (8) and (9).

Sometimes it is more convenient to assess the effect of some system parameter variation on
the joint variation of the probabilities of detection and false alarm, which is captured by the global
probability of decision error, given by

Perror = PfaFCP’Ho + (1 - PdFC) PH1/ (10)

where Py, and Py, are the probabilities associated with the inactivity and activity states of the primary
transmitter, respectively.
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5.2. Block-Coded Report Transmissions

Let np and nR be the codeword lengths of the BCH and the Repetition code, respectively, and let
xp and xR be the lengths of the input message block carrying the SU decisions applied to the BCH
and the Repetition encoders, respectively. The bits that represent the set of decisions made by each
SU on the occupation state of the S OFDMA subchannels are encoded by means of (ng, xr) = (1g, 1)
Repetition codes with configurable coding rate rg = 1/ng, odd ng, or by (g, xg) binary BCH codes
with xg = S.

The coded decisions are mapped into baseband BPSK symbols according to the rule: bit 1 =
++vEc = +/7Ep, bit 0 = —\/E. = —/rE},, where E}, and E. are the average energies per uncoded and
coded bit, respectively, and r = rp or r = rg, depending on the block code used.

5.3. Spatially Correlated Shadowing Model

The 3D spatially correlated shadowed channel model originally proposed in [14] is briefly
explained in this subsection. In order to analyze the influence of the report channel errors on the
performance of the spectrum sensing, here this model replaces the simple binary memoryless report
channel model adopted in the related works described in Section 3, which are [34,46-52].

The correlated shadowing model is depicted in Figure 3. It is based on grid points that form a 3D
space having L x L x L cubic meters. These grid points are references that establish locations with
null pairwise spatial correlation. In other words, if two SUs are located at two grid points, they will be
subjected to totally uncorrelated shadowing. For this reason, the distance between adjacent grid points
is referred to as the decorrelation distance [29], denoted by Dgec. In practice, Dge. is on the order of
tens of meters [54]. When Dy, is increased, any pair of SUs separated by a given distance greater than
zero becomes subjected to more correlated shadowing. The opposite occurs when Dy, is decreased.

L

ID dec 2
‘ SO[J 2 Dec
H G
Z SU]
A/, o I IE_; z
W

Grid points

C
Figure 3. Pictorial representation of the three-dimensional correlated shadowing model: 3D space with

L x L x L m3 (left); zoomed single cube with Dgec X Dgec X Dgec m>, with arbitrarily placed SU; and
SU; (right).

One of the cubes that form the entire space on the left in Figure 3 is depicted on the right.
The position of the m-th SU is established by means of the coordinates x,;, y,;, and z;,, measured with
respect to a reference grid point of each cube, which is the one marked with A in the single cube.
If z,, = 0, this 3D model specializes to the traditional 2D one considered in [29]. The positions of SU;
and SU; are shown as an example. In this example, the spatial correlation between the fading processes
affecting SU; and SU, will be nonzero, since they are influenced by the same set of grid points.

A zero-mean Gaussian random variable is associated to each grid point, forming a set of
(L/Dgec + 1)3 iid. variables. For example, the random variables A, B, C, D, E, F, G, and H are
associated to the grid points located on the vertexes of the single cube on the right in Figure 3, which
is a zoomed version of one of the cubes on the left. The standard deviations of the (L/Dgec + 1)3
Gaussian random variables are o4p, which is the standard deviation of the lognormal shadowing.
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The spatial correlation of the shadowing process that affects the m-th SU is produced by a linear
combination of the eight Gaussian random variables associated to the grid points that surrounds this
SU. For instance, if A to H are such random variables, a shadowing sample is generated as

S = [(AZy,+Bxu) T+ (CXpy+ D% ) Jin) 23y + [(EXy+FXm) T+ (G +HE ) Jin) 2, (11)

where %, = X/ Ddecs Tm = Ym/ Ddec, and Zy, = zp/ Dgec are normalized distances to the reference
grid point, and %), =1 — %, ), =1 — Jm, and 2, = 1 — Z,,.

It can be noticed that the weights in the linear combination given by Equation (11) are
distance-dependent and normalized, i.e., 0 < %, J, Zm < 1. It means that if two SUs are close to each
other, even if they are located in different neighboring cubes, their shadowing will be composed by a
combination of some common Gaussian random variables (due to common grid points), generating
statistical correlation. For instance, this closeness reproduces the situation in which two SUs are behind
the same obstacle that blocks their signals to the FC.

In order to guarantee that the standard deviation of S, is equal to the desired value of shadowing
standard deviation ogs, it is necessary to make the correction [55]

Shy = on : (12)
V (1=28,+252,) (1—20m +272,) (1—22,,+222))
which finally produces the Gaussian random variable that represents the shadowing channel between
the FC and the m-th SU.

In summary, the model just described is capable of generating correlated Gaussian samples whose

correlation depends on the three-dimensional SUs coordinates and on the value of Dge..

5.4. Shadowed Fading Report Channel Model

The report channels considered in this article applies the shadowed fading model of [56],
combining the spatially correlated lognormal shadowing described in the previous subsection with
a small-scale multipath Rayleigh fading. In discrete-time representation, the report channel gain
matrix [15,56] is defined by
abs (H! + H®)

ZUSB
\/Zbo + exp {(20 g 6)2}

where the operator abs(-) denotes the absolute value of the elements in the underlying matrix,
Hf € CM*" and H® = h*1T € CM*", in which 1 is the n x 1 vector of ones, and the superscript
T denotes transposition, with #n being the transmitted block size. This block size is n = S if no
channel coding is employed; if the BCH code is adopted, n = np; when the Repetition code is used,
n = ngS. The matrices Hf and H® represent the multipath fading and the shadowing, respectively.
The elements of Hf are i.i.d. complex Gaussian random variables, i.e., the fading magnitude obeys
a Rayleigh distribution. The second moment of the fading magnitude is 2by. The vector h® that
defines H® is formed by the report channel shadowing samples #3,, in which arg{h;,} ~ U(0,27],
and |1S,| = 105%/20, with S/, being the shadowing random variables with standard deviation oqp
obtained from Equation (12). In this equation, the normalized coordinates X, §,;, and Z;, of the
m-th SU are determined according to the spatial distribution of the SUs in the 3D space illustrated
in Figure 3.

The samples in H® affect all bits transmitted from each SU to the FC during a report round,
i.e., the shadowing process is slow enough to be considered constant during the report interval.
Contrasting with this matrix, the fading matrix H' is formed by i.i.d. components, i.e., each reported
bit, coded or not, is subjected to i.i.d. multipath fading. This is owed to the assumption of perfectly
time-interleaved decision bits to prevent burst errors, allowing for the proper effectiveness of the FEC
codes. Without FEC, this time-interleaving approach does not produce any effect on the average bit

H=

, (13)
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error probability. Hence, the Rayleigh fading is said to be slow and flat with respect to each reported
bit, coded or not.

Finally, it is worth highlighting that, in the formation of the report channel matrix H according to
Equation (13), the absolute value operation in the numerator is applied to model a coherent detection
of the received BPSK symbols at the FC, i.e., the phase rotation that would be produced by the channel
is removed. The argument of the square root in the denominator of Equation (13) is the second
moment of the combined channel fading and shadowing, meaning that the role of this denominator
is to guarantee unitary average channel power gain, averaged over the fading and the shadowing
variations. This normalization allows for an easy configuration of the average SNR per decoded bit at
the FC, denoted by E;,/ Ny, simply setting the noise power accordingly.

5.5. Received Signal Model and Decoding

Assume that the S decisions upon to the occupation state of the OFDMA subchannels,
as determined by each of the M SUs, are arranged in a matrix of order M x S. The S decisions
from each SU, when encoded by the BCH code with rate rg = S/np, yield the matrix C € RMx1B of
coded SU decisions, whose elements are ++/rgEp,. When the Repetition code with rate rg = 1/np is
used, each SU decision is encoded into ny bits, resulting in a total of ngrS coded bits, thus yielding a
matrix C € RM*"®S of coded SU decisions, whose elements are ++/7gEp,.

The corrupted coded symbols received at the FC are represented by the matrix B, whose order is
the same of C, computed according to

B=HoC+V, (14)

where H is the channel matrix defined in Equation (13), V is the matrix of additive Gaussian noise
samples whose order is the same of B and C, and the symbol o denotes the Hadamard product
(element-wise multiplication).

The BPSK detector at the FC outputs real-valued samples (soft information) associated to the
received coded symbols. Each codeword-size block containing these samples is then applied to
the BCH or the Repetition decoder, which implements brute force (exhaustive search) maximum
likelihood (ML) soft-decision decoding, without channel state information. It can be shown that,
in the case of the Repetition code, this ML decoding is equivalent to the equal gain combining
(EGC) of the soft information associated to the received codeword symbols. In the case of the
BCH, the ML decoding is chosen because its performance can be closely approximated in practice
by well-known and well-established algorithms, such as ordered statistics decoding (OSD) [35,57].
Other recent soft-decision decoding algorithms of BCH codes also closely approximate the ML
decoding performance, as the one considered in [36].

The decoded bits, or the uncoded and corrupted SUs decisions in the case of no channel coding,
are subsequently combined according to the desired decision fusion rule (AND, OR, or MA] voting) to
yield the global decision about the occupation of each OFDMA subchannel.

6. Numerical Results and Discussion

The spectrum sensing scenario considered in this section is composed of a primary network
with S = 5,6, and 7 OFDMA subchannels, and K’ = 25,30, and 35 subcarriers, respectively. Thus,
the number of subcarriers per subchannel is constant and given by K = K’/S = 5. The subcarriers per
subchannel are randomly selected, meaning that the DSM allocation mode is adopted. The number of
SUs in cooperation is M = 6. The PU signal power is considered unitary, and the SNRs of the received
PU signal at the SUs are set to —10 dB. This small SNR regime is chosen to represent a more degrading
but yet realistic situation from the perspective of the spectrum sensing performance [30].

The sensing channel between the PU transmitter and each SU receiver is modeled as a 25, 30, or
35-path slow frequency-selective Rayleigh fading channel whose frequency response is kept constant
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during a sensing interval, being varied independently from one sensing round to the next. The second
moment of the sensing channel gains is normalized to 1 to keep the average received signal power
equal to the average transmitted signal power. The number of samples collected by each SU in each
subcarrier frequency is | = 120.

A spectrum sensing performance result is usually displayed by means of a receiver operating
characteristic (ROC) curve, which trades the probability of false alarm and the probability of detection,
and sometimes by means of the area under curve (AUC), which gives the area under a ROC curve,
or yet by means of the decision error probability defined in Equation (10). Here, each value on a
ROC curve was obtained from 50,000 Monte Carlo simulation events carried out using the MATLAB®
software (version R2018a). Each event corresponds to the following steps:

1.  send an OFDM PU signal through M independent fading channels to the SUs, under a PU
transmitter activity of 50% (Py,, = Py, = 0.5);

2. perform, in each SU, the local spectrum sensing over all OFDMA subchannels by means of the
MED test statistic computed from | = 120 received samples collected in each subcarrier, and for a
predefined local decision threshold «;

3. report the coded or uncoded SUs decisions to the FC via orthogonal spatially correlated shadowed
fading channels;

4.  perform channel decoding and make the global decision on a single OFDMA subchannel;

5. compute false alarm and detection rates, which are the estimates of the associated probabilities.

The above steps were repeated by varying 1, so that the ROC curves were traced out. In the
fourth step, the occupancy of a single OFDMA subchannel has been monitored, since it suffices to
compute the false alarm and detection rates. This can be done owing to the ii.d. channel effects across
the subchannels, to the i.i.d. test statistics on the subchannels, and, hence, to the independence and
equal distributions of the corresponding decisions.

Aiming at investigating the correlated shadowed fading effect over the report channel
transmissions, two scenarios for system simulation were explored: the first one assumes no channel
coding; the second considers the use of the BCH or the Repetition code. In both scenarios, the standard
deviation of the shadowing, o4p, is 6.14, 8.68, or 12.28 dB, which can be translated into weak,
weak-to-moderate, and severe shadowing, respectively. These standard deviations are in the range
of outdoor [58] and indoor [59] measurements. The parameter by in Equation (13) is set to 0.21.
These values were chosen following [60]. The length L of the sides of the 3D space depicted in
Figure 3 is equal to 50 m. The M SUs in cooperation are uniformly distributed within this space.
The decorrelation distance Dy, is 10, 50, and 90 m to simulate small, medium, or high shadowing
correlation; the scenario of totally uncorrelated shadowing is included in the present analysis as well.

6.1. Results without Channel Coding

Figure 4 shows global spectrum sensing performances without applying channel coding to
the report channel transmissions, under severe shadowing. The influence of the spatially correlated
shadowing is also analyzed by varying the decorrelation distance. The error-free and the pure-Rayleigh
ROC curves are also given to allow for a clear perception of performance degradations caused by the
small-scale fading alone and by the large-scale shadowing combined with the small-scale fading.

For the MA]J, OR, and AND rules, the average SNR per decoded bit is E,/Ny = 6 dB,
which corresponds to an uncoded bit error probability B, ~ 0.053 in a pure-Rayleigh channel,
as computed by Equation (7) with E[a?] = 1, i.e., T = E,/Np.

As a first observation regarding Figure 4, it can be seen that P,pc and Pypc are lower or upper
bounded in some situations, which is in agreement with the theoretical results in [9,51]. For instance,
taking into account the OR rule, Pi,pc > 1 — (1 — P,)™ and this bound does not depend on the SNR [9].
A careful observation of Figure 4b confirms that P pc is around 0.2787 if the OR rule is considered
over the pure-Rayleigh channel with P, ~ 0.053, which is consistent with [9].
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Figure 4. ROCs considering no channel coding applied to the report channel transmissions,
for E,/Ng = 6 dB, ogg = 12.28 dB and L = 50 m: MA] rule (a), OR rule (b), and AND rule (c).

This figure is better viewed in color.

As far as the decorrelation distance D is concerned, it can be noticed in Figure 4a that the global
spectrum sensing performances under the MA] rule are close to each other for Dge. = 10, 50, and
90 m, but a larger Dge. (larger spatial correlation) produces a greater performance penalty, as expected.
However, the opposite behavior occurs when the OR or the AND rules are applied, as depicted in
Figure 4b,c, respectively. Interestingly enough, the increase in the shadowing spatial correlation
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actually improves the spectrum sensing performance, although the net performance degradation due
to shadowing is by far more severe than in the case of the MAJ rule.

The phenomenon of performance improvement with increased shadowing spatial correlation can
be justified in light of [61], where the N-out-of-M rule is addressed in the context of systems reliability.
As stated in this reference, the effect of correlation on reliability can be beneficial as well as detrimental.
The model for the global spectrum sensing decision based on the N-out-of-M rule is analogous to
the model for reliability analysis under this rule, which means that the same concept applies, i.e., the
effect of the shadowing correlation on the global decision can be beneficial as well as detrimental.
A correlation-robust rule is also devised in [61]. It states that, if N is chosen as the integer closest to
p(M — 1) + 1, the N-out-of-M rule becomes almost immune to correlation, where p is the probability
of a decision in favor of H1, that is p = Pgrc Py, + Parc Py, - For instance, since here were adopted
Py, = Py, =05and M = 6, if Ppc = 0.1 and Pypc = 0.9, it follows that N = 3 or N = 4 will make
the decisions almost insensitive to correlation. Notice that N = 4 is the one adopted here to configure
the MA] rule. In this case, Figure 4a verifies the robustness of the MA] rule to the variation of Dge.,
and its superior performance when compared to the OR and AND rules is shown in Figures 4b,c.

The derivation of the probability distribution of the number of successes in the sequence of
correlated binary trials that represent the SU decisions as seen by the FC remains an open problem.
This is a formidable challenge, not only from the perspective of the generalization of the binomial
distribution to correlated binary trials, as discussed in [61], but also from the difficulty in mapping the
correlation coefficient onto the shadowed fading report channel characteristics. As a complement to
this challenge, the derivation of the error probability of the N-out-of-M rule in this scenario is also of
major importance; a related analysis is presented in [47].

Table 1 shows the AUCs related to Figure 4 and to other simulation results not depicted in Figure 4,
considering weak, weak-to-moderate, and severe correlated shadowing with Dge. = 10, 50, and 90 m
(Table Parts L, II, and III, respectively). The AUC is adopted as the performance metric to make the
presentation more concise, since analyses via ROC curves would be considerably difficult due to the
large amount of graphs. An AUC = 1 is related to a perfect system performance, for which the ROC
knee is located at Pgpc = 1 and Pgpc = 0. For Pypc = Prape, the ROC is a diagonal line between the
points (0,0) and (1, 1), called the line of no discrimination or random guess line. The corresponding
AUC s 0.5.

Table 1. AUCs for the uncoded MAJ, OR, and AND decision fusion rules, for 45 = 6.14, 8.68, and
12.28 dB, L = 50 m, and Dy = 10, 50, and 90 m.

I Ddec =10m
048 MA] OR AND

6.14 0.883682 0.578683 0.340961
8.68 0.772699 0.371024 0.146844
12.28 0.456074 0.127475 0.018959

I Dgec = 50 m

0aB MA]J OR AND

6.14 0.873795 0.593581 0.364219
8.68 0.748177 0.409234 0.176610
12.28 0.420448 0.171063 0.032338

IIL Dgec = 90 m

cag MAJ OR AND

6.14 0.867578 0.607996 0.379690
8.68 0.728518 0.439383 0.201059
12.28 0.402746 0.206694  0.047992
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For spectrum sensing, it is known that a ROC curve lying on the random guess line means that
the system is useless. Although an AUC = 0.5 may suggest a performance on the random guess
line, one can observe that some AUC values in Table 1 are below 0.5, which could be erroneously
translated in an unacceptable system performance. However, in all occurrences of an AUC below 0.5,
the associated ROC curve laid above the random guess line. For example, even for the worst case
depicted in Figure 4c for Dge. = 10, which refers to an AUC = 0.018959 in Table 1, the ROC curve
lies above the random guess line, indicating that some operating point on this ROC is usable, i.e., it is
better than a random guess.

In order to emphasize the performance degradation caused by the shadowing, let us have a look
at the AUCs associated to Figure 4a—c, which are {0.918633, 0.681236, 0.472566} for the pure-Rayleigh
curves and {0.402746,0.127475,0.018959} for the worst case of the respective fusion rules. It can be
noticed that, due to the shadowing, the AUCs were reduced in 56.16%, 81.29%, and 95.99%, respectively.
During deep shadowing, the received Ej, / Ny is lowered, increasing the local mean bit error probability,
thus causing a performance penalty to the global spectrum sensing performance.

Similar comparisons can be easily made in light of Table 1, considering other situations in terms
of the shadowing standard deviation and the decorrelation distance. The corresponding comments
were omitted here, for the sake of conciseness.

6.2. Results with Channel Coding

Figure 5 shows ROC curves for coded report transmissions under severe correlated shadowing,
ie., ogp = 12.28, as well as under the pure-Rayleigh channel, for the three decision fusion rules in
analysis with Ey, / Ng = 6 dB. In order to allow for a fair comparative analysis, the average redundancy
per message bit, 11/x, was chosen to be as close as possible for both codes in each rule. Specifically,
for the MA]J rule in Figure 5a, ng/xg = nr/xr = 3; for the AND rule in Figure 5c, ng/xp = nr/xr = 9;
and for the OR rule in Figure 5b, ng/xg ~ 5.17 and ng/xg = 5. The adopted BCH codes that
can achieve the above redundancies per message bit are (15, 5), (31, 6), and (63, 7), respectively.
The Repetition codes are respectively (3, 1), (5, 1), (9, 1). The codes (15, 5) and (3, 1) are less powerful
and have been used with the MAJ rule because this is the best rule among the three under analysis.
The performance of the OR rule typically lies between the performances of the MAJ and the AND
rule, and this is the reason for using the intermediate pair of codes (31, 6) and (5, 1). The codes (63, 7)
and (9, 1) are the most powerful and have been applied to the AND rule. Figure 6 illustrates the
performances of the above-mentioned codes over the full-interleaved flat Rayleigh fading channel,
with maximum-likelihood soft-decision detection, without channel state information. This figure
unveils the expected superior performance of the BCH over the Repetition code, as well as exemplifies
the crossing point beyond which the error correction starts to be effective: it occurs around 0 dB for the
BCH codes and far below —5 dB (hence not shown) for the Repetition codes.

Comparing the curves in Figure 5 for the pure-Rayleigh report channel in Figures 4 and 5, it can
be seen that the BCH code was able to correct all bit errors introduced by the channel. In this case,
the BCH outperformed the Repetition code, which can be credited to a dominance of the coding gain
of the BCH over the diversity gain of the Repetition code when the report channel is free of shadowing.
From the curves associated to the presence of shadowing, one can infer that the use of FEC codes to
protect the SU decisions seems to be useless for a report channel under this impairment. In fact, lower
performance levels with respect to the uncoded transmission results shown in Figure 4 are observed.
Nonetheless, even in this unfavorable situation, the superiority of the Repetition code over the BCH
is evident.

Similarly to what has been done in Table 1 concerning the uncoded transmissions, Table 2 presents
results in terms of AUCs considering coded transmissions with the BCH and the Repetition code,
for Dgec = 10, 50, and 90 m, L = 50 m, and o4 = 6.14, 6.68, and 12.28 dB.
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Figure 5. ROCs considering coded report channel transmissions via BCH and Repetition codes,
for E,/Ng = 6 dB, 045 = 12.28 dB, and L = 50 m: MA]J rule (a), OR rule (b), and AND rule (c).

This figure is better viewed in color.
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Figure 6. Performances of BCH and Repetition codes over the full-interleaved flat Rayleigh fading

channel, with maximum-likelihood soft-decision detection without channel state information.

Table 2. AUCs for the coded MAJ, OR, and AND decision rules, with rg = {5/15,6/31,7/63} and
rr = {1/3,1/5,1/9}, for o4 = 6.14,8.68, and 12.28 dB, L = 50 m, and Dge. = 10,50, and 90 m.
The gray-shaded areas and bold-faced values are explained in the text.

I. Dgec = 10 m
Repetition Code
0B MAJ OR AND

6.14 0.904719  0.655512  0.445769

8.68 0.790084  0.402396  0.170776

12.28 0.451550 0.127083 0.019908
BCH Code

0B MAJ OR AND

6.14  0.895237  0.619083  0.409900

868 0703429 0276161  0.077101

1228 0324772  0.062240  0.005220
IL Dgec = 50 m

Repetition code
4B MA]J OR AND

6.14 0.894063  0.669020  0.466375

8.68 0.765731  0.436177  0.202683

12.28  0.428467 0.171599  0.031920
BCH Code

oaB MAJ OR AND

6.14 0879542  0.650800  0.443212

8.68  0.659388 0.333784  0.117005

1228 0298985 0.105427  0.012644
I Dgec = 90 m

Repetition Code
4B MA]J OR AND

6.14  0.889968  0.681048  0.485556
8.68  0.748057  0.469948  0.226962
12.28  0.405737  0.208837  0.048480

BCH Code

0B MAJ OR AND
6.14 0864465 0675177 0471522
868  0.629363 0.399938  0.160739
1228 0274431 0.161950  0.026191
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Comparing the AUC values in Table 2 with those in Table 1, for the BCH and Repetition codes,
it can be seen that the majority of them unveil no performance gain of the BCH coded transmissions
over the uncoded ones. These values are in the gray-shaded areas of Table 2. Even for the smallest
shadowing standard deviation, o4g = 6.14 dB, the BCH code failed with its purpose for the AND
rule with Dge. = 10 and Dge. = 50 m and for the MA]J rule with Dge. = 90 m. For the Repetition
code, however, it can be clearly noticed that the FEC scheme was effective in general. This can now be
credited to the dominance of the diversity gain of the Repetition code over the coding gain of the BCH
code when the report channel is under shadowing.

For the AUC values outside of the gray-shaded areas in Table 2, the AUCs are larger than the
respective ones in Table 1, meaning that, under weak shadowing, the use of FEC schemes seems
to be mildly effective in the setting of E,,/ Ny = 6 dB. However, a larger AUC cannot always be
translated into a better performance in terms of ROC when, for instance, a target probability of false
alarm or detection, or both, is established. For example, when the Repetition code is applied under
ogg = 12.28 dB, with Dge. = 90 for the MAJ rules, and Dg.. = 10 for the OR and the AND rules,
the AUCs are those boldfaced, i.e., 0.405737, 0.127083, and 0.019908, respectively. Using Pg,pc = 0.1 as
a reference, in Figure 5, it can be seen that Pypc ~ 0.36 with the MA]J rule; neither this reference Py rc
nor the corresponding P4pc can be attained with the OR rule, and Pqpc ~ 0.15 with the AND rule.
Similarly, for a reference value of Pqpc = 0.65, it follows that Prpc ~ 0.2 with the MA]J rule, and this
reference Pypc and the corresponding P,pc cannot be attained with the OR or the AND rules. Only
the MAJ rule with the Repetition code could be able to satisfy a system requirement of, for example,
PfaFC <0.1and PdFC > 0.3.

Given the results herein, it can be concluded that the use of an FEC code as an attempt to protect
the transmissions of the local SUs decisions to the FC might not bring considerable improvements to
the global spectrum sensing performance. This behavior can be credited to the typical SNR crossing
point, below which the coded bit error probability is not compensated for by the error correction
capability of the code, meaning that the decoded bit error probability becomes larger than the one
without channel coding; see Subsection 5.1 and Figure 6. Indeed, the SNR above which the decision
fusion process becomes almost insensitive to the report channel errors is relatively low when compared
to the one that is necessary to yield typical error rates demanded in conventional wireless digital
communication systems. Hence, to be more effective, the FEC code must exhibit such a crossing point
in very low SNRs, which is a characteristic of Turbo, LDPC, and Polar codes. Unfortunately, these
codes typically have very long codewords and time-consuming encoding or decoding processes, being
incompatible with the short time interval constraints imposed by the decision fusion of spectrum
sensing information.

To close this section, Figure 7 shows global probabilities of decision errors estimated via Monte
Carlo simulations in the cases of coded report transmissions over the pure-Rayleigh and the shadowed
fading report channels, and in the cases of coded and uncoded transmissions over the shadowed fading
channel, as a function of the average SNR per bit at the FC receiver, Ey, /Ny, for the decision fusion
rules MA]J (a), OR (b), and AND (c). The theoretical probabilities of decision error over the error-free
report channels and for the uncoded transmissions over the pure-Rayleigh channel were obtained
via Equations (5)—(10). The FEC codes considered in Figure 7 are the same adopted to plot Figure 5.
The spatially correlated shadowed fading was assumed to be in a severe situation, with ogg = 12.28 dB
and with Dgec = 10 m.

The SNR of the sensing channel, which governs the local spectrum sensing performance and, as a
consequence, also governs the global performance, was adjusted so that Perror = 0.05 in the error-free
report channel for each decision fusion rule. This value was computed using the pair of Pypc and
Prape returning the smallest Perror for each of the fusion rules. In other words, the operating point on a
global ROC curve was chosen as the one yielding the best global spectrum sensing performance in the
error-free report channel condition, which corresponds roughly to the knee of the curve and which is
approximately the point closest to the ideal values of Pr,prc = 0 and Pqpc = 1. Hence, the variation of
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E,/ Ng moves the knee of the ROC from the worst Perror = 0.5 (for Pipc = Pyrc = 0.5), toward the
smallest Perror whose value is attained in the error-free report channel.

The reference decision error probability Perror = 0.05 in the error-free report channel condition
is half of the Perror attained in the case of the standardized targets Pipc = 0.1 and Pgpc = 0.9 [30],
assuming Py, = Py, = 0.5, according to Equation (10).
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Figure 7. FC decision error rates under pure-Rayleigh and severe correlated shadowed fading, with
uncoded and coded SUs transmissions via BCH and Repetition codes, for the MA]J rule (a), the OR
rule (b), and the AND rule (c), all with Dge. = 10 m.



Sensors 2019, 19, 51 21 of 26

Figure 7 broadens the interpretations obtained from Figures 4 and 5, and provides a stronger
practical value to the numerical results because the spectrum sensing performance is now assessed
over a wide range of E, /Ny values. Firstly, notice in Figure 7 that Perror is predominantly smaller
when the report channel is the pure-Rayleigh, for all fusion rules in analysis, as expected. It can also be
seen that the FEC schemes produced performance gains only for some (higher) values of Ej, / Np; more
expressive gains are observed in the case of the pure-Rayleigh report channel, and at lower values of
E, /Ny than in the case of the shadowed fading.

In the case of the MA]J rule, as depicted in Figure 7a, it can be observed that neither the BCH nor
the Repetition code produced significant performance gains in the shadowed fading channel scenario;
a small gain can be noticed in the case of the pure-Rayleigh channel, around E,,/ Ny = 5 dB. It must
be emphasized that this small gain is particular to the MA] rule; it has not been produced due to the
worst pair of codes used in this case: the BCH (15, 5) and the Repetition (3, 1), a choice that has been
made due to the superior performance of the MAJ rule with respect to the AND and OR, as shown
in Figures 4 and 5. This behavior is due to the fact that the report channel bit error probability that
is sufficient for the MAJ rule to achieve a target Perror is considerably larger than for the OR and the
AND rules, a situation in which the coding and the diversity gains are smaller (refer to Figure 6).
This means that, for instance, if the BCH (63, 7) and the Repetition (9, 1) codes were used with the
MA] rule, a considerably small performance improvement would be obtained beyond that already
produced by the BCH (15, 5) and the Repetition (3, 1) .

On the other hand, it can be noticed in Figures 7b,c that the codes applied to the OR and AND rules,
respectively the BCH (31, 6) with the Repetition (5, 1) and the BCH (63, 7) with the Repetition (9, 1),
yielded considerable performance improvements. This is credited to the fact that, to reach a target
Perror, the OR and the AND rules need to operate under smaller bit error probabilities than the MA]
rule, where coding and diversity gains are more pronounced. In other terms, the channel coding is
more effective when applied to the decision fusion rules that, to a greater extent, require such coding
to be effective.

As also expected, the Repetition code is not capable of producing the same performance
improvements achieved with the BCH code. However, the Repetition code is effective (i.e., the attained
Perror is smaller with an error control than without it) over practically the entire range of Ey,/ Ny values,
which does not occur in the case of the BCH code. This happens because the crossing point where
the Repetition code starts to produce diversity gain (refer to Section 5.1 and Figure 6) occurs at much
lower Ey, /Ny values than the crossing point where the BCH starts to produce coding gain. Thus, in
the values of E},/ Ny, where the BCH is ineffective, a large performance degradation with respect to
the uncoded report transmissions is produced for all fusion rules. Owing to the fact that any code
exhibits a performance crossing point somewhere in the E},/ Ny scale, channel coding will be useless
and even deleterious to system performance if this point occurs at an E,,/ Ny value already sufficient
for the target global spectrum sensing performance to be attained. This is more likely to occur in the
case of the MA]J decision fusion rule.

Keeping in mind that an error correcting code applied to report channel transmissions must be
short, another important aspect must be equally considered: the decoding complexity. Recall that
maximum likelihood soft-decision decoding without channel state information was applied, which
is a very simple process in the case of the Repetition code but carries considerable complexity in
the case of the BCH [35]. One could think of using hard-decision decoding to reduce complexity,
but this would penalize the performance considerably. The performance penalty produces a shift of the
above-mentioned crossing point to the right, eventually making the code useless in the E, / Ny range
of interest. Thus, it can be concluded that the soft-decision decoded Repetition code is an attractive
solution, since it aggregates the small complexity to a global spectrum sensing performance that, in the
Ey / Ng range of interest, might not be too far from the one achieved with a soft-decision decoding of a
more powerful code with comparable length.
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7. Conclusions and Opportunities for Further Research

This article addresses the performance of a centralized decision fusion CSS scheme. The coded
or uncoded SU decisions were transmitted to the FC over report channels represented by a realistic
shadowed fading model that combines a three-dimensional spatially correlated shadowing with a slow
and flat multipath Rayleigh fading. Binary BCH and Repetition error correcting codes were used as an
attempt to protect the transmitted decisions. The decision fusion rules AND, OR, and majority-voting
(MA]J) were analyzed. Results unveiled that, as expected, shadowing correlation degrades the reliability
of the global decisions made at the FC. Although only two FEC schemes have been tested, which
prevents a general conclusion about their impacts, the extensive simulation results demonstrated
that the use of an FEC code in the decision fusion process might be not capable of protecting the SU
decisions. Indeed, the use of an FEC scheme can be even worse than not applying any FEC at all,
especially at low report channel SNR regimes. The results also unveiled that, especially in the case of
the OR and the AND rules, the Repetition code can outperform the BCH, meaning that the diversity
gain may be more relevant than the coding gain when the SU decisions are subjected to correlated
shadowing with full-interleaved fading. Large variations in the global spectrum sensing performance
under different report channel parameters were also observed, emphasizing the importance of adopting
channel models that consider the combined effect of additive noise, multipath fading, and spatially
correlated shadowing. Among the decision fusion rules investigated, the best performance was
achieved by the MAJ, no matter if the report channel is error-free or is under pure-Rayleigh or fading
plus shadowing.

The conclusions drawn herein are further supported by the fact that the decision fusion process
in the context of spectrum sensing significantly differs from a conventional data transmission
process. In the former, high channel error rates are supported, especially in the case of the MA] rule,
in comparison with conventional data transmission because the aim is to make a global decision on the
occupation state of the sensed channel, not to retrieve transmitted data. Thus, indeed, the effectiveness
of channel coding schemes is expected to be quite different when applied to these processes. Moreover,
the signal-to-noise ratios in which a satisfactory spectrum sensing performance can be attained is
considerably smaller than those in which satisfactorily small data error rates can be achieved in data
transmission systems; notice that the report channel signal-to-noise ratio might be smaller than the
information theoretic limit below which the channel errors cannot be controlled.

The following opportunities for related research can be highlighted: (i) the derivation of the
probability distribution of the number of successes in the sequence of correlated binary trials that
represent the SU decisions, as seen by the FC, taking into account the shadowed fading channel
statistics; (ii) the development of a discrete-time shadowed fading channel model according to this
probability distribution and to the corresponding channel statistics; (iii) the derivation of the error
probability of the N-out-of-M rule in the present scenario; (iv) the study of the impact of channel
coding on the report channel transmissions in light of information theory; (v) the development of
general channel code design rules for the specific fusion of hard spectrum sensing decisions and for
digitized soft decisions, taking into account the need for short codes.
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-dimensional

3D Three-dimensional

3G Third generation

4G Fourth generation

5G Fifth generation

AND AND-logic DF rule

ASM Adjacent subcarrier method
AUC Area under curve

AWGN  Additive white Gaussian noise
BCH Bose-Chaudhuri-Hochquenghem
BPSK Binary phase-shift keying

BSC Binary symmetric channel

CFAR Constant false alarm rate

CR Cognitive radio

CSs Cooperative spectrum sensing
DF Decision fusion

DFT Discrete Fourier transform

DSM Diversity subcarrier method
DSSS Direct sequence spread spectrum
EGC Equal gain combining

EVDO Evolution data optimized

FBMC Filter bank multi-carrier

FC Fusion center

FEC Forward error correction

GFDM Generalized frequency division multiplexing
HSPA High speed packet access

iid. Independent and identically distributed
LDGM  Low density generator matrix
LDPC Low density parity check

LOS Line-of-sight

LTE Long term evolution

MA]J Majority-voting-logic DF rule
MED Maximum eigenvalue detection
ML Maximum likelihood

OFDM  Orthogonal frequency division multiplexing
OFDMA  Orthogonal frequency division multiple access
OR OR-logic DF rule

OsD Ordered statistics decoding

PU Primary user

ROC Receiver operating characteristic
SNR Signal-to-noise ratio

SU Secondary user

Uuw Unique-word
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