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Abstract. Uveal melanoma (UM) is the most common ocular 
malignancy and has no effective clinical treatment. Therefore, 
novel drugs to suppress UM tumor progression are urgently 
required. The present study aimed to clarify the underlying 
mechanism of the inhibitory effects of artesunate on UM. 
By using plasmid transfection and detecting apoptotic level, 
the present study identified artesunate as a potential candi‑
date for UM treatment. Compared with those in the vehicle 
(DMSO)‑treated control cells, artesunate enhanced the 
apoptotic rate and increased lactate dehydrogenase release, 
reactive oxygen species and IL1b and IL18 levels in C918 cells. 
Overexpression of yes‑associated protein (YAP) or metas‑
tasis‑associated lung adenocarcinoma transcript 1 (MALAT1) 
in C918 cells reversed the effects of artesunate and reduced 
the apoptotic rate compared with those observed in cells trans‑
fected with the negative control plasmid. Notably, verteporfin 
enhanced the effects of artesunate on C918 cells by increasing 
the apoptotic rate, indicating that combined therapy was more 
effective compared with treatment with artesunate alone. In 
conclusion, the results of the present study demonstrated that 
artesunate elevated the apoptotic rate and suppressed C918 cell 
viability by regulating the MALAT1/YAP signaling pathway, 
and these effects were enhanced by supplementation with 
verteporfin. These results suggested that artesunate may exert 
an inhibitory effect on C918 cells and that the MALAT1/YAP 
signaling may serve important role in mediating these effects, 
providing evidence of its potential for treating UM in the 
clinic.

Introduction

As a common primary tumor in adults, uveal melanoma 
(UM) accounts for 3.7% of all melanomas  (1). Numerous 
risk factors are associated with UM, including age, sex, 
genetic or phenotypic predisposition, work environment and 
dermatological conditions (2). UM has a strong propensity for 
fatal metastasis (3) and frequently metastasizes to the liver 
via the hematogenous route; according to data from 2005, 
90% of UM metastases occur in the liver (4), which results 
in a dismal prognosis (5). Additionally, severe inflammation 
has been identified in UM cells (6,7), particularly those with 
mutations of G protein subunit α (GNA)11 or GNAQ, which 
trigger a wide range of cell signaling cascades, including 
the PI3K/Akt/mTOR and YAP/TAZ pathways (2); however, 
limited approaches are available to alleviate inflammation 
in UM, as the eye is an immunologically privileged site, 
which provides UM with a protective niche  (8). To date, 
several strategies have been adopted to treat UM in the 
clinic, including surgical resection, immunotherapy (9) and 
gamma knife radiosurgery (10). For example, ipilimumab, an 
anti‑cytotoxic T‑lymphocyte‑associated protein 4 antibody, 
elicits a positive response in 40‑60% of patients with 
metastatic cutaneous melanoma (2), providing a potential new 
treatment for UM in the clinic. Recently, small molecules, 
such as selumetinib  (11), nivolumab  (12), ipilimumab  (12) 
and selumetinib in combination with dacarbazine (13), have 
been identified as potential inhibitors of tumor progression 
able to improve the prognosis of patients with UM, although 
the underlying mechanisms remain elusive. Overall, there is 
a need to identify novel drugs for UM treatment and explore 
their underlying mechanisms. 

Artemisinin is a natural product derived from the 
Chinese herb Artemisia annua (14). As a stable derivative of 
artemisinin, artesunate exhibits robust antimalarial activity 
in mammals (15,16), as well as various physiological activi‑
ties, including inhibiting inflammation  (17) and nervous 
system protection (18). For example, Zeng et al (17) have 
reported that artesunate inhibits the Toll‑like receptor 
4/tumor necrosis factor receptor‑associated factor 6 and 
phosphoinositide‑specific phospholipase C1/Ca2+/nuclear 
factor of activated T  cells  1 signaling pathways and 
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improves lipopolysaccharide‑induced osteoclastogenesis 
in RAW264.7 cells and mice. Another study used electro‑
physiological assays and histopathological examination to 
demonstrate that topical artesunate treatment has a positive 
effect on peripheral nerve regeneration  (18). In addition, 
artesunate exhibits antitumor effects against several types 
of cancer cells, including lymphoma  (19,20), head and 
neck cancer  (21) and hepatocellular carcinoma  (22), and 
suppresses the MEK/ERK and PI3K/Akt signaling pathways 
in HL‑60 cells, inducing apoptosis and inhibiting leukemia 
cell proliferation  (23). Additionally, artesunate induces 
apoptosis by activating reactive oxygen species (ROS)‑ and 
p38 MAPK‑mediated signaling and suppresses embryonal 
rhabdomyosarcoma cell proliferation  (24); however, a 
limited number of studies have focused on the effect of 
artesunate on UM progression (25,26).

Apoptosis is a form of programmed cell death that occurs 
in multicellular organisms and is characterized by various 
cellular changes, ranging from nuclear fragmentation to 
global mRNA decay  (27). In mammals, apoptosis exerts 
positive effects on cell self‑renewal (28). In addition, apop‑
tosis serves critical roles in tumor growth, including colon 
cancer (29,30), pancreatic ductal adenocarcinoma (31) and 
acute myeloid leukemia (32). For example, Nangia et al (33) 
have demonstrated that treatment with a combination of 
MEK and myeloid cell leukemia‑1 (MCL1) inhibitors induces 
apoptosis by regulating MCL1, leading to inhibition of cell 
proliferation in a KRAS‑mutant non‑small cell lung cancer 
model. In addition, the proliferation of hepatocellular carci‑
noma cells is suppressed by elevating the levels of apoptosis 
following CBX2 knockdown (34). Notably, artesunate exerts 
antitumor activity by enhancing apoptosis; Zhou et al (35) 
have reported that artesunate upregulates ROS levels and acti‑
vates the AMP‑activated protein kinase/mTOR/unc‑51‑like 
autophagy‑activating kinase 1 axis in T24 cells, resulting in 
autophagy‑dependent apoptosis of human bladder cancer. 
However, whether artesunate treatment enhances UM cell 
apoptosis and the potential underlying mechanisms of this 
effect are poorly understood. The metastasis‑associated 
lung adenocarcinoma transcript 1 (MALAT1)/yes‑associated 
protein (YAP) signaling pathway is involved in mediating 
apoptosis, particularly in tumor cells (36). Zhou et al (36) 
have demonstrated that the MALAT1/YAP signaling pathway 
is activated in pancreatic cancer cells, whereas downregula‑
tion of MALAT1 suppresses the development of pancreatic 
cancer by inhibiting the Hippo/YAP signaling pathway and 
affecting apoptosis, which may be attributed to the inhibition 
of YAP translocation from the nucleus to the cytoplasm (37). 
Therefore, whether artesunate exhibits antitumor effects by 
regulating the MALAT1/YAP signaling pathway warrants 
further study.

The present study aimed to determine the effects of arte‑
sunate on the proliferation of UM cells and to explore the 
underlying mechanism. First, the effects of artesunate treat‑
ment on C918 cell proliferation and apoptosis were assessed. 
In addition, the role of the MALAT1/YAP axis in mediating the 
effects of artesunate was evaluated. Furthermore, the present 
study tested whether combination therapy was more efficient 
compared with single treatment, and described a potential 
novel strategy for treating UM in the clinic.

Materials and methods

Cell culture and chemicals. The human UM cell lines C918 
and M619 were obtained from the Type Culture Collection 
of the Chinese Academy of Medical Sciences. C918 or M619 
cells were incubated in DMEM (cat. no.  C11995500BT; 
Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% 
fetal bovine serum (cat. no. P30‑3301; PAN‑Biotech GmbH) 
and 1% penicillin‑streptomycin (cat. no. 15140‑122; Gibco; 
Thermo Fisher Scientific, Inc.). All cells were maintained in 
an incubator at 37˚C with 5% CO2 in a water‑saturated atmo‑
sphere. Artesunate (Fig. 1A) and verteporfin were procured 
from Selleck Chemicals (cat. nos. S2265 and S1786, respec‑
tively) and used to treat the cells for 48 h. Dimethyl sulfoxide 
(DMSO; cat. no. 276855; Sigma‑Aldrich; Merck KGaA) was 
used as a negative control.

Cell viability assay. Methyl thiazolyl tetrazolium (MTT) 
assays were used to analyze cell viability in the present 
study. C918 or M619 cells (1x104 cells/well) were cultured 
in 96‑well plates at 37˚C with 5% CO2. Following treatment 
with artesunate (0, 10, 20 and 40 µM) or a drug combina‑
tion (40 µM artesunate and 5 µM verteporfin), MTT reagent 
(cat. no. M1020; Beijing Solarbio Science & Technology Co., 
Ltd.) was added to each well and incubated for 4 h at 37˚C. A 
microplate reader was used to measure absorbance at 490 nm. 
Experiments were repeated three times.

Caspase activity assay. C918 cells were plated at a density 
of 1x106  cells/well in 6‑well plates. Following treatment 
with artesunate (0, 10, 20 and 40 µM) or a drug combination 
(40 µM artesunate and 5 µM verteporfin), cells were lysed 
using RIPA buffer (cat. no. R0020, Beijing Solarbio Science 
& Technology Co., Ltd.), and protein concentration was deter‑
mined using a commercial BCA kit (cat. no. P1511‑1; Applygen 
Technologies, Inc.). Caspase‑3 and caspase‑9 activity levels 
were detected using Caspase3 and Caspase9 Activity kits 
(cat. nos. BC3830 and BC3890, respectively; Beijing Solarbio 
Science & Technology Co., Ltd.) according to the manufac‑
turer's instructions. Absorbance of the resulting solution at 
405 nm was determined using a microplate reader.

ROS level detection. C918 cells were exposed to various 
concentrations (0, 10, 20, and 40  µM) of artesunate for 
48 h and resuspended in culture medium (without serum) 
containing 10  µM DCFH‑DA (cat. no.  CA1410; Beijing 
Solarbio Science & Technology Co., Ltd.) (38). The cells were 
harvested, and a microplate reader was used to detect the rela‑
tive level of ROS at 488 and 525 nm. Cells treated with DMSO 
served as the negative control.

Lactate dehydrogenase (LDH) release assay. C918 cells 
(1x104 cells/well) were seeded into 96‑well plates and subse‑
quently treated with 0, 10, 20 and 40 µM artesunate for 48 h at 
37˚C. LDH assays were performed using a commercial assay 
kit (cat. no. BC0685; Beijing Solarbio Science & Technology 
Co., Ltd.), according to the manufacturer's protocol.

ELISA. Following treatment with artesunate (0, 10, 20 and 
40 µM) or a drug combination (40 µM artesunate and 5 µM 
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verteporfin), C918 cells were lysed in RIPA lysis buffer (cat. 
no. R0020; Beijing Solarbio Science & Technology Co., Ltd.). 
The lysates were centrifuged at 12,000 x g for 30 min at 4˚C, 
and the supernatants were collected. Then, the concentra‑
tions of IL‑1b and IL18 were determined using ELISA kits, 
according to the accompanying instructions (cat. nos. ab214025 
and ab215539; Abcam). Absorption was determined using a 
microplate reader, and experiments were repeated three times.

Reverse transcription‑quantitative (RT‑q) PCR assay. 
Relative levels of target RNA were determined following 
treatment with artesunate (0, 10, 20 and 40 µM) or a drug 
combination (40 µM artesunate and 5 µM verteporfin). Total 
RNA of C918 cells was extracted from cells using TRIzol® 
reagent (cat. no.  15596‑026; Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's instructions, 
and the concentration of the extracted RNA was measured 
using a NanoDrop2000 (Thermo Fisher Scientific, Inc.). 
Subsequently, RNA was reverse‑transcribed into cDNA using 
a reverse transcription kit (cat. no.  04896866001; Roche 
Molecular Systems, Inc.). SYBR® Green (TransGen Biotech 

Co., Ltd.) was used to perform RT‑qPCR on the ABI‑Quant 
Studio 5 system (Thermo Fisher Scientific, Inc.) to determine 
the relative expression levels of the target genes. Relative 
expression level of YAP was normalized to β‑actin, and 
MALAT1 was normalized to U6. The primer pairs used in this 
study are listed in the Table SI. The thermocycling conditions 
were as follows: Activation at 95˚C for 10 min; 40 cycles of 
denaturation at 95˚C for 30 sec, annealing at 60˚C for 30 sec 
(data collected during each cycle) and extension at 72˚C for 
30 sec; and a melting curve between 55˚C and 95˚C (data 
collected at each temperature).

Cell transfection. Plasmids overexpressing YAP and 
MALAT1 (constructed in pEGFP‑N2) and negative controls 
(empty pEGFP‑N2 vector) were synthesized by Shanghai 
GenePharma Co., Ltd.. Cells were transfected with 2 µg 
plasmid using Lipofectamine® 2000 transfection reagent (cat. 
no. 11668‑027, Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's instructions and cultured for 
72 h at 37˚C. Subsequently, cells were harvested for further 
analysis.

Figure 1. Artesunate inhibits the viability of C918 cells by enhancing apoptosis. (A) Structure of artesunate. (B) Viability of C918 cells following treatment 
with artesunate. The activity of (C) caspase‑3 and (D) caspase‑9 in C918 cells following artesunate treatment. Relative (E) intracellular ROS levels and 
(F) LDH release of C918 cells following artesunate treatment. (G) ELISA of IL‑1β and IL‑18 in C918 cells following artesunate administration. *P<0.05, 
**P<0.01 and ***P<0.001 vs. 0 µM. ROS, reactive oxygen species; LDH, lactate dehydrogenase.
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Western blot assay. Following treatment with artesunate (0, 10, 
20 and 40 µM) or overexpression plasmids, C918 cells were 
lysed on ice using RIPA lysis buffer (cat. no. R0020, Beijing 
Solarbio Science & Technology Co., Ltd.). The lysates were 
centrifuged at 12,000 x g for 30 min at 4˚C, the supernatants 
were collected, and total protein concentration was determined 
using a BCA quantitation kit (cat. no.  P1511‑1; Applygen 
Technologies, Inc.). Proteins were separated by 10% SDS‑PAGE 
and transferred to PVDF membranes (cat. no.  IPVH00010; 
MilliporeSigma). Following blocking with 5% milk at room 
temperature for 2  h, the membranes were incubated with 
primary antibodies at 4˚C overnight. Following three washes 
with 0.1% TBS‑Tween 20, the membranes were incubated with 
secondary HRP‑conjugated antibodies at room temperature for 
2 h. ECL High‑Signal reagent (170‑5060; Bio‑Rad Laboratories, 
Inc.) was used to visualize protein bands on a Bio‑Rad System 
(Bio‑Rad Laboratories, Inc.). β‑actin served as a loading control. 
The primary antibodies were diluted 1:2,000, and the secondary 
antibodies were diluted 1:5,000. The antibody against YAP (cat. 
no. ab76252) was obtained from Abcam, and the actin antibody 
(cat. no. AC026) was purchased from ABclonal Biotech Co., Ltd. 
Secondary antibodies were obtained from Suzhou Biodragon 
Immunotechnologies Co., Ltd..

Statistical analysis. Data are presented as the mean ± SEM of 
≥3 independent experiments for each assay. All experimental 
data were analyzed using SPSS software (version 24.0; IBM 
Corp.). Data were evaluated using an unpaired two‑tailed 
Student's t‑test or one‑way analysis of variance followed by 
Bonferroni (for data meeting homogeneity of variance) or 
Tamhane's T2 (for data demonstrating heteroscedasticity) post 
hoc tests. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Artesunate alleviates UM cell apoptosis and inflammation, 
and inhibits UM cell viability. Previous studies have 
demonstrated that artesunate reduces the number of viable 
C2C12 cells in a dose‑dependent manner following a 48‑h 
treatment (23). Therefore, the present study tested whether 
artesunate (Fig.  1A) exerted similar effects in UM cells. 
The results demonstrated that, relative to that in the control 
group, artesunate significantly reduced the viability of C918 
cells, particularly at doses ≥10 µM (Fig. 1B). The effects of 
artesunate on M619 cells were also determined, and similar 
inhibition of cell viability was observed (Fig. S1). Due to more 

Figure 2. Artesunate‑induced apoptosis is mediated by YAP. (A) qPCR analysis of the relative YAP mRNA levels in C918 cells normalized to those of 
β‑actin. **P<0.01 and ***P<0.001 vs. 0 µM. (B) Representative western blot assay of phosphorylated and total YAP in C918 cells. *P<0.01 and ***P<0.001 vs. 
0 µM. (C) qPCR analysis of the relative YAP mRNA levels following YAP overexpression plasmid transfection. **P<0.01 vs. negative control. (D) Viability of 
C918 cells following transfection. (E) Caspase‑3 and caspase‑9 activity in C918 cells following transfection. Relative (F) ROS levels and (G) LDH release of 
C918 cells following transfection. (H) ELISA of IL‑1β and IL‑18 levels in C918 following transfection. *P<0.05, **P<0.01 and ***P<0.001. YAP, yes‑associated 
protein; qPCR, quantitative PCR; ROS, reactive oxygen species; LDH, lactate dehydrogenase; p‑, phosphorylated.
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pronounced inhibitory effects of artesunate on C918 cells 
compared with those on M619 cells, this cell line was selected 
for further experiments.

The caspase‑3 and caspase‑9 activity levels were signifi‑
cantly increased in C918 cells following treatment with 
artesunate (Fig. 1C and D). In addition, cells treated with artesu‑
nate exhibited elevated ROS levels and LDH release compared 
with those in the control group (Fig. 1E and F). Furthermore, 
the effects of artesunate on the expression levels of inf﻿lam‑
matory factors IL1b and IL18, which are positively associated 
with apoptosis (39), were assessed. Compared with those in 
the control cells, the levels of IL1b and IL18 were significantly 
increased following artesunate treatment (Fig. 1G), which 
suggested that artesunate exerted a proinflammatory effect on 
C918 cells. Overall, these results demonstrated that artesunate 
induced elevated apoptosis and an enhanced the inflammatory 
response, particularly at 40 µM, resulting in inhibition of C918 
cell viability. Therefore, 40 µM artesunate was selected for use 
in further experiments.

Overexpression of YAP ameliorates the effects of artesunate 
in C918 cells. YAP is a crucial factor in UM progression (40). 

Therefore, the present study assessed whether may YAP 
serve a role in mediating the effects of artesunate on UM cell 
apoptosis. Cells were treated with 40 µM artesunate for 48 h. 
The results of qPCR and western blot assays demonstrated that 
YAP expression and phosphorylation levels were significantly 
decreased following artesunate treatment compared with those 
in the control cells (Fig. 2A and B). Subsequently, C918 cells 
were transfected with a plasmid overexpressing YAP to assess 
the role of YAP in mediating the effects of artesunate. Plasmid 
transfection significantly enhanced the expression levels of 
YAP compared with those in the cells transfected with the 
empty vector (Fig. 2C). Compared with cells treated with 
artesunate alone, those overexpressing YAP exhibited reversal 
of the inhibitory effects of artesunate, as elevated C918 cell 
viability was observed (Fig. 2D). In addition, the caspase‑3 
and caspase‑9 activity levels were decreased following YAP 
overexpression compared with those in control cells treated 
with artesunate (Fig.  2E). YAP overexpression plasmid 
transfection also reduced the levels of intracellular ROS and 
LDH release (Fig. 2F and G), which were accompanied by 
decreased levels of IL1b and IL18 (Fig. 2H) compared with 
those in artesunate‑treated control cells. Overall, these results 

Figure 3. Artesunate‑induced apoptosis in C918 cells is partially inhibited by MALAT1 overexpression. (A) Expression levels of MALAT1 in C918 cells 
following treatment with artesunate. **P<0.01 and ***P<0.001 vs. 0 µM. (B) qPCR analysis of the relative MALAT1 levels following MALAT1 overexpression 
plasmid transfection. **P<0.01 vs. negative control. (C) Viability of C918 cells following transfection with a plasmid overexpressing MALAT1. (D) Caspase‑3 
and caspase‑9 activity in C918 cells following transfection. Analysis of (E) ROS levels and (F) LDH release in C918 cells following transfection with a 
MALAT1 overexpression plasmid. (G) ELISA of IL‑1β and IL‑18 levels in C918 cells transfected with a MALAT1 overexpression plasmid. (H) Western blotting 
images and quantified data of phosphorylated and total YAP in C918 cells following transfection with a MALAT1 overexpression plasmid. *P<0.05, **P<0.01 
and ***P<0.001. MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; qPCR, quantitative PCR; ROS, reactive oxygen species; LDH, lactate 
dehydrogenase; YAP, yes‑associated protein.
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demonstrated that YAP was involved in mediating C918 cell 
apoptosis induced by artesunate.

Upregulation of MALAT1 reverses the effects of artesunate 
by regulating YAP levels in C918 cells. The present study next 
analyzed the effects of artesunate treatment on the upstream 
regulator of YAP MALAT1, which binds to the pro‑metastatic 
transcription factor TEA domain (TEAD), blocking TEAD from 
associating with its coactivator YAP (41). The results demon‑
strated that artesunate significantly downregulated the mRNA 
expression levels of MALAT1 in C918 cells compared with those 
in the control group (Fig. 3A). MALAT1 was overexpressed 
by transfecting a plasmid into C918 cells, which significantly 
enhanced the expression levels of MALAT1 compared with those 
in the empty vector‑transfected cells (Fig. 3B). Compared with 
those in the control C918 cells treated with artesunate alone, 
MALAT1 overexpression led to increased cell viability (Fig. 3C), 
reduced caspase‑3 and caspase‑9 activity levels (Fig.  3D), 
and decreased levels of LDH release and intracellular ROS 
(Fig. 3E and F). In addition, the levels of IL1b and IL18 were 
assessed following transfection and were significantly reduced 
following MALAT1 overexpression in C918 cells compared 
with those in the control cells treated with artesunate (Fig. 3G). 
Notably, YAP phosphorylation levels were upregulated in 
response to MALAT1 overexpression compared with those in 
the control cells treated with artesunate (Fig. 3H). These results 
suggested that MALAT1/YAP signaling may serve an important 
role in mediating the effects of artesunate on C918 cells.

Verteporfin enhances the antitumor effects of artesunate 
in C918 cells. The present study further assessed the ability 

of combination therapy to treat UM. Combination therapy 
has strong potential for application in clinical treatment of 
diseases, such as diabetes (42), glioblastoma (43), and rheuma‑
toid arthritis (44), as well as various types of tumor (45‑47). 
As an inhibitor of YAP, verteporfin suppresses the interaction 
between YAP and TEAD (48). Therefore, the present study 
determined the effects of combined artesunate and verte‑
porfin treatment in C918 cells. The results demonstrated that 
verteporfin enhanced the inhibitory effects of artesunate on 
C918 cells, further inhibiting cell viability (Fig. 4A), elevating 
caspase‑3 and caspase‑9 activity levels (Fig. 4B), and increasing 
intracellular ROS and LDH release (Fig. 4C and D) compared 
with those in the cells treated with artesunate alone. In addi‑
tion, combination therapy significantly increased the levels 
of IL18 and IL1b compared with those following treatment 
with artesunate alone (Fig. 4E). In conclusion, combination 
therapy exerted stronger effects on C918 cells compared with 
treatment with artesunate alone.

Discussion

UM is a primary malignant intraocular tumor in adults, which 
represents 5‑6% of all melanoma diagnoses  (49); however, 
effective therapies for UM are lacking, although certain 
advances have been achieved in local ocular treatments, such 
as chemotherapy and immunotherapy (50). In addition, various 
small molecules have been demonstrated to exhibit potent 
antitumor activity in vivo and in vitro, including sorafenib (51), 
crotepoxide (52) and luteolin (53). Notably, combination thera‑
pies exhibit higher efficacy compared with single‑treatment 
approaches (54,55). For instance, Matsunaga et al (55) have 

Figure 4. Combined therapy is more efficient at enhancing apoptosis in C918 cells compared with artesunate alone. (A) Viability, (B) caspase‑3 and caspase‑9 
activity, (C) ROS levels, (D) LDH release and (E) ELISA of IL‑1β and IL‑18 levels of C918 cells following treatment with artesunate or combined therapy. 
*P<0.05, **P<0.01 and ***P<0.001. ROS, reactive oxygen species; LDH, lactate dehydrogenase.
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demonstrated that combination therapy exhibits higher treat‑
ment efficacy for Alzheimer's disease compared with that of 
a single cholinesterase inhibitor. In the present study, artesu‑
nate was identified as a potential candidate to inhibit UM cell 
viability by enhancing apoptosis. Furthermore, the results of the 
present study demonstrated that the MALAT1/YAP signaling 
pathway was involved in mediating the effects of artesunate. In 
addition, verteporfin enhanced the artesunate treatment‑medi‑
ated induction of apoptosis in C918 cells, providing evidence 
for its potential for application in treating UM.

ROS serves dual roles in biological processes, including 
the maintenance of normal physiological conditions, as well 
as exerting pathogenic effects by inducing cell damage and 
destruction during pathophysiology (56). Under physiological 
conditions, ROS preferentially triggers redox signaling rather 
than inducing oxidative damage to macromolecules, such as 
proteins, lipids and DNA (57); however, previous studies have 
suggested that ROS serves a crucial role in tumor proliferation 
and progression (57,58). Pelicano et al (59) have demonstrated 
that moderate mitochondrial ROS levels promote breast cancer 
cell motility in a CXCL14‑dependent manner. Notably, a posi‑
tive association has also been identified between apoptosis and 
ROS production (60,61). Similar to previous reports (35,62), 
the results of the present study revealed that artesunate induced 
apoptosis in a ROS‑dependent manner. In addition, the present 
study demonstrates that overexpression of MALAT1 or YAP 
reversed the antitumor effects of artesunate on ROS induction 
and apoptosis in C918 cells, indicating that MALAT1 or YAP 
may be potential drug targets for UM treatment.

YAP is a transcriptional coactivator that shuttles between 
the cytoplasm and the nucleus (63). YAP recognizes cognate 
cis‑regulatory elements by interacting with other transcription 
factors in the nucleus, particularly TEAD family members (64). 

As a transcriptional regulator of TEAD, YAP activates the 
transcription of genes involved in cell proliferation, leading to 
a suppression of apoptosis (65). YAP is regulated by the Hippo 
signaling pathway to control tumor progression (66). In addi‑
tion, YAP is an oncogene and serves crucial roles in various 
types of human cancer  (65,67), such as kidney and blood 
cancer (68,69). White et al (68) have reported that inhibition of 
the YAP/TAZ signaling pathway suppresses glycolysis‑depen‑
dent proliferation and enhances mitochondrial respiration as 
well as ROS buildup, resulting in the death of kidney tumor 
cells when challenged by nutrient stress. Additionally, nera‑
tinib suppresses the proliferation of pancreatic and blood 
cancer cells by inhibiting the Hippo/YAP signaling pathway 
and mutant KRAS expression  (69). Neratinib upregulates 
the phosphorylation of YAP and TAZ by 30% and promotes 
YAP translocation into the cytosol, resulting in a reduction 
of YAP/TAZ protein levels. In addition, knockdown of YAP 
enhances the lethality of neratinib (69). These previous studies 
indicate that YAP serves a crucial role in mediating the 
antitumor effects of small molecules by regulating apoptosis. 
Notably, a previous study has demonstrated an activation of 
YAP in UM compared with that in patients without metas‑
tasis (70). Therefore, as an enhanced effect of artesunate on 
UM cell apoptosis was observed in the present study, we 
hypothesized that YAP may be involved in mediating the 
effects of artesunate in C918 cells. The results of the present 
study demonstrated that artesunate treatment significantly 
reduced YAP expression. Furthermore, YAP overexpression 
ameliorated the inhibitory effects of artesunate in C918 cells, 
reducing caspase‑3 and caspase‑9 activity levels, as well as 
inhibiting the levels of IL1b and IL18. Compared with those 
in the control group, artesunate treatment led to elevated 
levels of IL1b and IL18 in C918 cells, whereas previous 

Figure 5. Schematic diagram of the molecular mechanism underlying MALAT1‑mediated inactivation of YAP signaling in the inhibition of uveal melanoma 
cell viability. YAP, yes‑associated protein; MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; ROS, reactive oxygen species; LDH, lactate 
dehydrogenase.
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studies have reported that it exerts an anti‑inflammatory 
effect (71,72). This may be attributed to enhanced of caspase‑1 
activity, which is a factor upstream of pyroptosis (73). In the 
present study, caspase‑1 activity was increased following 
artesunate treatment compared with that in the control cells 
(data not shown). During the process of pyroptosis, caspase‑1 
specifically cleaves the linker between the N‑ and C‑terminal 
domains of gasdermin D (GSDMD), leading to release of 
GSDMD N‑terminal domain (74). GSDMD is an executor 
of pyroptosis and is required for the secretion of IL1β and 
IL18 (75). Additionally, YAP is a suppressor of inflamma‑
tion (76); thus, a high level of inflammation may be associated 
with low YAP expression levels. In our future studies, the 
effects of artesunate on the regulation of pyroptosis in UM 
cells will be assessed.

As an infrequently spliced non‑coding RNA, MALAT1 is 
highly conserved amongst mammals and strongly expressed 
in the nucleus (77). MALAT1 contributes to various physi‑
ological processes, including alternative splicing, nuclear 
organization, and epigenetic modulation of gene expres‑
sion (78). In addition, previous studies have provided evidence 
that MALAT1 is crucial for the regulation of tumor cell prolif‑
eration. For example, methyltransferase‑like 3 initiates m6A 
mRNA methylation and promotes YAP mRNA translation by 
regulating the MALAT1/microRNA (miR)‑1914‑3p/YAP axis, 
which increases YAP mRNA stability and induces non‑small 
cell lung cancer drug resistance and metastasis (79). In addi‑
tion, Sun et al (80) have reported that silencing of MALAT1 
upregulates miR‑181a‑5p levels by activating the Hippo‑YAP 
signaling pathway, leading to inhibition of myeloma cell 
proliferation and adhesion. These results suggest an associa‑
tion between YAP and MALAT1 in the regulation of tumor 
cell proliferation (81). Therefore, the present study aimed 
to determine how MALAT1 may contribute to mediating 
the effects of artesunate, since YAP expression levels were 
reduced in response to artesunate treatment. The results 
demonstrated that artesunate suppressed C918 cell viability 
by inhibiting the MALAT1/YAP signaling pathway, whereas 
the inhibitory effect was ameliorated by MALAT1 overex‑
pression, which supported the role of the MALAT1/YAP 
axis in mediating the effects of artesunate on UM cells. The 
present study also assessed the feasibility of combination 
therapy for UM. Compared with cells treated with artesunate 
alone, cells administered a combination of artesunate and 
verteporfin exhibited lower viability and higher levels of 
apoptosis, indicating that combination therapy may be more 
effective.

However, there were certain limitations to the present 
study. For instance, the present study did not assess whether 
artesunate may alleviate UM by regulating the MALAT1/YAP 
signaling pathway in a mouse UM model. Additionally, how 
pyroptosis is involved in mediating the effects of artesunate 
remains elusive. In the future, multiple cell lines will be used 
to verify the results of the present study, and the antitumor 
effects of artesunate will be analyzed in animal models of 
UM. In addition, other drugs with the potential to inhibit UM 
cell proliferation will be assessed, with the aim of advancing 
UM treatment in the clinic.

In conclusion, the results of the present study identified 
artesunate as a potent small molecule that inhibited UM 

cell proliferation. In addition, the MALAT1/YAP signaling 
pathway was demonstrated to mediate the effects of arte‑
sunate. Notably, combination therapy exerted a stronger 
inhibitory effect on C918 cells compared with treatment with 
artesunate alone (Fig. 5). To the best of our knowledge, this 
is the first report of assessment of the role of MALAT1/YAP 
signaling in mediating the effects of artesunate in UM cells, 
and it provides evidence supporting artesunate combined 
with verteporfin as a candidate clinical treatment for UM.
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