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Biomarker selection 
and a prospective 
metabolite‑based machine learning 
diagnostic for lyme disease
Eric R. Kehoe2*, Bryna L. Fitzgerald3, Barbara Graham3, M. Nurul Islam3, Kartikay Sharma1, 
Gary P. Wormser4, John T. Belisle3 & Michael J. Kirby1,2

We provide a pipeline for data preprocessing, biomarker selection, and classification of liquid 
chromatography–mass spectrometry (LCMS) serum samples to generate a prospective diagnostic 
test for Lyme disease. We utilize tools of machine learning (ML), e.g., sparse support vector machines 
(SSVM), iterative feature removal (IFR), and k‑fold feature ranking to select several biomarkers and 
build a discriminant model for Lyme disease. We report a 98.13% test balanced success rate (BSR) of 
our model based on a sequestered test set of LCMS serum samples. The methodology employed is 
general and can be readily adapted to other LCMS, or metabolomics, data sets.

Early Lyme disease develops days to weeks following the transmission of Borrelia burgdorferi to a human host 
via an Ixodes tick. Typically a patient will develop an erythema migrans (EM) skin lesion and non-specific symp-
toms including fatigue, malaise, and joint and muscle  pains1. Although an EM skin lesion is the most common 
manifestation of Lyme disease and is used for clinical diagnosis in endemic areas, not all patients develop or 
notice an EM skin  lesion1,2. Additionally, southern tick-associated rash illness (STARI) also causes a characteristic 
EM-like rash and the geographic expansion of its associated vector Amblyomma americanum into Lyme disease 
endemic areas makes it difficult to accurately diagnose Lyme disease solely by the presence of the characteristic 
skin  lesion3,4. The diagnosis of early Lyme disease is further confounded by the reliance of current diagnostics 
on a serological response that might not be fully developed early in infection and is not able to distinguish 
between current and past  infection2. These pitfalls in the current Lyme disease diagnostics invite assessment of 
non-immune reliant diagnostic approaches.

Previously, we provided proof-of-concept studies for the use of metabolomics to identify host metabolic 
profiles that could be used as a diagnostic marker of early Lyme  disease5,6. The classification tools developed 
were based largely on least absolute shrinkage and selection operator (LASSO) statistical modeling that worked 
well when the liquid chromatography–mass spectrometry (LCMS)) data of the training and tests sets were col-
lected at the same time (i.e. during the same instrument run)7. However, we subsequently realized that the test 
accuracy faltered when a temporal difference existed for the collection of training and test sample data. This 
batch effect was in part hypothesized to be due to the sparsity parameters used for LASSO feature selection and 
in the normalization and imputation approaches used.

In this paper, we use sparse support vector machines (SSVM), a machine learning (ML) tool, to select an 
optimal set of metabolic biomarkers and then build a metabolite-based diagnostic for Lyme  disease8. We begin 
with the hypothesis that feature vectors, or the vectors of metabolite peak areas, for patients with Lyme disease 
and their healthy counterparts are separated in space when restricted to some reduced set of discriminatory 
biomarkers. This is the base assumption of sparse, or minimal feature, models for feature selection. Uni-variate 
statistical tests, e.g. t-tests, identify individual biomarkers that may separate the  data9–11. In contrast, the multi-
variate methods employed here select sets of biomarkers that discriminate as a group by exploiting higher 
dimensional separation between different metabolic classes. Multivariate models in statistics and ML, such as 
partial least squares-discriminant analysis (PLS-DA), kernel support vector machines, deep learning networks, 
and decision trees, can over-fit when training on data sets with many features and relatively few  samples12–14. 
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This may be mitigated through hyperparameter tuning: controlling the balance between training and validation 
accuracy in a cross-validation experiment. Using a sparsity inducing penalty in the SSVM optimization problem 
reduces the number of parameters available to the model and serves to prevent over-fitting by regularizing the 
high-dimensional model.

ML for classification tasks in metabolomics has seen success for more than a decade. support vector machines 
(SVM), along with other ML models, have been applied on nuclear magnetic resonance (NMR), LCMS, and 
gas chromatography–mass spectrometry (GC–MS) metabolomics data, yielding high accuracy and low feature 
count models for potential metabolite-based diagnostics for conditions such stress, pneumonia, and  cancer15–19. 
Evaluations of several ML methods across many different types of metabolomics data can be  found19,20. In par-
ticular, SSVM and support vector machines with recursive feature elimination (SVM-RFE) have been successful 
in identifying important metabolic biomarkers for different  cancers17,18. A review of the various predictive and 
ML models that have been used in metabolomics data can be found in Ghosh et al.21.

Previously, sparse linear statistical models, such as LASSO and elastic net, have been used to identify serum 
metabolite biomarkers and build classification models for distinguishing specific Lyme disease manifestations 
from healthy  controls5,6,22. Using SSVM with iterative feature removal (IFR), we improve upon these previous 
methods, and show that our selected biomarkers and classification model yields greater than a 95% balanced suc-
ces rate (BSR) on a sequestered (held-out) test set of serum samples; potentially paving the way for a metabolite 
based diagnostic test for Lyme  disease23.

Results
Method overview. Early Lyme disease and healthy control serum samples, previously analyzed by LCMS as 
two separate batches (discovery/training and test), were utilized in this  study24. A total of 118 training and 118 
test serum samples were included. The LCMS data acquired previously were processed using  XCMS24,25. A list 
of 4851 features were detected in the training samples. After the untargeted selection in XCMS we checked for 
missingness in the data to identify features with missing values in more than 80% of training samples (both the 
Lyme disease and the healthy groups)—none of features met this criterion. The abundance value for each feature 
was transformed by either the log transform, standardization (mean = 0 , variance = 1 ), median-fold change 
normalization, or left  untransformed26. Missing data were imputed using the k-nearest neighbors (KNN) algo-
rithm. Uniform manifold approximation and projection (UMAP) was applied as a visualization tool for identify-
ing possible batch effects in the  data27. To bring together sample-batches of the same group, we utilized an IFR 
algorithm, Algorithm 1, paired with a SSVM classifier to identify and remove batch-discriminatory  features8,23. 
This was performed for the data generated by each transformation scheme.

Once sample-batch effect features were removed, feature selection for differentiation of Lyme disease vs 
healthy controls was performed with k-fold feature selection (kFFS), using SSVM as the classifier. We obtained 
a selected feature set for each data transformation scheme and these features were then combined, and the raw 
LCMS and LCMS/MS data of each selected feature evaluated to determine appropriateness as a potential classify-
ing feature (i.e. mono-isotopic vs isotopic ion, intact vs insource fragment ion, and ion intensity). This resulted in 
a final biosignature of 42 high quality features. These were targeted in both the training and test samples’ data in 
the Skyline software to ensure accurate peak  picking28. As a final step abundance data acquired via Skyline were 
log transformed, used to train an SSVM classifier with training samples’ data, and tested against the test samples’ 
data. The pipeline described is provided as python scripts contained in our github  repository29—the reposi-
tory contains all python libaries, scripts, and data necessary to reproduce the results of the paper. However, due 
to the random choice of partitions in the cross-validation scheme used in both IFR and kFFS small differences 
in the resulting feature sets may occur.

Evaluation of transformation and imputation methods. Prior to the development of a differen-
tiating biosignature and classifier, we evaluated 18 different combinations of transformation and imputation 
methods with the 4851 features found in training samples. This included median imputation, knn imputa-
tion, half-minimum imputation, standardization, log transformation, quantile normalization, and median-fold 
change  normalization26,30. This demonstrated that KNN imputation with log transformation on training sam-
ples provided the highest mean fivefold cross-validation accuracy (99.8%, 0.3%) when an SSVM classifier was 
applied. Median imputation with log transformation performed similarly (99.7%, 0.4%). Both standardization 
and median-fold change normalization obtained relatively high accuracy scores with low standard deviations 
when paired with KNN imputation. Thus, four transformation-imputation methods were moved forward for 
biosignature development. The complete results of this experiment can be found in the Supplementary_
Data directory of our github  repository29.

Batch correction. The structure of the training samples’ data generated with the four transformation/impu-
tation schemes was visualized by UMAP. As exemplified in Fig. 1a with data generated by log transformation 
and KNN imputation there was a clear separation of the early Lyme disease and the healthy control samples. 
However, there was a more pronounced separation of the healthy control group based on the site of sample 
collection. To remove those features responsible for the separation of the two healthy control groups, IFR with 
SSVM was applied until the mean BSR of a twofold cross-validation fell below 60% for classification of healthy 
control samples based on collection site. The number of features that contributed to the batch effect was depend-
ent on the transformation/imputation method applied. Specifically, 2198, 206, 682 and 147 were identified from 
the log/knn, median-fold change/knn, standard/knn and raw/knn methods, respectively. Once removed from 
the original 4851 feature list UMAP visualization demonstrated that the batch effect disappeared for the healthy 
control samples (Fig. 1b). Additionally, the early disseminated Lyme disease (EDL) and early localized Lyme 
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disease (ELL) groups remained together with a small subgroup of EDL remaining separated. Conversely, when 
UMAP was applied to the to the 2198 log/knn features removed by IFR a distinct separation occurs between the 
healthy controls based on sample collection site, but there was still separation between early Lyme disease and 
healthy controls. Thus, those features that were responsible for the healthy control batch effect also possessed the 
ability to separate samples based on disease state (Fig. 1c). Refer to Supplemental Fig. S1a–c in the Supplemental 
Material for UMAP visualizations of the data pre-IFR, post-IFR, and restricted to IFR features for each of the 3 
other transformation/imputation methods used.

Biomarker selection. SSVM was applied with kFFS to select features that could populate an early Lyme 
disease versus healthy control biosignature. This process was performed using the features that remained after 
correcting the healthy control batch effect, see the “Results” section for details on the number of features removed 
for each method. This process was applied independently for each data set derived with the four transforma-
tion/imputation schemes. An evaluation of feature weights from each fold of SSVM revealed a clear separation 
between discriminatory and non-discriminatory features for all transformation/imputation schemes (Fig. 2). The 
smallest separation between discriminatory and non-discriminatory features occurred with the data obtained 
by the raw/knn scheme. Across all five SSVM folds, a total of 116, 48, 132, and 3164 features from the log/knn, 
median-fold change/knn, standard/knn, and raw/knn schemes, respectively, were defined as discriminatory for 
early Lyme disease. The accuracy of each SSVM model was assessed by fivefold cross-validation (Table 1), and 
revealed an accuracy of greater than 92%, regardless of the transformation/imputation scheme. The standard/
knn scheme produced the highest mean accuracy (98.0%, 1.4%) with 13 top discriminatory features selected for 
separating early Lyme disease and healthy control groups. To limit the number of features included in a final 
biosignature we selected the top five discriminatory features across each SSVM fold for each transformation/
imputation scheme. Once overlapping features were removed, 45 distinct biomarkers were selected (Table 2). 
Figure 3 validates the 45-feature biosignature on the training samples—showing a clear separation between the 
healthy and Lyme disease classes.

Figure 1.  (a) UMAP visualization of log transformed and KNN imputed LC-MS data from training samples. 
EDL early disseminated Lyme disease, ELL early localized Lyme disease, HCN healthy control non-endemic, 
HCE1 healthy control endemic site 1. (b) UMAP visualization of log transformed and KNN imputed LC-MS 
data from training samples post IFR. EDL early disseminated Lyme disease, ELL early localized Lyme disease, 
HCN healthy control non-endemic, HCE1 healthy control endemic site 1. (c) UMAP visualization of log 
transformed and KNN imputed LC-MS data from training samples restricted to the features found by IFR. EDL 
early disseminated Lyme disease, ELL early localized Lyme disease, HCN healthy control non-endemic, HCE1 
healthy control endemic site 1.
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Lyme classification. Here we present the results of our classification experiment on test samples. The test 
samples were comprised of a separate set of early Lyme disease patient samples obtained from NYMC and 
healthy control samples obtained from NYMC and Tufts. These test samples were also analysed using LCMS at a 
separate time than the training samples. For this experiment both training and test LCMS samples were targeted 
in Skyline at the 42 biomarkers derived from the 45 biomarkers described above; see the “Methods” section for 
more details. After log transforming the features and training an SSVM classifier on the entire training set, we 
measured the classifiers performance on the set of 118 sequestered test samples.

Labeling positive as Lyme disease and negative as control, we recorded a BSR of 98.13%, a specificity (TNR) 
of 100.00%, and a sensitivity (TPR) of 96.25%. The confusion matrix can be viewed in Table 3, and all the related 
statistical test scores can be view in Table 4. Repeating our same pipeline with 42 randomly selected features, 
including manual inspection, we obtain a high training sensitivity and specificity (98.28%, 98.33%). For the test 
statistics we obtain a test specificity of 100.00%, but test sensitivity suffers greatly (36.25%)—classifying almost 
all the samples as healthy.

Figure 4a,b show the training and test samples projected onto the hyperplane normal of the SSVM training 
model, along with a 1-dimensional PCA embedding of the orthogonal space to the hyperplane normal. As con-
firmed by Table 3, we see that all 3 Lyme disease samples misclassified as healthy were EDL. In general, we see 
that EDL is closer to the hyperplane (decision) boundary than its Lyme counterpart ELL; of the healthy samples, 
healthy control endemic site 1 (HCE1) were closest to the hyperplane (decision) boundary. When viewing the 
data parallel to the hyperplane of the SSVM model we noticed that there is a significant batch effect between 
training and test samples.

Metabolite class validation. The biological relevance of the 42 biomarkers selected by SSVM using the 
training data were further investigated by LCMS/MS. Of the 42 biomarkers, MS/MS spectra could be obtained 
for 33 (Table 5). Using the MS/MS data biomarkers, some level of structural identification was achieved for 
17 features, with eight having a level 1 or 2 structure  identification31. These 17 features fell into the following 

Figure 2.  Magnitude of weights in SSVM model used in kFFS on training samples. The labels at the bottom 
indicate the transformation/imputation scheme used on the data, while the numeric ticks indicate the fold in 
kFFS.

Table 1.  Fivefold LCMS accuracy and standard deviation scores for several transformation and imputation 
schemes post feature selection.

Method Mean fivefold accuracy (%) Standard deviation (%)

Raw peak areas/KNN imputed 95.6 2.8

Standardized/KNN imputed 98.0 1.4

Log transformed/KNN imputed 97.6 1.6

Median-fold change normalized/KNN imputed 92.9 2.4
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Table 2.  Biomarkers selected by kFFS on training samples. The RT column indicates the retention time in 
seconds. The M/Z column indicates the mass divided by charge of the metabolite. The percent missing column 
indicates the percentage of samples that were missing the specific feature. The occurrence column indicates 
how many times the feature occurred across the fivefold in kFFS. The method indicates the normalization/
imputation method used. A (*) on a feature indicates that it was picked more than once across methods.

Method RT (s) m/z Percent missing Occurence Notes

None/KNN

1103.504 481.349 0.00 5 Targeted m/z 480.3453

1256.933* 469.389* 0.00 4

255.29* 227.087* 0.00 3

1172.216 746.563 14.41 3

96.231 120.081 5.93 1 Targeted m/z 166.0862

134.919 188.069 0.00 1 Targeted m/z 205.09718

958.025 244.263 0.00 1

240.743 * 247.142* 0.00 1

684.719 314.157 0.00 1 Targeted m/z 313.1535

1184.953 341.248 0.00 1

1321.413 449.266 0.00 1

710.183 472.239 0.85 1 Targeted m/z 471.7369

1165.713 508.377 0.00 1

845.998* 831.646* 0.00 1

Median fold change/KNN

1018.741 174.131 0.85 4

255.29* 227.087* 0.00 4

748.564 1240.487 0.00 4 Not targeted, Isotopic peak of m/z 1238.496

240.743* 247.142* 0.00 2

1256.933* 469.389* 0.00 2

1164.732 470.352 0.00 2

845.772 831.846 0.85 2

959.672 286.144 0.00 1

1195.622 331.225 0.00 1

891.151 829.697 0.00% 1

926.235 1086.303 0.00% 1

746.33 1238.496 2.54 1

Log/KNN

737.416 280.151 5.08 5

739.352* 152.016* 0.00 4

1129.774 803.572 22.03 4

739.409 238.089 38.14 2

642.845 358.242 0.85 2

721.821* 504.337* 0.00 2

835.911 1042.803 7.63 2 Targeted m/z 1042.5782

146.315 181.07 0.85 1

1034.796 567.402 0.85 1 Targeted m/z 566.3996

1078.422 786.549 14.41 1 Targeted m/z 785.5421

837.161 834.244 1.69 1

Standard/KNN

967.457 194.117 1.69 4

1045.362 478.348 4.24 3

721.821* 504.337* 0.00 3

739.352* 152.016* 0.00 2

255.162 169.084 0.00 2

984.816 174.127 2.54 2 Not targeted, not present in both LCMS runs

1231.212 429.322 2.54 2 Targeted m/z 428.3219

758.53 671.999 5.93 2 Targeted m/z 670.9956

1179.631 293.401 0.85 1

1192.645 317.407 1.69 1 Targeted m/z 317.2475

1016.034 493.353 2.54 1

1711.489 814.687 0.00 1 Targeted m/z 813.6872

954.18 1569.349 0.00 1 Not targeted, atypical MS spectra

845.998* 831.646* 0.00 1
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metabolite super classes: organic acids and derivatives, organoheterocyclic compounds, alkaloids and deriva-
tives, organic oxygen compounds, lipid and lipid-like molecules, and organic polymers.

Manual inspection of the 45 biomarkers selected by SSVM revealed that monoisotopic peaks were not selected 
in the original list and thus the monoisotopic m/z values were used to replace the original m/z values as indicated 
in Table 2. Upon evaluation of MS/MS spectra for feature ID 902 (m/z 317.4072, RT 19.92 min), it was discovered 
that a co-eluting ion with m/z 317.2475 had a higher abundance and matched the spectra of the [M+H-H2O]+ 
adduct of 14(15)-Epoxy-5Z,8Z,11Z-eicosatrienoic acid in the NIST database. This m/z was present in the list of 

Figure 3.  PCA visualization of log transformed and KNN imputed LC-MS data from training samples 
restricted to the optimal 45 features found by kFFS.

Table 3.  Confusion matrix for classification of test samples restricted to 42 selected biomarkers with LCMS 
classifier using log normalized features.

Predicted Lyme
Predicted 
healthy

True Lyme
ELL 40

77
0

3
EDL 37 3

True healthy
HCE1 0

0
30

38
HCE2 0 8

Table 4.  Statistical scores (lyme = positive) for classification of test samples restricted to 42 selected 
biomarkers with LCMS classifier using log transformed features.

Scoring method Score (%)

Test sensitivity (TPR) 96.25

Test specificity (TNR) 100.00

Test false discovery rate (FDR) 0.00

Test false omission rate (FOR) 7.32

Test accuracy 97.46

Test balanced success rate (BSR) 98.13
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Figure 4.  (a) Projection of log transformed health state labeled training and test samples onto SSVM hyperplane normal, represented 
as the x-axis. The y-axis represent the first principal component in the PCA decomposition of the training and test samples projected 
onto the orthogonal space of the hyperplane normal. The solid line indicates the hyperplane boundary, or decision boundary. Relative 
distance from the decision boundary indicates how strong the classification is; further is stronger, while closer is weaker. The dotted 
lines indicate the hyperplane margins. (b) Projection of log transformed disease state labeled training and test samples onto SSVM 
hyperplane normal, represented as the x-axis. The y-axis represent the first principal component in the PCA decomposition of the 
training and test samples projected onto the orthogonal space of the hyperplane normal. The solid line indicates the hyperplane 
boundary, or decision boundary. Relative distance from the decision boundary indicates how strong the classification is; further is 
stronger, while closer is weaker. The dotted lines indicate the hyperplane margins. EDL  early disseminated Lyme disease, ELL early 
localized Lyme disease, HCN healthy control non-endemic, HCE1 healthy control endemic site 1, HCE2 healthy control endemic site 2.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1478  | https://doi.org/10.1038/s41598-022-05451-0

www.nature.com/scientificreports/

discriminatory features identified using kFFS, but was not in the cut-off used to select the top 42 features. Thus, 
the m/z 317.4072 ion was replaced by m/z 317.2475 as a discriminatory feature.

Additionally, there were three biomarkers that were removed from Table 2 following manual inspection. Spe-
cifically, feature ID 4698 (m/z 1240.487, RT 748.564 s) was the isotopic peak for another feature already included; 
feature ID 4694 (m/z 1238.496, RT 746.33 s). Feature ID 269 (m/z 174.127, RT 984.816 s) was not present in 

Table 5.  MSMS results of selected biomarkers selected by kFFS. The RT column indicates the retention time 
in minutes. The M/Z column indicates the mass divided by charge of the metabolite.

RT (m) m/z MS/MS Structural ID Level Description

2.46 181.070201 Yes Theobromine 1 Organoheterocyclic compounds/imidazopyrimidines/purines and 
purine derivatives

2.78 205.09718 Yes Tryptophan 1 Organoheterocyclic compounds/indoles and derivatives/indolyl 
carboxylic acids and derivatives

16.09 286.143724 Yes Piperine 1 Alkaloids and derivatives

1.81 166.0862 Yes Phenylalanine 1 Organic acids and derivatives/carboxylic acids and derivatives/amino 
acids, peptides, and analogues

11.42 313.1535 Yes Phe–Phe 2 Organic acids and derivatives/carboxylic acids and derivatives/amino 
acids, peptides, and analogues

19.92 317.247506 Yes 14(15)-Epoxy-5Z,8Z,11Z-eicosatrienoic acid [M-H2O]+ 2 Lipids and lipid-like molecules/Fatty acyls/fatty acids and conjugates

19.54 508.377209 yes PC(O-18:0/0:0) 2 Lipids and lipid-like molecules/glycerophospholipids/glycerophos-
phocholines

18.47 480.3453 Yes PC(P-16:0/0:0) 2 Lipids and lipid-like molecules/glycerophospholipids/glycerophos-
phocholines

4.7 227.087183 Yes Na+ adduct of lactone (similar fragmentation to cis-jasmone) 3 Organic oxygen compounds/organooxygen compounds/carbonyl 
compounds

2.74 247.142426 Yes Related to tryptophan 3 Organoheterocyclic compounds/indoles and derivatives/indolyl 
carboxylic acids and derivatives

21.13 469.389367 Yes Unsaturated alkyl chain 3 Lipids and lipid-like molecules/fatty acyls/fatty acids and conjugates

14.96 829.696851 Yes Peptide 3 Organic polymers/polypeptides

14.13 831.845956 Yes Peptide 3 Organic polymers/polypeptides

15.46 1086.303121 Yes Peptide 3 Organic polymers/polypeptides

12.55 1238.496491 Yes Peptide 3 Organic polymers/polypeptides

19.63 746.563218 Yes Peptide 3 Organic polymers/polypeptides

14.13 831.646014 Yes Peptide 3 Organic polymers/polypeptides

12.42 152.016163 Yes 4

4.27 169.084118 Yes 4

16.99 174.130592 Yes 4

12.42 238.089239 Yes 4

19.7 293.400601 Yes 4

19.58 341.248414 Yes 4

10.78 358.242021 Yes 4

20.6 428.3219 Yes 4

11.79 471.7369 Yes 4

17.63 478.347583 Yes 4

16.98 493.352828 Yes 4

12.12 504.336795 Yes 4

17.3 566.3996 Yes 4

12.64 670.9956 Yes 4

18.04 785.5421 Yes 4

16.23 194.117098 No

16.03 244.263279 No

12.4 280.151108 No

19.92 331.224627 No

22.23 449.266367 No

19.53 470.351806 No

18.95 803.571864 No

28.49 813.6872 No

14.13 834.244267 No

13.84 1042.5782 No
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both training and test LCMS runs. Feature ID 4846 (m/z 1569.349, RT 954.18 s) had atypical MS spectra. The 
remaining 42 features were present among all training and test samples.

Discussion
Our end-to-end pipeline starts with a large set of features detected through a non-targeted metabolomics experi-
ment and produces an optimal set of targeted discriminatory features capable of identifying out-of-sample Lyme 
disease patients with high accuracy. This pipeline has significant potential for the development of additional ML 
based LCMS diagnostic tests.

In particular, our SSVM classification model classified a sequestered batch of LCMS samples as healthy or 
having Lyme disease with a 98.13% balanced success rate, 96.25% sensitivity, and 100.00% specificity, see Table 4. 
The high classification results are strengthened by the apparent batch effect between training and test samples 
post-Skyline targeting, see Fig. 4a,b. This indicates that our features from the training generalize and that we 
may be able to classify incoming samples from different batches with high accuracy.

Relative to the 44 LC-MS biomarkers discovered and LASSO diagnostic developed in Molins et al. our SSVM 
diagnostic shows an 8.35% increase in test sensitivity and a 5.00% increase in test  specificity5. Our results are 
strengthened by the fact that in Molins et. al. all of the test data participated in the same LC-MS runs as the 
training data—which was used to build their final LASSO model. Our test samples were completely sequestered 
from the training data which includes the step of being processed by LC-MS (3 month gap), so that none of test 
samples were run with any of the training samples. Our diagnostic greatly outperforms the models developed 
in Clarke et al. on 50 peripheral blood mononuclear cell (PBMC) RNA seq  biomarkers32. The highest scoring 
logistic regression model on 50 biomarkers of Clarke et al. yielded approximately (50% TPR, 0% FPR) and 
(100% Precision, 50% Recall) as observed from their ROC and Precision-Recall curves; this is in contrast to our 
models (96.25% TPR, 0.00% FPR) and (100.00% Precision, 96.25% Recall). Clarke et al. has each of their batches 
represented in both training and test—yielding a significantly weaker model than ours, where training and test 
data are split into separate LCMS batches.

Pegalajar et al. tests the diagnostic capability of their positive-ion and negative-ion mode LC-MS urine 
biosignatures for discriminating EDL and Healthy controls using linear discriminant analysis (LDA) in a leave-
one-out (LOO) experiment where training data and test data are run in the same  batch11. Our SSVM diagnostic 
outperforms their best results of 86% TPR and 86% TNR using their positive-ion mode biosignature ( ≤ 1262 
metabolites). Huang et al. performs analogous experiment to ours, with weaker performance, to discover a 
metabolic biosignature which can discriminate between early-stage lung adenocarcinoma (LA) and healthy 
 controls33. For their sparse classification model they used an elastic net regularized logistic regression model 
consisting of a 7 metabolite biosignature—recording 88.57% sensitivity and 91.30% specificity on a sequestered 
batch of test samples.

Not only did our 42 features classify Lyme disease patients with high accuracy, our features were present in 
all samples upon manual inspection and they are tied to metabolic processes altered during Lyme disease. The 
included features belong to glycerophospholipid, eicosanoid, tryptophan and phenylalanine metabolic pathways 
previously shown to be altered during Lyme  disease10,11,24. As these pathways have come up multiple times, fur-
ther investigation into the classification efficacy of all metabolites in these pathways may provide a more robust 
classifier for Lyme disease. Our null experiment, see the “Results” section, shows that our features generalize to 
a separate batch of samples by maintaining consistency between training and test statistics. In the case of the 
random features, the SSVM model over-fits to the data and is unable to capture the actual signal of the disease 
state with respect to those features. Additional analyses of how these metabolites classify Lyme disease patients 
from clinical controls with symptoms, but not Lyme disease are required to understand the real diagnostic 
potential of these features.

More data needs to be acquired and further analysis needs to be performed to assess the efficacy of the clas-
sification model on health states outside of Lyme disease. For example, the model we built used only healthy 
controls, but it would valuable to see the classification results of patients infected with the common cold or 
influenza. In future work we propose to extend this test beyond distinguishing between suspected Lyme disease 
and actual Lyme disease to more specific disease identification.

Methods
LCMS analysis. Serum sample LCMS data acquired previously was  utilized24. Detailed methods for metab-
olite extraction and LCMS analysis can be found in the cited publication.

Data partitioning. Early Lyme disease and healthy control serum samples, previously analyzed by LCMS 
as two separate batches, were utilized in this  study24. These two independently processed batches formed our 
118 training samples and 118 sequestered test samples respectively. Samples were categorized by the health state 
labels: EDL, ELL, healthy control non-endemic (HCN), HCE1, and healthy control endemic site 2 (HCE2). 
Training samples were partitioned as 30 EDL, 30 ELL, 28 HCN, and 30 HCE1. Test samples were partitioned as 
40 EDL, 40 ELL, 30 HCE1, and 8 HCE2. We label a sample as Lyme disease if it belongs to either the ELL or EDL 
group, and label a sample as healthy if it belongs to the HCE1, HCN, or HCE2 group.

Untargeted and targeted peak identification. For untargeted feature selection, raw data files were 
converted into mzML format files using MSConvert (Proteowizard) and then processed using XCMS (3.6.2) 
in R (3.6.1)25,34. Peak detection was performed using the centWave  algorithm35. Default parameters were used 
except for ppm = 30, peakwidth = c(10,30), and noise = 2000). Peak alignment by retention time was carried out 
using the obiwarp method with binSize = 0.6 and specifying the centerSample as the sample that was measured 
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in middle of the LCMS  run36. Quality control included manual inspection of plots of total ion counts and speci-
fied peaks by retention time. Peaks were grouped using the peak density method with default parameters except 
bw = 5 and minfrac = 0.425.

Features selected by kFFS were manually inspected to determine peak quality, whether the monoisotopic 
peak was chosen, any possible adducts, and feature presence in both runs. After manual evaluation, good quality 
features were targeted in both the training and test sets using Skyline with suggested  settings28,37. Each peak was 
manually evaluated to ensure correct integration before exporting peak area values.

Cleaning, imputing, and normalizing. As a first step, any metabolites which were missing in more than 
80% of samples across each class of healthy or Lyme disease were removed. No features in our list met this crite-
rion and so no features were removed. All samples with missing values were imputed by the KNN  algorithm38. 
KNN imputes missing data in a sample by finding its k-nearest neighbors, taking the mean of a feature with 
respect to its neighbors, and then imputing that value for the missing feature. Wahl et al. concludes that KNN 
imputation performs well across several evaluation schemes and computationally takes less  resources39. Modified 
versions of the KNN imputation algorithm, such as normalized No-Skip KNN (NS-KNN), have been proposed 
and may even outperform the standard algorithm for real datasets when a significant portion of the missing data 
is Missing Not at Random (MNAR)  type38. For this particular application we used k = 5 and implemented the 
algorithm via the python package missingpy.

Once imputed, the samples were transformed by either the log2 transform, standardization, median-fold 
change normalization, or using raw peak  areas40. Standardization is defined as shifting and scaling each feature 
so that its mean is 0 and its variance is 1 across samples. These transformation schemes were chosen to be the 
best with respect to the classification accuracy of the SSVM model on the training data, amongst other transfor-
mation schemes such as quantile  normalization26; see the Supplemental_Data directory in our github 
repository for our complete transformation/imputation  experiment29.

Sparse support vector machines. We classify samples into two classes of healthy, C− , and Lyme disease, 
C+ , using a variation of SVM called  SSVM8,41. Each sample x can be viewed as vector living in Rn where n is 
the number of features/biomarkers/measurements. SVM classifies samples by first constructing a hyperplane 
H ⊂ R

n which best separates the training samples into C− and C+ . SSVM alters SVM by finding a hyperplane 
which, in addition to separating the two classes, uses relatively few features compared to the entire feature space. 
Explicitly, we solve the convex optimization problem

where X is the m× n matrix whose ith row X(i) ∈ R
n is the feature vector for the ith sample, Y is the m×m 

diagonal matrix whose entries are either + 1 or − 1 corresponding the class labels of samples, ξ ∈ R
m is the vector 

of penalties for samples violating the hyperplane boundary, C is a tuning parameter for balancing the misclassifi-
cation rate against the sparsity, e is the vector of all 1’s in the appropriate dimension space, w is the normal vector 
to the hyperplane H , and b is the scalar affine shift of the hyperplane H . It is known that minimizing the 1-norm 
of w promotes sparsity in the components of w42,43. That is w will have relatively few large components while its 
many other components will be near zero, see Fig. 2. It appears to be a special feature of SSVM that there is an 
abrupt drop in feature size, i.e., often on the order of a 100–1000 factor reduction, see Fig. 2. Features correspond-
ing to large components in w are chosen to build a sparse model. We solve (1) by first transforming the convex 
optimization problem into a linear program via a simple substitution and then applying a primal-dual interior 
point method using our own in-house python package calcom—provided in our github  repository29,44,45.

k‑fold feature selection (kFFS). We selected features/biomarkers using a new method: kFFS. First, we 
randomly partitioned training samples into k non-overlapping and equally-sized parts. We then chose k − 1 
parts as a training set for an SSVM classifier and then validated the classifier on the withheld part. There are k 
ways to choose k − 1 parts from k parts—therefore we obtained a k-fold experiment, known as k-fold cross vali-
dation (cross-validation). For each fold of the experiment we extracted features, ordered them by the absolute 
value of their weight in the SSVM model, grabbed the top p ≤ n features from each fold, collected them into a 
common list of features, and then ordered the list by feature occurrence across the k folds, see Fig. 5a. For the 
results of our paper we used k = 5 and an p = 5 . Using multiple folds for feature selection brings in features from 
sub-populations of the data that may not be captured by using the training set as a whole. Ordering by frequency 
shows which of those features generalize to the entire training set.

Batch correction. For batch correction we used an IFR technique, which we simply call IFR, to remove fea-
tures discriminating between HCN and HCE1 control groups in the training  set23. Specifically, we perform kFFS 
( k = 2 , n = 5 ) between the training HCE1 and HCN groups, obtain a set of discriminatory features, remove 
these features, and then repeat the process until the mean 2-fold cross-validation accuracy of the SSVM classifier 
goes below 60% , see Algorithm 1.

To evaluate the efficacy of IFR for batch correction we utilized the visualization tool UMAP. UMAP attempts 
to embed data into a lower dimensional space so that it is approximately uniformly distributed and its local 
geometry is  preserved27. UMAP does so by representing each k-neighborhood of a sample as a weighted graph, 
“gluing” these graphs together over all samples, and then approximating the resulting global structure in a lower 
dimensional space.

(1)min
w,ξ ,b

�w�1 + CeTξ subject to Y(Xw − be)+ ξ ≥ e, ξ ≥ 0,
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If it happens that a point has most of its neighbors from the same class or batch then this point will be pulled 
in that direction in the embedding; making it a great tool for visualizing batch effects in data. We used the 
python package umap-learn with parameters min_dist= .1 , n_neighbors= 15 , n_components= 2 
for our UMAP visualizations. See Tran et al. for UMAP applied to several genomics data  sets46.

Figure 5.  (a) Diagram of kFFS. (b) Diagram of building the final model.
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Classification. Once we removed features for batch effects we restricted the training data to the remain-
ing features, and we then either log2 transformed, standardized, median-fold change normalized, or did not 
transform the training data. Once transformed we imputed the training samples using the KNN algorithm. We 
performed a fivefold cross-validation experiment with an SSVM classifier, while varying the hyper-parameter 
C in Eq. (1). C was chosen so that it was as small as possible (promoting sparsity), while simultaneous yielding 
high accuracy and small variance, see Fig. 6.

We classified test samples by first restricting both the training data and test data to the selected features; 
found by the methods above. We restricted the samples by first targeting these features in Skyline. Once these 
new feature sets were obtained they were log2 transformed and a SSVM classifier was trained and tuned on all 
of the training samples. We then evaluated the performance of the classifier on the sequestered test samples via 
confusion matrix, see Fig. 5b for a diagram of the classification pipeline.

Figure 6.  Fivefold classification accuracy of SSVM model for different values the hyper-parameter C. The solid 
line indicates the mean accuracy across fivefold while the shaded regions indicate 1 standard deviation of the 
accuracy.
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Metabolite class validation. Confirmation of the chemical structure of selected molecular features (MF) 
was performed by LCMS/MS. MS/MS spectra were manually evaluated using MassHunter Qualitative software 
(Agilent Technologies)47. MS/MS spectra were compared with available spectra in Metlin and NIST databases. 
The level of structural identification followed refined Metabolomics Standards Initiative guidelines proposed by 
Schymanski et al.31.
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