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ABSTRACT
The contribution of DNA-methylation based gene silencing to carcinogenesis is well established. 
Increasingly, DNA-methylation is examined using genome-wide techniques, with recent public 
efforts yielding immense data sets of diverse malignancies representing the vast majority of 
human cancer related disease burden. Whereas mutation events may group preferentially or in 
high frequency with a given histology, mutations are poor classifiers of tumour type. Here we 
examine the hypothesis that cancer-specific DNA-methylation reflects the tissue of origin or 
carcinogenic risk factor, and these methylation abnormalities may be used to faithfully classify 
tumours according to histology. We present an analysis of 7427 tumours representing 19 human 
malignancies and 708 normal samples demonstrating that specific tumour changes in methylation 
can correctly determine site of origin and tumour histology with 86% overall accuracy. 
Examination of misclassified tumours reveals underlying shared biology as the source of mis
classifications, including common cell of origin or risk factors.
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Introduction

Widespread changes in DNA methylation, following 
alterations in the systems that regulate chromatin 
architecture, are a key component of tumorigenesis. 
In the classical understanding, DNA methylation in 
carcinogenesis results in silencing of tumour- 
suppressor genes by the addition of a methyl group 
to cytosines in CpG islands of a gene promoter [1]. 
The potential for using cancer specific changes in 
DNA methylation for molecular detection is being 
widely explored [2,3]. CpG dinucleotides exist 
throughout the genome with varying functional impli
cations and propensity for methylation and demethy
lation in different cellular states. Additionally, the co- 
presence of repressive and activation chromatin marks 
such as histone 3, lysine 27 tri-methylation 
(H3K27me3) and histone 3, lysine 4 tri-methylation 
(H3K4me3) in embryonic stem cells [4] predispose 
loci to methylation/demethylation during the trans
formation from benign tissue to malignancy [5]. 
These predisposing marks, so-called bivalency, sug
gest that many loci which become methylated in 

cancer may be shared among many tumour types. 
However, because these predisposing marks diverge 
during tissue differentiation [6], it might be expected 
that some cancer-specific promoter methylation 
would also diverge between different cancers arising 
from different tissues.

Recent studies have explored the use of gen
ome-wide patterns of DNA methylation for distin
guishing cancer from normal, and for 
characterizing tumour histology [7–14]. For exam
ple, the use of DNA methylation differences to 
distinguishing tumour subtypes within a specific 
tumour type, such as chronic lymphocytic leukae
mia (CLL) [7,8], or to distinguish primary brain 
tumours from different metastatic tumours [9] has 
shown the promise of DNA methylation changes. 
These patterns have also been explored for identi
fying primary sites for metastases of unknown 
origin [10], and tissue source sites for cell-free 
tumour DNA circulating in blood [11]. These stu
dies demonstrate the potential of DNA methyla
tion profiles, but also highlight remaining 
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challenges. For example, CancerLocator, by Kang 
et al. [11], established proof of principle using 
simulations driven by DNA methylation levels 
measured in the blood of cancer patients, but the 
study was limited by sample availability to 
a relatively small sample size representing only 4 
tumour types. Xia et al [12]. demonstrated that 
tissue of origin can be detected by training 
a classifier with a small set of CpG probes, but 
focused on tissue samples rather than considering 
that these differences must also distinguish from 
normal cell methylation, critical for use in early 
detection. Tang et al. [13], achieve excellent per
formance using random forest models on 14 
tumour types. However, their tumour specific 
models each use between 9 and 738 CpG sites 
(colorectal and pancreas, respectively) and the 
entire classifier uses 5457 distinct CpGs, impracti
cal for many clinical settings. Similarly, Shen et al. 
[14] developed and validated an assay exploring 
differences in Differentially Methylated Regions 
from 15,000 to 95,000 regions to identify methy
lome changes reflective of cancer from circulating 
DNA. In addition to designing a small panel of 
markers with excellent informatic sensitivity and 
discriminative capacity, no prior study has system
atically characterized misclassifications. The tradi
tional, anatomically defined taxonomy of tumours 
disguises a significantly more complicated, under
lying biology, and molecular tumour classifiers can 
be expected to better reflect the latter. The objec
tive of the current work is to describe a relatively 
simple panel of markers with low complexity in 
both assay ability and interpretation for subse
quent validation.

The primary goal of this study is to investigate 
how tumour classification is limited by tumour 
biology shared across anatomical categories. 
Secondarily, we consider the size of the classifier, 
in anticipation of its use in small samples obtained 
from fluid. To this end, we examined the compre
hensive DNA methylation data collected in the 
Cancer Genome Atlas (TCGA) to uncover fre
quent DNA methylation changes which could be 
used for detection in many malignancies, and 
whether differences in patterns of methylation 
could be potentially diagnostic and reflect tumour 
biology.

Results

Universal DNA methylation marks of cancer

Working from the principle that the greatest clinical 
utility for DNA methylation detection would be in 
those cancers with the greatest incidence and mortal
ity, we started our analysis with five core human 
malignancies (core cancers) that together account 
for a large proportion of cancer cases: lung squamous 
(LUSC) and non-squamous carcinoma (LUAD), 
breast (BRCA), colon (COAD), and prostate cancers 
(PRAD) (marked in grey in Table S1). According to 
the Surveillance, Epidemiology, and End Results 
(SEER) Program, these tumours types account for 
47% of cancer cases and 46% of deaths (https://seer. 
cancer.gov/statfacts/html/common.html).

Candidate DNA methylation markers were 
required to show significant mean difference 
between tumours and normal in the training data 
set, and at least 60% of tumours had to exhibit the 
aberrant pattern of methylation (see Methods for 
details). We split the core cancer data into training 
and validation sets, and fit a random forest model on 
the training partition to predict tumour/normal sta
tus using the candidate markers and used the Boruta 
algorithm for further variable selection. This process 
yielded 73 CpG probes (32 where tumours were 
hyper-methylated compared to normals, and 41 
where they were hypo-methylated, Table S2) and 
with these loci the final model achieved 94% sensi
tivity and 98% specificity on the validation samples. 
To predict all 19 tumour types, a second random 
forest model using the same 73 probes, but retrained 
on a training set of 19 tumour types, afforded 86% 
sensitivity and 99% specificity on a validation set 
(Figure 1). At these levels of performance, applying 
the classifiers to a screening population with a 1% 
rate of cancer incidence would yield a positive pre
dictive value (PPV) of 32% for the initial 5 tumour 
version, and 46% for the full model. This compares 
favourably to reported PPVs of 25–30% for breast 
mammography [15].

Examining the misclassified samples provided 
insight into the limitations of this classifier. In addi
tion to the assigned sample class, the random forest 
provides the votes of individual trees, which serve as 
a predicted probability or confidence level for the 
call. For the majority of misclassified samples, the 
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predicted probability of being a tumour was between 
0.35 and 0.65 (Figure 1 and Table S3), meaning that 
individual trees disagreed on the call. In addition, the 
distribution of misclassifications differed among the 
malignancies studied. Most of the tumours misclas
sified as normal were from cancers with minimal 
DNA methylation alterations, such as thyroid cancer 
(THCA) [16] and kidney renal clear cell carcinoma 
(KIRC) [17] (Table S4). These tumour types might 
require different loci for detection, given the lower 
frequency of methylation of the loci directed at most 
other types of cancer. However, some of the misclas
sification events were of normal tissues which were 
called tumours. These misclassifications could repre
sent a challenge for the use of this approach in 
screening settings where the majority of subjects 
are cancer free and false positives could outnumber 
true positives. Two misclassified normal prostate 
samples had a TCGA notification as ‘Normal tissue 
contains tumor’ and one misclassified pancreatic 
cancer sample had a notification ‘this tumor is 

normal pancreas with atrophy’ (Table S3). Similar 
findings for other tumour types were encountered. 
These misclassifications highlight the challenges of 
using ‘normal’ tissue from regions adjacent to the 
tumour in TCGA, which may include tumour con
tamination or field changes where premalignant tis
sues contain changes found in the tumour. The 
creation of an accurate classifier will require addi
tional examination of a large set of truly normal 
samples. However, the differential methylation at 
these loci, where the majority of normal tissues 
were correctly classified, suggest that these loci may 
be used as broad, near universal, cancer detection 
targets and are not methylated in these tissues 
normally.

Histology-specific DNA methylation accurately 
distinguishes between five core malignancies

Beyond the potential for general cancer diagnosis, 
similar approaches have been used to identify loci 

Figure 1. Universal DNA methylation marks of cancer. A heatmap displays methylation beta values of 73 (32 hyper- and 41 hypo- 
methylated) probes in the validation set of 19 tumour types. The probes were selected on five core tumours by Boruta algorithm. 
Dark blue colour on the heatmap corresponds to fully methylated status (beta value = 1); white colour corresponds to unmethylated 
status (beta value = 0). CpG probes in rows are hierarchically clustered. Samples in columns are clustered by tumour type and by 
sample type (tumour and normal). Rows (probes) are annotated by direction of methylation comparing to normals (hyper- or hypo- 
methylated) and by proximity of a probe to CpG island. Columns (samples) are annotated by colour representing histologically 
confirmed tumour type (tumorType), sample type (tumour/normal), probability to be a tumour sample estimated by random forest 
model (prob.T), and if a sample was misclassified (misclass). A list of misclassified samples and corresponding probabilities are in 
Table S2. Tumour type abbreviations can be found in Table S1.
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that distinguish among cancers of different histol
ogies, yielding patterns of DNA methylation with 
discriminative capacity for segregating tumours 
according to histology. Most relevant to this 
study, Tang et al successfully used random forest 
models to distinguish TCGA tumour types. Their 
approach of fitting separate random forest models 
for each tumour type, and combining the results 
yielded a classifier incorporating more than 5000 
individual CpGs, prohibitive for application to 
liquid biopsy and other settings where low DNA 
yields are expected. This study differs by consider
ing much smaller panels of markers, and by 
emphasizing the biological implications of our 
misclassifications over simple accuracy. Using the 
training set of 500 samples from five core cancers 
(a hundred samples from each, we fit a random 
forest model to classify tumours by type, employ
ing the Boruta feature selection algorithm (see 
Methods for details), to select 305 probes (Figure 
2, Table S5). Using the remaining samples from 
these core cancers as a validation set (n = 1844), 

we tested this model (Table S6). Ninety-two 
per cent of BRCA, 98% of COAD, 100% of 
LUAD, 98% of LUSC, and 98% of PRAD samples 
were correctly classified as the correct histology. 
Such prediction accuracy suggests that even 
a small set of CpG probes could be sufficient in 
prediction tumour histology.

Histology-specific DNA methylation accurately 
classifies 19 human malignancies

Using the same set of 305 methylation probes 
derived from five core cancer types, we retrained 
the random forest model to predict all 19 tumour 
types. One hundred samples from each of histology 
were used for training (Figure 3) and the rest of the 
samples (n = 5527) for validation. The classifier 
accurately categorized samples according to histol
ogy with overall accuracy of 86% in the validation 
set (Figure 4), and the prediction accuracy for core 
tumours was 82% for BRCA, 96% for COAD, 100% 
for LUAD, 73% for LUSC, and 97% for PRAD. For 

Figure 2. Histology-specific markers for five core tumour types. A heatmap displays methylation beta values of 305 probes resulting 
from Boruta analysis of 100 tumours from each of 5 core tumour histologies to determine a classifier set of probes, as well as beta 
values of normal samples corresponding to five core tumours. CpG probes in rows are hierarchically clustered. Samples in columns 
are clustered by tumour type and by sample type (tumour and normal). The classification results on the validation set of core 
tumours are shown in Table S6. Annotation colours of rows and columns and the beta value colours are the same as on Figure 1. See 
Figure 1 legend for details.
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some core cancers the accuracy dropped signifi
cantly, which could be expected since the model is 
modified to predict multiple tumour types. 
Surprisingly, for some non-core tumours the pre
dictions were extremely high, e.g., 100% for acute 
myeloid leukaemia (LAML) and 97% for low-grade 
glioma (LGG) and 96% skin cutaneous melanoma 
(SKCM), likely due to the divergence of these malig
nancies from other histologies. This classifier set, 
derived from the most highly prevalent human 
malignancies, had extremely high discriminative 
capacity on all 19 cancer types.

Histology-specific DNA methylation classification 
for 19 human malignancies has similar accuracy 
when classifier derived from heterogeneous 
cancer types

To study the robustness of the classifier to the initial 
choice of core cancers, we selected an alternative set 
of five core cancers (marked in blue in Table S1) to 
derive a discriminating model. This time we used 

samples from bladder urothelial carcinoma (BLCA), 
cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), kidney renal clear cell car
cinoma (KIRC), pancreatic adenocarcinoma 
(PAAD), and skin cutaneous melanoma (SKCM). 
We repeated the procedure of selecting probes on 
a training set of 500 samples using the Boruta algo
rithm, which resulted with 268 probes. We then 
trained the Random Forest classifier using these 
probes and a training set of 1900 samples from all 
19 cancer types. The overall accuracy of this classifier 
on the validation set was very similar to the accuracy 
of the classifier from the original core cancers (87%) 
(Table S7). Both the core and alternative classifiers 
included adenocarcinomas and squamous tumours, 
and for the alternative, more diverse types (mela
noma), and the error rate was highest in misclassify
ing the location of squamous tumours. Therefore, we 
tested whether a model built using a homogeneous 
set of samples would provide a comparable accuracy. 
For this exercise, we used only squamous cell carci
noma (SCC) samples reported in Campbell et al. 

Figure 3. A 305-probe classifier set derived from five core tumour types used to classify tumours according to histology for 19 
human malignancies. A heatmap of methylation beta values for 305 probes (rows) in 1900 samples (columns) from the training set 
of 19 tumour types. Columns are annotated by colour representing histologically confirmed tumour type. CpG probes in rows are 
hierarchically clustered. Samples in columns are clustered by tumour type and by sample type (tumour and normal). Annotation 
colours of rows and columns and the beta value colours are the same as on Figure 1. See Figure 1 legend for details.
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[18], which included 522 HNSC, 489 LUSC, 95 
ESCA, 256 CESC, and 47 BLCA. Given the limited 
number of BLCA samples, we created a training set 
of 235 SCC samples (47 samples of each of five SCC 
cancers), on which the Boruta algorithm selected 
only 50 CpG probes. A Random Forest model on 
these probes and the 235 training set samples gave an 
error rate of 0.29 (Table S8), which demonstrated 
a challenge of distinguishing a tumour type in can
cers of the same histology. Then, we trained the 
Random Forest classifier using these 50 probes and 
a training set of 1900 samples from all 19 cancer 
types. The overall accuracy of this classifier on the 
validation set dropped to 75% (Table S9). This result 
demonstrated the importance of selection of 
a heterogeneous set of core tumours to create 
a classifier with high discriminative capacity in pre
diction of cancer histology.

In summary, these results confirmed the high 
discriminative capacity of DNA methylation in pre
diction of cancer histology, when the classifier 

derived from heterogeneous cancer types. And in 
the case of a diverse set of cancer types to build the 
classifier, prediction accuracy was not significantly 
different. With the differing tumours used to build 
the model, the classifier set contained a manageable 
number of CpG loci/probes.

Analysis of misclassification events reveals the 
biologic basis of informatically derived 
methylation classifiers

The comparison of the results from prediction of 
cancer histologies using two sets of probes derived 
from two heterogenous core cancer sets produced 
very similar accuracy across histologies (Figure 4 
and Table S1). Three cancer types that were the least 
accurately predicted by both classifier sets were oeso
phageal carcinoma (ESCA) (24% and 29%), HNSC 
(68% and 74%), and stomach adenocarcinoma 
(STAD) (73% and 69%). This observation led us to 
examine the reasons for misclassification events. We 

BLCA BRCA CESC COAD ESCA HNSC KIRC KIRP LAML LGG LIHC LUAD LUSC PAAD PRAD SKCM STAD THCA UCEC
error 
rate

BLCA 84 1 2 0 0 2 0 2 0 0 1 1 3 2 0 0 0 1 1 0.16
BRCA 0 82 0 0 0 0 2 1 0 0 0 1 1 1 0 2 0 1 7 0.18
CESC 2 0 83 0 0 5 0 1 0 0 0 0 3 0 0 0 1 0 3 0.17
COAD 0 0 0 96 1 0 0 0 0 0 0 1 0 1 0 0 2 0 0 0.04
ESCA 6 0 3 2 24 30# 0 1 0 0 0 0 14# 0 0 0 17& 0 1 0.76
HNSC 3 0 10* 0 0 68 0 0 0 0 0 0 16# 0 0 0 0 0 0 0.32
KIRC 0 0 0 0 0 0 88 7+ 0 0 0 0 1 1 0 0 0 2 0 0.12
KIRP 1 0 0 0 0 0 4 90 0 0 1 0 0 1 0 1 0 1 1 0.1
LAML 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
LGG 0 0 0 0 0 0 0 1 0 97 0 0 0 1 0 0 0 1 0 0.03
LIHC 0 0 0 0 0 0 1 2 0 0 91 0 0 4 0 0 0 1 0 0.09
LUAD 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
LUSC 5 0 2 0 1 8# 0 0 0 0 0 0 73 4 1 1 0 1 0 0.27
PAAD 0 0 0 2 2 0 1 4 0 0 0 0 0 88 0 0 0 2 0 0.12
PRAD 0 0 0 0 0 0 0 2 0 0 0 0 0 0 97 1 0 0 0 0.03
SKCM 0 0 0 0 0 0 0 2 0 0 0 0 1 1 0 96 0 0 0 0.04
STAD 4 0 0 3 5 1 0 0 0 0 0 0 1 11& 0 0 73 0 0 0.27
THCA 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 96 0 0.04
UCEC 2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 93 0.07

* HPV-related malignancy correctly classified cases
# Aerodogestive tobacco related squamous cancer misclassified events
& Upper gastrointestinal-related adenocarcinoma core cancers
+ Cell of origin misclassification

prediction

Figure 4. Confusion matrix (in per cent) of the validation set of prediction of 19 cancer types. Confusion matrix of the validation set 
(n = 5527) of cancer type prediction using 305 Boruta selected probes on five core cancers and applied to predict 19 cancer types. 
The core cancers are highlighted in grey on the left. The percentage of correctly predicted samples is highlighted in blue; more than 
5% of misclassification events are highlighted in pink. True histology is in rows; predicted histology is in columns. The error rate is in 
italic. Tumour type abbreviations can be found in Table S1.
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focused on cancer types with misclassified tumours 
from the classifier set from the original core cancers 
that had more than 5% of misclassified events 
(marked in red in Figure 4). There were only six 
such cancer types: BRCA, ESCA, HNSC, KIRC, 
LUSC, and STAD. First of all, we looked at 
the second prediction of the misclassified samples, 
and a half of these cancer types had the 
correct second prediction for more than a half of 
misclassified samples (Table S10).

The cell of origin played an important role in 
misclassification events. Squamous cell carcinomas 
of the head, neck and lung have a common aetiology 
and it is not surprising that they are difficult to 
distinguish, as we demonstrated above. Sixteen 
per cent of HNSC tumours were classified as LUSC 
and, conversely, 8% of LUSC tumours were classified 
as HNSC (Figure 4). These tumours share the same 
squamous cell origin and are both highly associated 
with smoking. HPV status was an important factor 
as well; the majority of HNSC that were classified as 
LUSC were HPV- (Table S11), while the HNSC 
tumours which were classified as HPV-related 
CESC, were predominantly HPV+ (Table S11). 
Although these samples were misclassified with 
respect to anatomical site, the model is capturing 
a shared epigenetic pattern of HPV associated malig
nancies, a distinct methylation signature for HPV 
status that was shared with cervical cancer ([19], 
supplemental figure 1.3).

In the same fashion, a careful examination of 
results for oesophageal cancer, our most frequently 
misclassified tumour type, exposes the limitations of 
a clinical classification system that may apply differ
ent names to biologically identical and anatomically 
adjacent GI tumours. Because the TCGA ESCA 
study includes both squamous cell carcinomas and 
adenocarcinomas, misclassified oesophageal samples 
grouped with stomach adenocarcinoma (17%) and 
others with squamous cell carcinomas of the upper 
aerodigestive tract (14% as lung and 30% as head and 
neck) as could be predicted by the overlapping biol
ogy and location of these tumours (Figure 4 and 
Table S12). Notably, there were no misclassifications 
of ESCA as LUAD. However, 6% of ESCA was 
classified as Bladder Urothelial Carcinoma (BLCA), 
which includes squamous differentiation, and indeed 
7% of BLCA was misclassified as other squamous cell 
cancers (3% as LUSC, 2% as HNSC, and 2% as 

CESC, Table 1). The other studies of the TCGA 
network demonstrated common patterns across 
tumours with squamous cell origin using different 
data modalities, such as the exome sequences and 
copy number in Campbell et al. [20], ATAC-seq in 
Corces et al. [21], and in the multiplatform 
PanCancer Atlas study of squamous carcinomas 
using all available data types [18].

Similarly, other tissue of origin characteristics 
also had an impact in misclassification. Seven 
per cent of KIRC was misclassified as the kidney 
papillary carcinoma (KIRP), and symmetrically, 
4% of KIRP was classified as KIRC and may reflect 
a common origin with differentiation ambiguity, 
or the possibility of some mixed histologies in 
renal tumours [22]. In the TCGA study of 33 
tumour types, Hoadley et al. demonstrated the 
influence of cell of origin in integrated molecular 
clustering, and especially, in DNA-methylation- 
based clustering [23] to support underlying biol
ogy of our misclassification events.

Of 27% misclassified STAD samples, 19% are 
misclassified as another gastrointestinal adenocar
cinoma (11% PAAD, 5% ESCA, and 3% COAD). 
As mentioned above, the oesophageal misclassifi
cation likely reflects the challenging problem for 
pathologists in determining the origin of tumours 
that arise at the gastroesophageal junction. In 
addition, since oesophageal tumours often arise 
from Barrett’s oesophagus, a metaplastic transfor
mation of squamous epithelial to colonic differen
tiation, the misclassification of stomach and 
oesophageal adenocarcinoma as colorectal carci
noma likely reflects this transformation.

Another cancer with a relatively high error rate 
was BRCA, where 18% were misclassified. In this 
case, misclassified breast tumours were distributed 
across several tumour types (bladder, kidney, lung, 
skin, uterus). We found that misclassified BRCA 
were predominantly basal subtype (84% of mis
classified breast tumours (Table S13)) according 
to PAM50 classification, despite this tumour type 
representing only 19% of the breast tumours ana
lysed. This poorly differentiated subtype forms 
a distinct DNA methylation subtype [24], which 
is closest to normal breast tissue and lacks the 
DNA methylation changes common to other sub
types of breast cancer. Since basal tumours are 
a minority of breast cancer, DNA methylation 
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loci which distinguish most breast cancers from 
other tumour types would therefore not be opti
mal for diagnosing basal tumours.

A deeper analysis of misclassified samples 
revealed the common biology underlying distinct 
cancer types, as well as the unique development of 
each histology. This analysis let us consider those 
misclassification events as not really misclassifica
tion, but rather evidence of common biology, and 
we could claim that overall accuracy of our classi
fier was higher.

Discussion

Recent advances have made the liquid biopsy 
a very real possibility. Cell-free tumour DNA, 
shed into the bloodstream, can be sampled with 
minimal invasion, and used to identify disease and 
monitor progress. The fundamental principles are 
well established but various practical issues remain 
unresolved. Mutations in oncogenes and tumour 
suppressors like p53 and KRAS are a hallmark of 
cancer, and make excellent markers for monitor
ing progress in patients with known abnormalities, 
but are of limited use in diagnostic settings where 
even the most common mutations are present in 
a minority of tumours.

DNA methylation markers have the potential to 
overcome some of the limitations of mutation 
markers. The most common cancer-related 
changes in DNA methylation, such as hyper
methylation of CpGs in the promoters of poly
comb marked genes, are very common and can 
be identified in a majority of tumours. Moreover, 
epigenetic marks are a crucial determinant of phe
notype in cells that stably differ in terms of func
tion, and gene expression, despite retaining the 
same genetic material. So epigenetic changes may 
be particularly useful for identifying histology 
from profiles of tumour DNA.

Our purpose in this manuscript was to build on an 
existing body of work demonstrating the potential of 
DNA methylation markers for first identifying cancer 
and then inferring its location. We identified 
a relatively small number of loci for which a panel 
for molecular detection could be developed. 
A targeted panel could be used for selective methyla
tion detection, either through specific detection of 
altered DNA patterns (MSP (methylation-specific 

PCR) [25], DREAMing (Discrimination of Rare 
EpiAlleles by Melt) [26]), but each of these approaches 
might require too many individual assays to be prac
tical with current technology. However, limiting DNA 
methylation detection to a small number of loci could 
allow the depth of sequencing required to detect the 
rare ctDNA molecules present in the blood stream 
which is not possible with an untargeted approach.

However, a panel that detects universal cancer- 
specific methylation creates a new challenge, 
which is the identification of the site of the tumour 
releasing the detectable change. Using a separate 
discovery approach, we further defined a panel of 
loci where methylation differences could distin
guish among tumours from different histologies 
and organ sites. These are not the tissue-specific 
events discussed above, as those markers would 
not necessarily come from transformed cells in 
the site of the cancer, but could come from the 
normal tissues as well. This is the limitation of 
many protein markers that have been examined 
for cancer detection, such as prostate-specific anti
gen (PSA), carcinoembryonic antigen (CEA), can
cer antigen 125 (CA125) [27]. Each of these 
protein biomarkers are elevated in some cancer 
patients due to increased expression or secretion 
of the normally expressed protein, and though cut- 
offs are established for the normal levels detectable 
in the blood, this quantitative compromise limits 
the earliest detection of cancer in some cases, and 
complicates the interpretation of some normal 
conditions where levels are elevated (for example 
with PSA).

Unlike mutational events, DNA-methylation 
abnormalities occur routinely and predictably in 
the transition from normal to malignant tissues. In 
addition to hypermethylation events that are sen
tinel of malignant transformation, other CpG 
dinucleotides undergo high-frequency methylation 
in a histology specific manner. These differences 
are partially explained by their association with 
polycomb marks, which denote loci with high 
propensity for hypermethylation during malignant 
transition, and the histologic tumours of origin 
among 19 human malignancies have shared and 
unique polycomb loci. The misclassification rate of 
the tumour type biomarkers was low, but those 
informative. Interestingly, specificity of methyla
tion appears related to the risk factor for 
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carcinogenesis as shown by the number of HPV- 
related head and neck cancers misclassified as 
cervical cancer and smoking-related head and 
neck cancers misclassified as lung squamous can
cers. In the latter case, both common exposure and 
shared biology, as both are squamous tumours 
arising in tissues with direct smoke exposure. 
DNA-methylation changes have been studied as 
biomarkers in cancer for diagnosis, prognosis, 
and response to therapy. Here, we present 
a novel analysis of methylation changes in cancer 
which emphasizes unique characteristics for cate
gorization when compared to other molecular 
abnormalities that occur in carcinogenesis and 
which form the basis of effective early detection 
strategies.

Methods

Data analysis was performed using R/Bioconductor 
software [28,29] with custom routines as well as 
standard packages. Heat maps were created using 
the pheatmap R package (v 1.0.12) [30].

TCGA data

TCGA DNA methylation was measured on the 
Illumina HumanMethlation 450 K platform [31]. 
Level 3 DNA methylation data and corresponding 
clinical information were downloaded from TCGA 
GDC Data Portal using the TCGABiolinks R package 
[32]. We downloaded data for 19 tumour types, 
which are not rare and have the number of tumour 
samples more than a hundred (Table S1). HPV data 
for HNSC were accessed from Nulton et al. [33] 
TCGA notifications were downloaded from Broad 
Institute Firehose data portal [34]. In the primary 
analyses, we follow the TCGAs designation of 
tumour type, as well as tumour vs normal, as coded 
in the sample ID. Thus, in some cases (e.g., lung and 
kidney) anatomical categories are further divided by 
histology, while in others, (e.g., oesophageal and 
bladder) histologically distinct samples are grouped 
under the same anatomical heading. An exception to 
this rule occurred where we trained a classifier using 
only squamous cell carcinoma samples. In that 
instance, we selected individual squamous tumours 
as determined by Campbell et al. [18]

Universal DNA methylation marks of disease

To find tumour-specific DNA methylation marks, 
we computed hyper- and hypo-methylation frequen
cies for CpG probes in core cancers. A tumour sam
ple was called DNA hypermethylated if the β-value 
of the probe was greater than two times the standard 
deviation of the mean of β-values of adjacent normal 
tissue samples. Symmetrically, a tumour sample was 
called DNA hypomethylated if the β-value of the 
probe was less than two times the standard deviation 
of the mean of β-values of adjacent normal tissue 
samples. After that, we selected probes that have 
frequency more than 0.6 in all core cancers. We 
found 708 probes (343 hyper-methylated and 365 
hypo-methylated probes). Then we applied 
a feature selection algorithm implemented in the 
Boruta package [35], which is the Random Forest 
classifier based algorithm, to reduce the number of 
probes. The Boruta algorithm selected 73 important 
probes (32 hyper- and 41 hypo-methylated probes, 
Table S2). Using these 73 probes, we created 
a Random Forest classifier, implemented in the 
randomForest package [36] on a training set of 100 
tumours of each type and a half of adjacent normal 
samples from core tumours. Then we applied the 
classifier to the rest of the core tumour samples. We 
also created a random forest classifier using 73 
probes and a training set of 100 tumours of each 
type and a half of adjacent normal samples from all 
19 tumour types and applied the classifier to the rest 
of the tumour samples.

Histology-specific DNA methylation accurately 
distinguishes between five core malignancies

To find histology-specific DNA methylation 
marks, we used again a feature selection algorithm 
implemented in the Boruta package [35]. First, we 
restricted the probe set using two following cri
teria: a probe should be (i) the least variable across 
all normal samples (within the 1st quartile) and 
(ii) within the top 5th percentile of the most vari
able probes in any of five core cancers. Boruta was 
applied to that probe set and 500 randomly chosen 
tumour samples (the training set), a hundred sam
ples from each cancer type. The algorithm selected 
305 out of 2598 with the capacity to accurately 
classify five core cancer types (Table S5). Then, 
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we created a Random Forest classifier, implemen
ted in the randomForest package [36], using these 
305 probes and the training set of 100 tumours of 
each type and applied the classifier to the valida
tion set samples (the rest of the core cancer sam
ples not included in the training set).

Histology-specific DNA methylation accurately 
classifies 19 human malignancies

We randomly chose a hundred samples from 19 
cancer types for a training set and used the 
remaining samples as a validation set. Using the 
probe set derived on the core cancers (n = 305), we 
created a Random Forest classifier on the training 
set and predicted tissue type in the validation set.
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