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ABSTRACT The draft genome sequences of five Lactobacillus pentosus strains iso-
lated from biofilms on the skin of green table olives are presented here. These ge-
nome sequences will assist in revealing the potential probiotic properties of these
strains, as the intake of fermented olives implicates the passage of millions of Lacto-
bacillus spp. throughout a consumer’s gastrointestinal tract.

Lactobacillus pentosus is the most important microorganism responsible for the
fermentation of olives (1–3). In the past, it was assumed that this species exclusively

appeared in a planktonic state (4, 5), but we now know that it makes biofilms on the
skin of fermented olives (6, 7). Therefore, billions of L. pentosus cells would be delivered
to the human gastrointestinal tract (GIT) with the intake of olives (8). Given the probiotic
potential of L. pentosus (9), the fermented olives could be further considered to be a vehicle
for the entry of beneficial microorganisms into the GIT. We report here the draft genome
sequence of L. pentosus, isolated from biofilms on the skin of traditional fermented olives.

To recover L. pentosus from biofilms, a stomacher method was used (6). Detached
biofilms were spread onto de Man-Rogosa-Sharpe (MRS) plates, and isolated colonies
were identified at the molecular level as L. pentosus (10). To obtain genomic DNA, a
modification of the “salting-out” procedure was followed (11). Genome libraries for
DNA sequencing were constructed using a TruSeq DNA PCR-free library preparation kit
(Illumina, Inc.), with an insert size of 350 bp. The sequencing process was carried out at
Macrogen, Inc. (Seoul, Republic of Korea) using a HiSeq Illumina platform, obtaining
paired-end sequencing reads with 2 � 101-bp read lengths. Assembly was performed
using Velvet 1.2.10 (12), optimizing parameters with VelvetOptimiser 2.2.5 (12).

The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (13) was used to annotate
the strains, and it was completed using the following protocol: protein-coding genes
were predicted using Prodigal version 2.6.3 (14), and then they were functionally
annotated by Sma3s v2 using UniProt bacteria (15). To annotate noncoding genes,
Infernal 1.1.2 (16) was used with the Rfam database 13.0 (17). To estimate the number
of plasmids appearing in each strain, the contig sequences were compared to all the
plasmid sequences from Lactobacillus species available in the RefSeq database using
BLASTN and 90% for both identity and coverage.

The genomes of all the strains are split into around 100 contigs, having a mean
length of 3,795,672 bp, with an estimated G�C content of 45.9%. The numbers of
predicted genes were similar in all the cases (Table 1).

The functional annotation was used to discover genes involved in specific functions, and
we also performed a similarity search using BLASTP with a threshold of 80% in both identity
and query coverage, using Lactobacillus sequences from the protein database UniProtKB
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(18). After that, four strains showed two copies of the luxS gene, which plays a key role in
the synthesis of the universal bacterial communicator autoinductor-2 (19). Also, a high
number of genes involved in bacteriocin and exopolysaccharide (EPS) production was
found. Interestingly, several genes encoding MucBP proteins, which could play an impor-
tant role in microbe-eukaryote cell adhesion (20), were also found. Taking into account the
importance of all these genes in the probiotic features of lactic acid bacteria, the genome
sequences reported here will aid in future research into the probiotic potential of L.
pentosus.

Data availability. The genome sequences of all the strains have been deposited
under NCBI BioProject number PRJNA492883, and the BioSample accession numbers
are listed in Table 1. The reads have been deposited in the NCBI Sequence Read Archive
(SRA) under the accession numbers SRX5116733 to SRX5116737, and the assemblies
have been deposited in GenBank under the accession numbers RDCL00000000,
RDCK00000000, RDCJ00000000, RDCI00000000, and RDCH00000000.
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