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Abstract

Individuals differ widely in their contribution to the spread of infection within and across pop-

ulations. Three key epidemiological host traits affect infectious disease spread: susceptibil-

ity (propensity to acquire infection), infectivity (propensity to transmit infection to others) and

recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread

may target improvement in any one of these traits, but the necessary statistical methods for

obtaining risk estimates are lacking. In this paper we introduce a novel software tool called

SIRE (standing for “Susceptibility, Infectivity and Recoverability Estimation”), which allows

for the first time simultaneous estimation of the genetic effect of a single nucleotide polymor-

phism (SNP), as well as non-genetic influences on these three unobservable host traits.

SIRE implements a flexible Bayesian algorithm which accommodates a wide range of dis-

ease surveillance data comprising any combination of recorded individual infection and/or

recovery times, or disease diagnostic test results. Different genetic and non-genetic regula-

tions and data scenarios (representing realistic recording schemes) were simulated to vali-

date SIRE and to assess their impact on the precision, accuracy and bias of parameter

estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accu-

rate parameter estimates associated with all three host traits. For most scenarios, SNP

effects associated with recoverability can be estimated with highest precision, followed by

susceptibility. For infectivity, many epidemics with few individuals give substantially more

statistical power to identify SNP effects than the reverse. Importantly, precise estimates of

SNP and other effects could be obtained even in the case of incomplete, censored and rela-

tively infrequent measurements of individuals’ infection or survival status, albeit requiring

more individuals to yield equivalent precision. SIRE represents a new tool for analysing a

wide range of experimental and field disease data with the aim of discovering and validating

SNPs and other factors controlling infectious disease transmission.
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Author summary

Effective approaches to reduce the spread of infectious disease transmission in popula-

tions are urgently needed. Reduction in disease spread is most effectively achieved by

reducing, separately or in combination, individual (i) “susceptibility”, i.e. the relative risk

to become infected when exposed to infectious individuals or material, (ii) “infectivity”, i.
e. the propensity to transmit infection to others when infected, and/or by (iii) improving

“recoverability”, i.e. the propensity to recover. However, to date it is impossible to assess

how these three key epidemiological traits controlling disease transmission in a popula-

tion are regulated by specific genes or interventions, as the necessary statistical methods

for estimating genetic and non-genetic effects from available disease surveillance data

don’t exist.
This paper introduces a novel statistical method that can estimate, for the first time,

genetic and non-genetic effects for host susceptibility, infectivity and recoverability simul-

taneously from a wide range of realistic disease surveillance data. The method has been

incorporated into a user-friendly, freely available software tool called SIRE. SIRE can be

applied to a range of experimental and field data and will help to move disease control sig-

nificantly forward by simultaneously targeting multiple host traits affecting infectious dis-

ease spread.

Introduction

In the era of rapid expansion in the human population resulting in increasing demands on

food security, effective solutions that reduce the spread of infectious diseases not only in

humans, but also in plants and livestock, are urgently needed. Failure of stringent biosecurity

measures [1,2] and emergence of anti-microbial resistance [3,4] and escape mutants to viral

vaccines [5,6] demonstrate that infectious diseases cannot be combatted by conventional bio-

security and pharmaceutical interventions alone.

The advent of genome wide high density single-nucleotide polymorphism (SNP) chip pan-

els has already led to a remarkable range of discoveries regarding the genetic regulation and

biology of diseases and translation towards innovative therapeutics [7]. In agriculture, SNP

chip panels have revolutionized breeding practices by facilitating genomic selection [8,9]. In

the infectious disease context genomic selection may effectively prevent or reduce disease

spread by providing a means to identify and select against individuals with high genetic risk of

becoming infected or transmitting infections purely based on their genetic make-up, without

the need of exposing them to infectious pathogens [10]. However, to date the full host genetic

basis underlying infectious disease transmission is still poorly understood.

Epidemiological models are widely used to identify risk factors for disease spread in popula-

tions. Indeed, modelling disease transmission in genetically heterogeneous populations is well

established (see e.g.[11,12]). Particularly relevant are so-called compartmental models in

which individuals are classified as, for example, susceptible to infection, infected and infec-

tious, or recovered (or alternatively dead). Transitions between these states are determined by

three key individual traits: susceptibility, the relative risk of an uninfected individual to become

infected when exposed to a typical infectious individual or infectious material excreted from

such an individual, infectivity, the propensity of an individual, once infected, to transmit infec-

tion to a typical (average) susceptible individual, and recoverability, the propensity of an indi-

vidual, once infected, to recover or die) [13,14]. As demonstrated by numerous simulation

studies, host genetic variation in any one of these traits, if correctly identified, could be
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exploited to reduce infectious disease spread within and across populations [14–17]. However,

despite their strong epidemiological importance, the genetic regulation and co-regulation of

these three host traits is largely unexplored. Whereas a plethora of studies have identified sub-

stantial heritable variation and SNPs associated with host susceptibility [17], remarkably little

is known about the genetic regulation of host recoverability and infectivity, despite emerging

evidence that genetic variation in these traits exists [18,19]. In particular, it is currently not

known to what extent infectivity is genetically controlled, despite compelling evidence that

super-spreaders, defined as a small proportion of individuals responsible for a disproportion-

ally large number of transmissions, are a common phenomenon in epidemics [20–22]. This

shortcoming is largely because appropriate statistical methods for estimating genetic and also

non-genetic (treatment) effects for all three key epidemiological traits controlling disease

transmission from infectious disease data are currently lacking.

In many conventional genome-wide association studies (GWAS) [23], target traits for

genetic improvement are measured directly, so establishing genetic associations is relatively

straightforward. In the epidemiological setting, however, the susceptibility, infectivity and

recoverability of individuals are not measured directly. Rather their effects are manifested in

the infection and recovery times of individuals in the epidemic (or epidemics) as a whole. Fur-

thermore, most conventional GWAS assume that an individual’s infection status is controlled

by its own genetic susceptibility and environmental effects. From an epidemiological view-

point however, an individual’s disease phenotype (e.g. infected or not) may not only depend

on its own susceptibility and recoverability genes, but also on the infectiousness of other indi-

viduals in the same contact group, i.e. their infectivity and recoverability genes [24]. This com-

plex interdependence between underlying and observable traits poses challenges for existing

methods.

The motivation behind this paper is to introduce new statistical and computational meth-

ods that utilise information derived from observation of epidemics and trait interdependence

to estimate, for the first time, genetic and other systematic effects for all three underlying epi-

demiological host traits. This requires combining statistical, epidemiological and genetic

modelling principles. Analysis of incomplete epidemic data to draw inferences on epidemio-

logical parameters is well established [25,26]. However, analysing such data to draw joint infer-

ences on both the disease epidemiology and host genetic variation has proven challenging

[24,27]. Recent studies have expanded conventional quantitative genetics threshold models to

enable joint genetic evaluation of cattle susceptibility to, and recoverability from, mastitis

[28,29], which led to identification of novel SNPs and candidate genes associated with these

traits [18]. However, because infectivity acts on group members rather than the focal individ-

ual itself, applying these technique to estimate genetic effects for infectivity is problematic.

Alternative approaches have focused on disentangling susceptibility from infectivity effects.

For example, Anacleto et al. [30] developed a Bayesian inference approach to produce genetic

risk estimates for host susceptibility and infectivity from epidemic time to infection data,

assuming that susceptibility and infectivity are under polygenic control (i.e. they are deter-

mined by a large number of genes, each with small effect). This approach, however, does not

incorporate genetic variation in recoverability, and does not estimate SNP effects. An alterna-

tive approach, based on the assumption that susceptibility and infectivity are controlled by two

single bi-allelic genetic loci [31,32], used a generalized linear model (GLM) to estimate relative

allelic effects on host susceptibility and infectivity. Whilst an important contribution, this

approach focused on the disease status of individuals at the end of each epidemic (i.e. discard-

ing potentially useful information from the infection and recovery times themselves). It also

failed to incorporate variation in recoverability, and relied on a number of simplifying assump-

tions which were found to produce biased estimates under certain circumstances. A variant of
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this approach [33], which adopted a GLM to analyse time-series data on individual disease status,

illustrated the benefits of longitudinal records of individuals’ infection status for improving pre-

diction accuracies of SNP effects, although it still relied on a number of simplifications that may

compromise prediction accuracies and lead to unwanted bias. A further shortcoming of previous

approaches [31–33] is that they ignore potential pleiotropic effects, i.e. SNPs affecting more than

one epidemic trait. This seems unrealistic, since, for example, SNPs that control within host path-

ogen replication may also lower the risk that infection can establish, i.e. reduce susceptibility, and

simultaneously reduce pathogen shedding and hence infectivity, and speed up recovery.

In this study we present a software tool called SIRE (standing for “susceptibility, infectivity

and recoverability estimation”) that implements a novel Bayesian inference approach to simul-

taneously estimate the effects of a single SNP (importantly capturing any pleiotropy), together

with that of other fixed effects (such as e.g. sex, breed or vaccination status) on host susceptibil-

ity, infectivity and recoverability from temporal epidemic data. This approach can be applied

to a wide range of epidemic data, collected at the level of individuals, and accounts for different

types of uncertainty in a statistically consistent way (e.g. censoring of data or imperfect diag-

nostic tests), and permits the incorporation of prior knowledge. We validate SIRE for a variety

of simulated epidemic scenarios, comprising not only the ideal case in which infection and

recovery / death times of each individual are known exactly, but also under more realistic sce-

narios in which epidemics are only partially observed.

Materials and methods

Data structure and the underlying genetic-epidemiological model

SIRE applies to individual-level disease data originating from one or more contact groups in

which infectious disease is transmitted from infectious to susceptible individuals through contact.

This data can come from well controlled disease transmission experiments or from much less

well controlled field data (which may be less complete, but readily available in larger quantity).

In the context of disease transmission experiments in plants or livestock, epidemics are initi-

ated by means of artificially infecting a proportion of “seeder” individuals which go on to transmit

their infection to susceptible individuals sharing the same contact group. In field data contact

groups may consist of animal herds, or any group of individuals sharing the same environment

such as a pasture, pen, cage or pond, and infection is assumed to invade the group by some exter-

nal, usually unknown, means (e.g. by the unintentional spread of infected material, or the intro-

duction of an infected individual from elsewhere). For simplicity it is assumed that throughout

the observation period groups are closed, i.e. no births, migrations, or transmission of disease

between groups. This assumption generally holds for experimental studies and also for most com-

mon field situations, where a movement ban is imposed after disease notification [34].

The dynamic spread of disease within a contact group is modelled using a so-called SIR

model [35]. Individuals are classified as being either susceptible to infection (S), infected and

infectious (I), or recovered/removed/dead (R). Under the simple SIR model for homogeneous

populations, the time-dependent force of infection for a susceptible individual j (i.e. the proba-

bility per unit time of becoming infected) is given by λj(t) = βI(t), which is the product of an

average transmission rate β and I(t), the number of infected individuals at time t. To incorpo-

rate individual-based variation in host susceptibility and infectivity, this simple expression for

λj(t) is replaced by an individual force of infection (see [30] for a formal derivation)

ljðtÞ ¼ be
Gz egj

X

i
efi : ð1Þ
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Here gj characterises the fractional deviation in individual j’s susceptibility as compared to

that of the population as a whole (e.g. gj = 0.1 corresponds to individual j being’10% more sus-

ceptible than the population average), fi characterises the corresponding quantity for individual

i’s infectivity, and the sum in Eq (1) goes over all individuals infected at time t sharing the same

contact group z as individual j (note, this sum varies as a function of t as individuals become

infected and recover). The term Gz in Eq (1) accounts for the fractional deviation in disease

transmission for group z. This incorporates group-specific factors that influence the overall

speed of an epidemic in one contact group relative to another (e.g. animals kept in different

management conditions, environmental differences, or variation in pathogen strains with dif-

fering virulence). Whilst variation in Gz may be small for a well-controlled challenge experi-

ment, this may not be the case in real field data. Gz is assumed to be a normally distributed

random effect with standard deviation σG. The exponential dependencies in Eq (1) ensure that

λj is strictly positive and allow for the possibility that some groups or individuals are much

more/less susceptible/infectious than others, i.e. it can accommodate potential super-spreaders.

Whilst in Eq (1) infection is modelled as a Poisson process with individual infection rates λj
[18,20], the recovery process is modelled by assuming that the time taken for individual m to

recover after being infected is drawn from a gamma distribution with an individual-based

mean wm and shape parameter k (which for simplicity is assumed to be the same across indi-

viduals). This mean recovery time is expressed as

wm ¼ ðge
rmÞ
� 1
; ð2Þ

where γ represents an average recovery rate across the population and rm describes the frac-

tional deviation from this for individual m. This approach is taken to allow the recovery proba-

bility distribution to adopt a more biologically realistic profile compared with the exponential

distribution often assumed (see S1 Appendix for further details).

Following standard quantitative genetics theory [36], the individual-based deviations in

susceptibility g, infectivity f and recoverability r (which are vectors with elements relating to

each individual) are decomposed into the following contributions

g ¼ gSNP þ Xbg þ εg ;

f ¼ f SNP þ Xbf þ εf ;

r ¼ rSNP þ Xbr þ εr:

ð3Þ

SNP effects. The model assumes that a specific locus defined by a SNP (potentially) plays

an important contribution to the trait values (note, repeated analysis can be performed on dif-

ferent SNPs of interest). Assuming a diploid genomic architecture with biallelic SNP implies

three SNP genotypes: AA, AB and BB. The SNP contribution to the traits for individual j
depends on j’s genotype in the following way:

gSNPj ¼

ag
agDg

� ag

; f SNPj ¼

af
afDf

� af

; rSNPj ¼

ar
arDr

� ar

if j is AA

if j is AB

if j is BB

ð4Þ

9
>>=

>>;

The parameters ag, af and ar capture the relative differences in trait values between AA and

BB individuals, and are subsequently referred to as the “SNP effects” for susceptibility, infectiv-

ity and recoverability, respectively (e.g. if ag is positive, individuals with an AA genotype will,

on average, be more susceptible to disease than those with a BB genotype). The scaled
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dominance factors Δg, Δf and Δr characterise the trait deviations between the heterozygote AB
individuals and the homozygote mean (a value of 1 corresponds to complete dominance of the

A allele over the B allele and -1 when the reverse is true, whereas absence of dominance is rep-

resented by a value of 0) [37].

Fixed effects. The design matrix X and fixed effect vectors bg, bf and br in Eq (3) allow for

other known sources of variation to be accounted for (e.g. breed, sex or vaccination status).

Following convention, an additional fixed effect is added to account for trait mean, which is

explicitly chosen to ensure the population averages of g, f and r are zero (remembering that the

average effects are already captured by the parameters β and γ).

Residual contributions. Here ε = (εg, εf, εr) accounts for all other contributions to the

traits (i.e. coming from genetic effects not captured by the SNP under consideration, as well as

any non-genetic environmental variation). We assume that for each individual the three trait

residuals are drawn from a single multivariate normal distribution with zero mean and 3×3

covariance matrix S. Including these correlations is important because it allows for the possi-

bility that, for example, more susceptible individuals may also, on average, be more infectious

and recover at a slower rate (on top of any correlations which may also arise from the SNP and

fixed effects). Note that in this study, which focuses on the estimation of SNP effects, there is

no explicit distinction between random genetic and environmental effects, although the model

could be extended to incorporate estimation of these polygenic effects. It is thus assumed that

individuals are randomly distributed across the groups with respect to the genetic effects on

the epidemiological traits not captured by the model. Also note that Eq (3) does not contain

random group effects for the individual epidemiological traits. This is because the group effect

has already been incorporated in the expression of the individual force of infection in Eq (1).

In other words, it is assumed that the group environment is the dominant mechanism affecting

the speed at which infection spreads within a group rather than group specific factors affecting

individuals’ susceptibility, infectivity or recoverability.

Bayesian inference

Based on the description above, the model contains the following set of parameters: θ = (β, γ,

k, ag, af, ar, Δg, Δf, Δr, bg, bf, br, εg, εf, εr, S, G, σG). We denote the complete set of infection and

recovery event times for all individuals as ξ over the observed duration of the epidemics [38].

Typically ξ is not precisely known, and so we consider the general case in which ξ represents a

set of latent model variables. The nature of the actual observed data y will be problem depen-

dant. For example, in some instances recovery or removal (e.g. due to death) times will be pre-

cisely known but infection times completely unknown. In other instances infection and

recovery times will both be unknown, but results from disease diagnostic tests provide infor-

mation regarding disease status at particular points in time. The framework presented in this

paper is flexible to these various possibilities.

Application of Bayes’ theorem implies that the posterior probability distribution for model

parameters and latent variables is given by

pðy; xjyÞ / pðyjxÞLðxjyÞpðyÞ; ð5Þ

where individual components are defined as follows:

Observation model π(y|ξ). The probability of the data given a set of event times ξ. The

expression for the observation model depends on the nature of the data being observed. In many

contexts this simply takes the values one or zero depending on whether ξ is consistent with y or

not. For example a perfect disease diagnostic test showing that an individual is infected would be

only consistent with ξ containing an infection event on that individual prior to the time of the test
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and a recovery event after the time of the test. Similarly, if data y indicates that an individual

becomes infected at a particular point in time, this is only consistent provided ξ also contains this

infection event. When imperfect disease diagnostic test results are available the observation model

includes the sensitivity and specificity of the test to account for this uncertainty in the data. In

summary, the observation model depends on the data collection process and constrains the possi-

ble event sequences ξ, and this, in turn, informs the model parameters θ.

Latent process likelihood L(ξ|θ). The probability of ξ being sampled from the model

given parameters θ. This can be derived from the genetic-epidemiological model described in

the previous section [25,26] (see S2 Appendix for details), and is given by

LðxjyÞ ¼
Y

z

Y

j2z
lj

� � Y

e2Ez
e� LzðteÞ�ðte � te� 1Þ

� �
�

Y

m2z
FGðdtmjwm; kÞ

� �� �

: ð6Þ

The functional dependence of L(ξ|θ) on the parameters θ is expressed in terms of the force

of infections λj in Eq (1) and mean recovery times wm in Eq (2), which themselves depend in g,

f and r in Eq (3). The product z goes over all contact groups and within each contact group: j
goes over individuals that become infected excluding those which initiate epidemics [39], m
goes over individuals that become infected including those which initiate epidemics and e goes

over both infection and recovery events (with corresponding event times te). Here the notation

j2z indicates that j goes over all those individuals j in contact group z, and e2Ez indicates that

e goes over all events Ez. The force of infection λj is calculated immediately prior to individual j
becoming infected. The gamma distributed probability density function FΓ for recovery events

gives the probability an individual is infected for duration δtm given a mean duration wm and

shape parameter k. The time dependent total rate of infection events Λz in contact group z
immediately prior to event time te is given by

LzðteÞ ¼
X

s
ls; ð7Þ

where the sum goes over all susceptible individuals s in group z at that time.

An important point to mention is that Eq (6) is calculated on an unbounded time line. In

situations in which data is censored, the observation model restricts events that occur within

the observed time window, but other events can exist outside of this observed region [40].

Prior π(θ). The state of knowledge prior to data y being considered. To account for the

prior assumption that residuals ε in Eq (3) are multivariate normally distributed and that the

vector of group effects G in Eq (1) are random effects, π(θ) can be decomposed into

pðyÞ ¼ pðy� ε;GÞpðεjΣÞpðGjsGÞ; ð8Þ

where θ-ε,G includes all parameters with the exception of ε and G and

pðεjSÞ ¼
Y

j

1
ffiffiffiffiffiffiffiffiffiffiffi
2pjSj

p e�
1
2
εTj S

� 1εj ;

pðGjsGÞ ¼
Y

z

1
ffiffiffiffiffiffi
2p
p

sG
e
� 1

2s2
G
G2
z
:

ð9Þ

Here j goes over each individual and εj = (εg,j, εf,j, εr,j)
T is a three dimensional vector giving

the residual contributions to the susceptibility, infectivity and recoverability of j. S is a 3×3

covariance matrix (which describes not only the overall magnitude of the residual contribu-

tions, but also any potential correlations between traits). Finally, the product z in Eq (9) goes

over all contact groups and Gz represents the group-based fractional deviation in transmission
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rate, which is assumed to be independent between groups and normally distributed with stan-

dard deviation σG.

The default prior for θ-ε,G (which can be modified if necessary) is largely uninformative but

does place upper and lower bounds on many of the key parameters to stop them straying into

biologically unrealistic values (details are given in S3 Appendix).

Samples for θ and ξ from the posterior are generated by means of an adaptive Markov

Chain Monte Carlo (MCMC) schemes which implements optimised random walk Metropo-

lis-Hastings updates for most parameters and posterior-based proposals [41] to aid fast mixing

of the residual parameters (details are given in S4 and S5 Appendices).

SIRE

SIRE is a desktop application that implements the Bayesian algorithm outlined above. It is

freely available to download from theITEAM.github.io/SIRE.html (with versions for Win-

dows, Linux and Mac) or the GitHub repository github.com/theITEAM/SIRE. An easy to use

point and click interface allows for data tables to be imported in a variety of formats and

graphical outputs are dynamically displayed as inference is performed. The core of SIRE uti-

lises efficient C++ code and allows for running MCMC chains on multiple CPU cores. The

manual for SIRE theITEAM.github.io/manual.pdf gives a detailed description of how the soft-

ware is used and how results are interpreted.

SIRE takes as input any combination of information about infection times, recovery times,

disease status measurements, disease diagnostic test results, genotypes of SNPs or any other

fixed effects (see screenshot in Fig 1A), details of which individuals belong to which contact

groups and any prior specifications (Fig 1B). The output from SIRE consists of posterior trace

plots for model parameters θ, distributions (Fig 1C), visualisation of infection and recovery

times ξ, dynamic population estimates and summary statistics (means and 95% credible inter-

vals) as well as MCMC diagnostic statistics (Fig 1D). Posterior distribution graphs can be

exported from SIRE and also files containing posterior samples of θ and ξ for further analysis

using other tools. The user guide is available as S11 and on the website.

Data scenarios

SIRE is flexible to many possible inputs. Reflecting real-world datasets this paper considers

five potential data scenarios (DS):

DS1: Infection and recovery times for all individuals exactly known. This represents

the best case scenario for inferring parameter values. For example, appearance of symptoms or

visual or behavioural signs may indicate the onset of infection, and recovery/removal times are

given by the time of death.

DS2: Only recovery times known. Often “recovery” in compartmental SIR models repre-

sents the death and removal of individuals. Consequently DS2 is pertinent to cases in which

the only measurable quantity is the time at which individuals die. For example, disease chal-

lenge experiments in aquaculture routinely record time of death rather than infection times,

which are usually difficult to measure [42].

DS3: Only infection times known. Whilst less common than DS2, in some instances data

provides information regarding when individuals become infected but not when they recover.

For example in human epidemics, patients may go to the doctor when they become ill, but no

records will be kept on when they recover.

DS4: Disease status periodically checked. DS4 represents the most common scenario for

monitoring infectious disease spread in livestock or plant populations, where each individual

is periodically checked to establish its disease status. Under DS4 the point at which epidemics
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start is usually unknown, as well as the infection and recovery times of individuals themselves.

However the diagnostic test results place constraints on these quantities. For example, if an

individual is found to be uninfected at one sampling time and infected at the next sampling

time this means that infection must have occurred at some point in the intervening period

(note here we assume perfect diagnostic tests but SIRE also allows for imperfect diagnostic test

results to be used, provided the sensitivity and specificity of the tests are known).

DS5: Time censored data. This data scenario relates to situations in which epidemics are

not observed over their entire time period. For example a disease transmission experiment

being carried out may be terminated early, due to cost or other factors (e.g. animal welfare),

even though epidemics have not completely died out.

Results

In this section we apply SIRE to simulated datasets in order to 1) test the extent to which the

inferred posterior parameter distributions agree with their true values, and 2) investigate how

the precision, accuracy and bias of inferred model parameters depends on the type of data

available.

Fig 1. SIRE software. Illustrative screenshots of the software package: (A) Different data sources can be imported by loading user defined data tables (text or csv files),

(B) prior specification can be made on parameters, (C) posterior distributions can be visualised as inference in being performed, and (D) summary statistics and MCMC

diagnostics.

https://doi.org/10.1371/journal.pcbi.1008447.g001
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Initially the focus of results will be on DS1 (which although rarely applies in practice, still

provides useful insights for software validation and application) and later in section 3.5 consid-

eration is given to DS2-5.

Illustrative example simulation and inference

We first demonstrate the performance of SIRE assuming complete information of individuals’

infection and recovery times, for a representative but complex set of parameters with regards

to the genetic and non-genetic regulation of the three epidemiological host traits. Subsequently

we investigate how these results change under different parameter and data scenarios.

Simulations. Individuals were randomly assigned into Ngroup different contact groups,

with each group containing Gsize individuals. The SNP under investigation was assumed to be

in Hardy-Weinberg equilibrium [37] with an A allele frequency of p = 0.3. For the effect sizes

we used the values ag = 0.4, af = 0.3, ar = -0.4, representing a relatively large pleiotropic effect

(which confers higher susceptibility for AA compared to BB individuals, as well as slightly

higher infectivity and reduced recoverability). The choice of Δg = 0.4, Δf = 0.1, Δr = -0.3 for the

scaled dominance factors represents partial, but not strong, dominance of either the A or B
allele. For simplicity we included only a single fixed effect, e.g. sex, of arbitrary moderate size

bg0 = 0.2, bf0 = 0.3, br0 = -0.2 with individuals in the population randomly selected to be male

or female. The residual variances were chosen to be Sgg = Sff = Srr = 1, corresponding to a

large variation in traits between individuals (perhaps larger than is biologically realistic, but

here we want to demonstrate that inference of the SNP effects is still possible despite significant

variation in trait values arising from other sources). In line with the direction of the SNP

effects, the covariances were chosen to be Sgf = 0.3, Sgr = -0.4 and Sfr = -0.2, representing a

potential scenario in which individuals that are more susceptible are also more infectious and

recover at a slower rate and vice-versa). To accommodate variation in epidemic speed across

groups, we set the standard deviation in the normally distributed group effects to σG = 0.5.

Finally, the average transmission rate was chosen to be β = 0.3/Gsize (selected because it led to a

substantial fraction of individuals becoming infected and including Gsize such that the basic

reproductive ratio R0 remained independent of group size, i.e. frequency dependent transmis-

sion) and an average recovery rate γ = 0.1 with shape parameter k = 5 (corresponding to the

infection duration being relatively highly peaked around a mean of 10 time units).

Simulated epidemic data was generated by means of a Doob-Gillespie algorithm [43] modi-

fied to account for non-Markovian recovery times (details of this procedure are given in S6

Appendix). A typical output for one simulated epidemic in a single contact group Ngroup = 1

with Gsize = 50 individuals is shown in Fig 2. Whilst the simulation itself is generated on an

individual basis, this graph summarises dynamic variation in the susceptible, infectious and

recovered populations, categorised by SNP genotype. It reveals classic epidemic SIR model

behaviour: a single infected individual passes its infection on to others, triggering a rapidly

spreading infection process throughout the population until the epidemic eventually dies out

as a result of the susceptible population becoming largely exhausted and the remaining

infected population recovering. Note that in closed groups not all susceptible individuals

become infected. In this particular case some AB and BB individuals remain uninfected at the

end of the epidemic. The absence of AA individuals partly stems from natural stochasticity in

the system, but also partly from the fact that ag = 0.4 is positive, i.e. AA individuals are more

susceptible to disease and so on average less likely to remain uninfected. Consequently we can

link the genetic composition in the final state of the epidemic to the expected value for ag
(which, based on this particular dataset, is more likely positive than negative). Over and above

information from the final state, however, there is much to be gained from also accounting for
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the infection and recovery event times themselves. The Bayesian approach adopted in this

paper utilises all this information to extract the best available parameter estimates.

The information content from a single epidemic is generally insufficient to estimate the

large number of parameters in the model. Therefore we next simulated a more realistic dataset

(using the same parameter set as above) made up of 1000 individuals split into Ngroup = 20 con-

tact groups, each containing Gsize = 50 individuals. The infection and recovery event times

from this simulation were then used as input data into SIRE (scenarios in which infection and

recovery times are not known precisely are discussed later in section 3.5).

Parameter estimates. Fig 3 shows the inferred posterior probability distributions for all

parameters in θ corresponding to the simulated multi-group scenario described above. The

actual parameter values used to generate the data (see vertical black dashed lines in Fig 3) con-

sistently lie within regions of high posterior probability. The standard deviations (SDs) in

these distributions characterise the precision with which parameters can be estimated:

Population average parameters (Fig 3A, 3B and 3C). The recovery rate γ has the greatest

precision (smallest relative SD), followed by the transmission rate β. Whilst the distribution

for the shape parameter k is wide, it is clearly able to discount the possibility of an exponential

recovery duration (i.e. k = 1), which has a very low posterior probability, over a more peaked

distribution (i.e. k>1).

SNP effects (Fig 3D, 3E and 3F). The estimated recovery SNP effect ar is highly peaked

around its true value of -0.4 (Fig 3F). Importantly this distribution has an extremely low poste-

rior probability at ar = 0. Indeed, since ar = 0 does not lie within the 95% credible interval it

can be concluded, to a high degree of certainty, that the SNP is associated with recoverability.

The same is true for the susceptibility SNP effect ag in Fig 3D, albeit with a wider posterior

probability distribution. This difference is for two reasons: firstly the recovery process involves

only ar, whereas the infection process involves both ag and af (leading to potential confounding

Fig 2. Simulated epidemic profiles. This graph shows epidemic profiles for the three SNP genotypes (i.e. AA, AB or

BB), where Sg, Ig, Rg indicate the number of susceptible, infected and recovered individuals of genotype g, respectively.

This example is simulated using a single contact group containing Gsize = 50 individuals, of which one is initially

infected. The model parameters θ are: β = 0.006, γ = 0.1, k = 5, ag = 0.4, af = 0.3, ar = -0.4, Δg = 0.4, Δf = 0.1, Δr = -0.3,

bg0 = 0.2, bf0 = 0.3, br0 = -0.2, Sgg = 1, Sgf = 0.3, Sgr = -0.4, Sff = 1, Sfr = -0.2, Srr = 1, σG = 0.5 and the A allele has

frequency p = 0.3. Note, the step jumps in curves result from discrete disease status transitions in individuals.

https://doi.org/10.1371/journal.pcbi.1008447.g002
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between these parameters) and secondly the recovery processes is gamma distributed which

has a smaller standard deviation than the more dispersed Poisson process governing infection.

The infectivity SNP effect af in Fig 3E exhibits a much wider probability distribution than the

other two SNP effects. The fact that zero does lie within the 95% posterior credible interval

(which goes from -0.35 to 2.1) means that no certain association with infectivity can be made

in this particular example. Fig 3D, 3E and 3F illustrates a general principle that was common

in the vast majority of subsequent simulation scenarios: SNP effects associated with recover-

ability are most precisely estimated, followed by susceptibility, and finally infectivity [44].

Scaled dominance factor (Fig 3G, 3H and 3I). Compared to the SNP effects themselves,

precision of the scaled dominance parameters is relatively poor, and actually reduces as the

Fig 3. Parameter posterior distributions. Probability distributions for model parameters inferred from a simulated

dataset which consisted of exact infection and recovery times (DS1) for Ngroup = 20 contact groups each containing

Gsize = 50 individuals. The parameter values in Fig 1 were used for the simulation (denoted by the vertical black dashed

lines). The standard deviations (SD) give a measure of precision.

https://doi.org/10.1371/journal.pcbi.1008447.g003
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size of the SNP effects goes down, which makes sense in the limit of zero SNP effect size,

because here no information about dominance is available. Estimating them accurately, there-

fore, either requires very large SNP effects or substantially more data.

Fixed effects (Fig 3J, 3K and 3L). Since SNP effects are also a type of fixed effect, the

same comments as above also apply for other fixed effects.

Residual covariance matrix and random group effect (Fig 3M–3S). –Interestingly, it

was possible to obtain relatively good estimates for elements in the residual covariance matrix.

Again, the familiar pattern is observed whereby quantities related to recoverability are more

precisely estimated than those related to susceptibility, with infectivity the least precise. Finally,

the variance of the group effect could be estimated with similar precision as that for suscepti-

bility (Fig 3S and 3M).

Dependence on parameter values. The previous section showed an illustrative example

for a particular parameter set. Here we assess what happens when different parameters in the

model are altered. This was achieved by means of taking the following “base” set of parameters

b ¼ 0:3=Gsize; g ¼ 0:1; k ¼ 5;

ag ¼ af ¼ ar ¼ 0;

Dg ¼ Df ¼ Dr ¼ 0;

bg0 ¼ bf 0 ¼ br0 ¼ 0;

sG ¼ 0:5;

p ¼ 0:3;

S ¼

1 0 0

0 1 0

0 0 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

; ð10Þ

and then changing each parameter separately (fixing all others) [45]. Fig 4 shows scatter plots

(each referring to a different selected parameter) of the posterior means (crosses) with corre-

sponding 95% credible intervals inferred from a single simulated dataset using the true selected

parameter value on the x-axis. Plots in which most crosses lie near to the diagonal line imply

that inference is able to accurately capture the true parameter values. Table 1 shows the corre-

sponding prediction accuracy, measured as the correlation between the inferred and true

parameter values. Except for Δf for which prediction accuracy was only 34%, prediction accu-

racies for all other parameters ranged from 69–99%. In line with the discussion above, parame-

ters associated with recoverability have generally higher predication accuracies than those

associated with susceptibility, which are again higher than those for infectivity.

Bias indicates systematic differences between the true parameter values and those inferred

from the data. Bias was measured by fitting regression lines through the posterior means in Fig

4 (as a function of the true parameter value). The corresponding y-intercept and slope values

are shown in Table 1, where a zero y-intercept and a slope of one indicate absence of bias.

Whilst the majority of observed y-intercepts tended to be very small, the slope for some of the

parameters is markedly less than one (most notably for Δf). The reason for this is as follows.

When Bayesian analysis reveals insufficient information regarding a parameter, its distribution

follows that of the prior (which are uniform for all the parameters in this particular study, as

described in S3 Appendix). This behaviour happens irrespective of the parameter’s true value,

leading to a plot in Fig 4 that would be entirely flat (i.e. a slope of zero). Therefore, the slopes

of less than one in Fig 4 simply reflect a lack of data, which is essentially another manifestation

of a lack of parameter precision. Consequently, bias reduces as the amount of data increases

(provided the model being fitted is the correct one).

From the point of view of this paper, the probability distributions which are of greatest

interest are the SNP effects. Noting the sizes of the error bars across Fig 4D, 4E and 4F demon-

strate that the precisions of the parameter estimates are largely independent of the values of

the parameters themselves, a result which can be supported analytically [46]. This implies that

the precision of SNP effects calculated using the base set of parameters in Eq (10) is expected
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to be generally applicable to any other parameter set [47] (e.g. the average SDs in Table 1 for

the base parameter set are very similar to the SDs shown in Fig 3), provided the basic repro-

ductive ratio R0 is large such that most individuals become infected. Cases in which only a frac-

tion of individuals become infected lead to a reduction in this optimum, but this reduction is

typically small under most realistic scenarios.

Consequently, the remainder of this paper focuses on investigating how SNP effect esti-

mates are affected by contact group structure and the nature of the measured data using this

base set of parameters. We focus first on outlining the behaviour with respect to key design fea-

tures, e.g. group size, number of individuals per group and allele frequency, and then go on to

consider how observations of the system influence what can be learned.

Dependence on the number and size of contact groups

The crosses in Fig 5 shows how SDs in the SNP effects change as a function of the number of indi-

viduals Gsize within each contact group (here Ngroup = 10 contact groups are assumed). The SD in

ag reduces as the number of individuals in each contact groupGsize increases (Fig 5A). Importantly

this relationship scales as a line of slope -½ (note the log scales on this plot), corresponding to pre-

cision increasing by a factor of two as the number of individuals is increases by a factor of four (in

line with what would be expected from central limit theorem). Fig 5A provides insights into how

many individuals would need to be observed in order to be able to make an association with a

Fig 4. Prediction accuracy and bias. The inferred posterior distributions for parameters compared to their true value.

Simulated data was generated using the base parameter set in Eq (10) except for a single parameter which was singled

out in each of the sub-plots above�. Each cross corresponds to the inferred posterior mean (with error bars indicating

95% credible intervals) of the selected parameter (whose true value is on the x-axis) when SIRE is applied to a single

simulated dataset consisting of infection and recovery times (DS1) from Ngroup = 20 contact groups each containing

Gsize = 50 individuals. A description of the model parameters, together with calculated prediction accuracies

(correlation between true and inferred value), and bias (represented by intercept and slope of regression lines fitted to

the data points), and average standard deviations are given in Table 1. (�Additionally for (G) ag = 0.4, (H) af = 0.4 and

(I) ar = 0.4, such that dominance has an effect).

https://doi.org/10.1371/journal.pcbi.1008447.g004

Table 1. Prediction accuracy, bias and precision for the parameter estimates. Other columns relate to the sub-plots in Fig 4 (see Fig 4 caption for information about

the underlying data). Prediction accuracy is defined as the correlation between the inferred and true parameter values. The y-intercept and slope were obtained by fitting

regression lines through the data points in Fig 4 (a y-intercept of zero and slope of one indicates no bias). Av. SD gives the average posterior standard deviation across all

data points as an indicator for precision of parameter estimates. Subscripts g, f and r refer to susceptibility, infectivity and recoverability, respectively.

Parameter Accuracy y-intercept Slope Av. SD Description

β
γ

0.833

0.982

0.000

0.001

1.080

0.999

0.003

0.013

Average transmission rate

Average recovery rate

k
ag
af
ar
Δg

Δf

Δr

bg0
bf0
br0
Sgg
Sff
Srr
Sgf
Sgr
Sfr
σG

0.806

0.985

0.875

0.995

0.910

0.335

0.920

0.978

0.871

0.992

0.885

0.691

0.981

0.789

0.978

0.862

0.899

1.810

-0.004

-0.054

-0.020

-0.038

0.065

-0.005

-0.012

-0.035

0.008

0.101

0.264

0.027

-0.022

0.000

0.002

0.008

0.633

1.020

0.860

0.990

0.751

0.133

0.781

1.000

1.100

1.000

0.903

0.563

1.000

0.949

0.959

0.983

1.071

1.580

0.091

0.287

0.065

0.439

0.530

0.373

0.105

0.365

0.073

0.136

0.203

0.071

0.230

0.067

0.144

0.144

Recovery shape parameter

SNP effect for susceptibility

SNP effect for infectivity

SNP effect for recoverability

Dominance factor (per trait)

Fixed effect (per trait)

Residual covariance matrix

SD of group effects

https://doi.org/10.1371/journal.pcbi.1008447.t001
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susceptibility SNP effect of a given size. For example, in order to detect an association with a sus-

ceptibility SNP of effect size ag = 0.4, Gsize = 20 individuals per contact group, and so Gsize×Ngroup

= 200 individuals in total would be needed to assure that the 95% credibility interval does not con-

tain zero (assuming approximate normality for the posterior distribution), as illustrated by that

black dashed line in Fig 5A. Fig 5C shows the same scaling relationship for identifying recoverabil-

ity SNP effects, but this time only Gsize×Ngroup = 100 individuals are needed to make associations

for recovery SNP effects (reflecting the fact that ar can be inferred more precisely, as mentioned

previously). A very different state of affairs, however, is observed in Fig 5B. Here we see that not

only is the infectivity SNP effect af poorly estimated, but also its precision does not markedly

improve even when the number of individuals in each contact group Gsize is substantially

increased.

Instead of varying Gsize and fixing the number of contact groups Ngroup, we now fix Gsize =

10 and vary Ngroup. Results for this are shown in Fig 6 (represented by the crosses). This reveals

a similar behaviour as seen before for the SD in ag and ar, but crucially we find the SD in the

infectivity SNP effect af now also scales with the familiar line of slope -½. The reason for this

behaviour lies in the fact that infectivity is an indirect genetic effect, i.e. an individual’s infectiv-

ity SNP affects the disease phenotype of group members rather than its own disease phenotype

[48–50]. More intuitively, this can be explained as follows. Susceptibility and recoverability

SNPs of an individual directly affect its own measured disease phenotype (the former affecting

its infection time and the latter affecting its recovery time). Therefore the information on

which these two quantities can be inferred is expected to scale with the total number of indi-

viduals. On the other hand, as an individual’s infectivity SNP acts on all susceptible individuals

sharing the same contact group, it affects the epidemic dynamics as a whole. In fact much of

the information regarding infectivity comes from the overall speed of epidemics (see S7

Appendix for a discussion of why these variation in speeds are not absorbed by the group

effects). For example, if those contact groups containing individuals with more A alleles con-

sistently experience epidemics which are faster than those with fewer A alleles, this provides

evidence that the A allele confers greater infectivity than the B allele (the situation is further

complicated by the fact that differences in susceptibility can also cause this behaviour, however

the algorithm can independently estimate ag, so removing this potential confounding).

Because information about the infectivity SNP effect comes from epidemic-wide behaviour, it

is expected to scale linearly with the number of contact groups Ngroup (Fig 6B), but not with the

number of individuals per contact group Gsize (Fig 5B).

Finally, we investigate the case in which we fix the total number of individuals to Gsi-

ze×Ngroup = 1000 whilst simultaneously varying Gsize and Ngroup, as shown in Fig 7 (see crosses).

In Fig 7A we find very little variation in the precision of ag. Interestingly, the results in Fig 7B

clearly demonstrate that larger numbers of contact groups containing fewer individuals help to

reduce the SD in the infectivity SNP effect af. In the case of Gsize = 2 the posterior SDs in ag and

af are actually the same due to the symmetry of this particular setup (i.e. each group consists of

exactly one infected and one susceptible individual). Lastly, Fig 7C shows that the SD in ar is

largely independent of Gsize. This is because recovery is solely an individual-based process, and

so happens independently of others sharing the same contact group (although in cases in

which R0 is small, differences may result from variation in the fraction of individuals which

actually become infected).

Dependence on allele frequency

So far we have assumed a fixed A allele frequency p = 0.3 in the population. Fig 8 demonstrates

what happens when this is no longer the case by varying p, which in turn changes the Hardy-
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Fig 5. Variation in precision of the SNP effect estimates with group size Gsize. Posterior standard deviations (SDs)

in SNP effects for (A) susceptibility ag, (B) infectivity af and (C) recoverability ar from simulated data with Ngroup = 10

contact groups each containing Gsize individuals (which is varied). Different symbols represent different data scenarios:

DS1) Both the infection and recovery times for individuals are known, DS2) only recovery times are known, and DS3)

only infection times are known. Each symbol represents the average posterior SD over 50 simulated data replicates

with the error bar denoting 95% of the stochastic variation about this value, i.e. 95% of posterior SDs lie within the

interval (note, they do not represent posterior credible intervals, as in Fig 4). The black line indicates a slope of -½ and

the dashed black and purple dash lines indicate the sample size required for identifying a SNP with effect size 0.4 for

the trait under consideration (see main text for further explanation). Parameter values are given in Eq (10).

https://doi.org/10.1371/journal.pcbi.1008447.g005
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Weinberg equilibrium frequencies for the three genotypes. We find that the SD curves are

symmetric around a minimum of p = 0.5 and remain remarkably flat over a large region, (note

the profiles of these curves is actually proportional to ½2pð1 � pÞNgroipGsize�
� 1=2

, a result derived

in a subsequent follow up paper [46]). They only increase substantially when the minor allele

frequency drops below around 10%. This result shows that the statistical power to establish

SNP effects dramatically reduces when they are rare, which is consistent with observations

from conventional GWAS analyses [51].

Different data scenarios

This section shows results from the various data scenarios introduce in section 2.4, in which

the infection and recovery times of all individuals are not known precisely:

DS2: Only recovery times known. Since ag and af relate to the infection process, naïvely it

might be expected that because infection times are unknown then nothing can be inferred

about these SNP effects. This section, however, clearly demonstrates this not to be the case. The

reason lies in the fact that whilst infection times are latent variables, the distribution from which

they are sampled is informed by the available recovery data through the likelihood in Eq (6).

The square symbols in Fig 5A denote the posterior SDs in the susceptibility SNP effect ag
under DS2. Compared to the best case scenario DS1, the SD in ag increases as a result of having

to infer probable infection times for individuals (as opposed to knowing them exactly). The

number of individuals per group needed to identify an association for a susceptibility SNP

effect of ag = 0.4 is now Gsize = 80 (see dashed purple line in Fig 5A), as opposed to Gsize = 20 in

the case of DS1. Consequently to achieve an equivalent precision for ag under DS2 requires

around 4 times as many individuals. In the case of the infectivity SNP effect af, this factor

becomes approximately 4.2 (see Fig 6B, assuming a large number of contact groups), and for

the recoverability it is 1.9 (see Fig 5C). These factors were found to be remarkably consistent

across a broad range of group numbers and sizes.

Estimates of prediction accuracies and bias for the case of DS2 were obtained as described

in section 3.2, and results are presented in S8 Appendix. Compared to DS1 (Fig 4 and Table 1),

The prediction accuracies tend to be slightly lower (but still above 0.5 in the majority of cases

and above 0.9 for some parameters) and the bias slightly higher, reflecting the reduction in

data. However, similar patterns with regards to which parameters are associated with lower

prediction accuracy and bias emerge as was seen for DS1 (Fig 4).

In summary our analysis of DS2 clearly demonstrates that even when infection times are

unknown, accurate inference regarding all SNP effects can be made, given sufficient data.

DS3: Only infection times known. The triangles in Figs 5, 6 and 7 show results under

DS3 for different group sizes and group compositions. Here the SDs in the SNP effects for sus-

ceptibility ag and infectivity af are found to be almost the same as for DS1 (because uncertainty

in recovery times only has a very weak impact on uncertainty in the infection process). How-

ever the SD for the recovery SNP effect ar is much larger, meaning that little can be inferred

regarding SNP-based differences in recoverability. This is because under DS3 the only indirect

information regarding recovery times comes from the very early stages of each epidemic (e.g.
we know that the first infected individual cannot recover before the second individual becomes

infected). This explains why SDs for recovery SNP effects decrease at a rate of -½ (on the log-

scale) as the number of contact groups Ngroup increases (i.e. the triangles in Fig 6C scale with

the black line) but not when the number of individuals per contact group Gsize is changed (see

Fig 5C).

DS4: Disease status periodically checked. Fig 9 shows results under DS4 assuming a

time interval between checks of Δt. When Δt = 0 (as shown on the left of this figure) the DS4
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Fig 6. Variation in precision of the SNP effect estimates with number of groups Ngroup. Posterior standard

deviations (SDs) in SNP effects for (A) susceptibility ag, (B) infectivity af and (C) recoverability ar from simulated data

with Ngroup contact groups (which is varied) each containing Gsize = 10 individuals. Different symbols represent

different data scenarios: DS1) Both the infection and recovery times for individuals are known, DS2) only recovery

times are known, and DS3) only infection times are known. Each symbol represents the average posterior SD over 50

simulated data replicates with the error bar denoting 95% of the stochastic variation about this value. The black line

indicates a slope of -½. Parameter values are given in Eq (10).

https://doi.org/10.1371/journal.pcbi.1008447.g006
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results are the same as in DS1 (because here infection and recovery times are effectively exactly

known). On the other hand as checking becomes less and less frequent, the SDs in the SNP

effects rise. A surprising feature is that this reduction in statistical power is perhaps less than

might be expected. The vertical lines in Fig 9 represent two key timescales: htIi is the average

infection time as measured from the beginning of the epidemic and htRi is the average recovery

time (these quantities are found by averaging over a large number of simulated replicates). We

see that statistical power only marginally reduces even when disease diagnostic checking is per-

formed on a similar timescale as the epidemics as a whole. This result is perhaps surprising

and reflects the fact that most information comes from general patterns of behaviour rather

than specific timings of events. One reason is because infection times are so open to stochastic

variation (unless an individual is much more/less susceptible than average it can be infected

essentially randomly at any point during an epidemic) and so the knowledge that a particular

individual gets infected at a particular time holds very little value. It is only when one considers

collections of individuals and sees patterns that inferences can be made (e.g. AA individuals

tend on average to be infected earlier in epidemics, hence the A allele is more susceptible).

Because knowledge of precise timings is not vital it means that insights obtained using per-

fect data (DS1), as explored in sections 3.1–3.4 (and studied via mathematical analysis in a fol-

low up paper [46]), remain relevant in realistic data scenarios.

The limit on the right hand side of Fig 9 shows the situation in which there is no informa-

tion regarding infection and recovery times (i.e. only the initial and final states of the epidemic

are observed). Unfortunately it was found to be difficult to probe this regime using SIRE due

to mixing problems arising in the MCMC algorithm [52] (principally because the number of

possible parameter sets and event sequences consistent with a given final outcome is vast).

The results here emphasise the fact that even relatively infrequent disease status checks pro-

vide useful data from which accurate inferences regarding SNP effects can be drawn.

DS5: Time censored data. In Fig 10A it is assumed the infection and recovery times are

exactly known but only up to some final time tend (subsequent to which no further data is avail-

able). We find that very little information is lost when restricting tend to around the average

recovery time htRi. This is largely because most individuals recover before htRi as a conse-

quence of a small number of individuals having very low recoverability (which itself arises

because of the large residual variance Srr = 1 assumed here). Given that htRi is usually substan-

tially less than the total epidemic time, from a practical point of view terminating disease trans-

mission experiments prior to the end of the epidemic when no new infections occur, (and

perhaps performing further replicates) may be beneficial. However, the effectiveness of this

approach would depend on a large assumed variation in recoverability in the population,

which a priori may be unknown.

Fig 10B shows the opposite scenario, in which contact groups are observed from an initial

starting time tstart after the start of the epidemic up until its termination. This scenario may

apply to field outbreaks, where sampling occurs only after notification of the outbreak. Here

again we see a reduction in statistical power with increasing tstart, but this reduction is not sub-

stantial until around the average infection time. This result is surprising, but it turns out that

whilst none of the events before tstart are actually measured (which may include a large propor-

tion of the total number of infection events), the disease status of all the individuals at tstart can

be accurately inferred (because the final state is known and all the subsequent events from tstart
are also known, the state at tstart is exactly specified) and this encapsulates almost the same

amount of information as when the event times are precisely known.

General data scenario. It should be noted that the data scenarios DS1-5 considered are

not comprehensive. Any combination of infection time, recovery time, disease status data and

diagnostic test results can be used as inputs into SIRE. Furthermore SIRE accounts for
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Fig 7. Variation in precision of the SNP effect estimates with partitioning into groups. Posterior standard

deviations (SDs) in SNP effects for (A) susceptibility ag, (B) infectivity af and (C) recoverability ar from simulated data

with Ngroup contact groups each containing Gsize individuals, both of which are varied such that the total population

Ngroup×Gsize is fixed to 1000. Different symbols represent different data scenarios: DS1) Both the infection and recovery

times for individuals are known, DS2) only recovery times are known, and DS3) only infection times are known. Each

symbol represents the average posterior SD over 50 simulated data replicates with the error bar denoting 95% of the

stochastic variation about this value. Parameter values are given in Eq (10).

https://doi.org/10.1371/journal.pcbi.1008447.g007
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Fig 8. Variation in precision of the SNP effect estimates with allele frequency p. Posterior standard deviations (SDs)

in SNP effects for (A) susceptibility ag, (B) infectivity af and (C) recoverability ar from simulated data with Ngroup = 20

contact groups each containing Gsize = 50 individuals. Different symbols represent different data scenarios: DS1) Both

the infection and recovery times for individuals are known, DS2) only recovery times are known, and DS3) only

infection times are known. Each symbol represents the average posterior SD over 50 simulated data replicates with the

error bar denoting 95% of the stochastic variation about this value. Parameters used are given in Eq (10).

https://doi.org/10.1371/journal.pcbi.1008447.g008
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additional uncertainties in cases in which data is missing on some individuals and where diag-

nostic tests are imperfect.

Discussion

The availability of dense genome-wide SNP panels has revolutionized human medicine and

has paved the way for genetic disease control in agriculture. With declining genotyping costs,

discovery of new disease susceptibility loci has increased exponentially over recent years, and

evidence for their effective utilization in personalized medicine and livestock and plant breed-

ing programmes continues to emerge [53–56]. However, there is increasing awareness

amongst researchers and policy makers that disease susceptibility is not the only host genetic

trait controlling disease incidence and prevalence in populations, and in particular that host

genetic infectivity and recoverability may also constitute important improvement targets for

reducing disease spread [18–21,57,58]. Yet, genetic loci associated with host recoverability

reported in the literature are sparse, and to the best of our knowledge no infectivity SNP has

yet been identified. This, perhaps, is unsurprising given that phenotypic measurements of

recoverability and infectivity, such as individuals’ recovery or pathogen shedding rates are

rarely available in practice and statistical inference methods to accurately infer these from

available epidemic data are still in their infancy. In line with the lack of suitable statistical

methods, little is known about what type and number of measurements are needed to produce

unbiased and precise estimates of SNP effects for these ‘new’ epidemiological host trait

phenotypes.

In this paper we developed a Bayesian methodology to allow for simultaneous estimation of

SNP effects for host susceptibility, recoverability and infectivity from temporal epidemic data.

As well as considering uncertainty in the model parameters themselves, our methods do not

require infection or recovery times to be known; these are treated as latent variables that

Fig 9. Periodic checking of disease status (DS4). Posterior standard deviations (SDs) in estimated SNP effects ag, af
and ar from simulated data with Ngroup = 20 contact groups each containing Gsize = 50 individuals. Here it is assumed

that the disease status of individuals is periodically checked with time interval Δt. Each symbol represents the average

posterior SD over 50 simulated data replicates with the error bar denoting 95% of the stochastic variation about this

value (with the checking times randomly shifted across these replicates) with the error bar denoting stochastic

variation in posterior mean. The vertical lines represent key epidemic times: htIi is the mean infection time (as

averaged over an large number of simulations) and htRi the mean recovery time. Parameter values given in Eq (10).

https://doi.org/10.1371/journal.pcbi.1008447.g009
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represent the underlying dynamics of the system. Whilst computationally demanding, this

approach offers for the first time the possibility to estimate and disentangle different host

genetic effects underlying disease transmission from experimental or field data without mak-

ing simplifying assumptions that can lead to biased or spurious results.

The methodology was validated with data from simulated epidemics, which were also used

to assess how different parameter values and data scenarios representing different recording

schemes in field or experimental studies may affect the estimates of SNP effects and other

parameters influencing transmission dynamics. The sophisticated Bayesian algorithm outlined

in this paper has been implemented into a user-friendly software tool called SIRE, which allows

Fig 10. Censoring of data (DS5). Posterior standard deviations (SDs) in SNP effects ag, af and ar from simulated data

with Ngroup = 20 contact groups each containing Gsize = 50 individuals. Each symbol represents the average posterior

SD over 50 simulated data replicates with the error bar denoting 95% of the stochastic variation about this value. (A)

Contact groups are observed until time tend, after which no further data is taken. (B) Contact groups are observed from

time tstart until the end of all epidemics. The vertical lines represent key epidemic times: htIi is the mean infection time

(as averaged over an large number of simulations) and htRi the mean recovery time. Parameter values given in Eq (10).

https://doi.org/10.1371/journal.pcbi.1008447.g010
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computationally efficient analyses to be performed by anyone with relevant epidemiological

data (as shown in S9 Appendix, outputs typically take a few minutes of CPU time per 1000

individuals).

Our results indicate that it is possible to obtain simultaneous unbiased estimates of SNP

effects for all three epidemiological host traits, in addition to that of other fixed or random

effects influencing disease transmission, from temporal epidemic data. Across simulated data

scenarios we found that recoverability SNP effects are generally (with few exceptions) easiest

to identify, followed by susceptibility and then infectivity SNP effects. In the latter case a large

number of contact groups with few individuals provide much more information than the

reverse. Simulations of different data scenarios representing optimal (perfect and complete

data) and practically feasible recording schemes produced the following relevant insights:

firstly, even when only recovery (or death) times of individuals are known inference of SNP

effects is still possible, albeit requiring around four times as many individuals to gain equiva-

lent precision as for perfect data. Secondly, only knowing infection times marginally reduces

statistical power to detect SNP effects for susceptibility and infectivity, but recovery SNP effects

become difficult to detect. Thirdly, when data consists of periodic measurements of individu-

als’ disease status it was found that even relatively infrequent measurements (e.g. on a similar

timescale as the entire epidemic) yields SNP effects with high precision, given sufficient data.

Lastly, precise estimates of SNP effects could still be obtained with censored epidemic data.

For model validation, we chose a complex inter-dependence structure for the model param-

eters by assuming that the SNP under consideration is associated with all three epidemiological

host traits (i.e. pleiotropy), but with different allele substitution effects and different modes of

dominance. Furthermore, we assumed that the traits are also influenced by other fixed effects,

have large residual variance (introducing much noise into the system) and are correlated, and

that environmental group effects influence the within-group transmission dynamics. This

choice represents an extremely challenging system in which to estimate SNP effects and in

practice most real world examples are likely to be considerably less challenging as simpler

structures and reduced variation/better control of variation will improve the quality of the

parameter estimates.

The results from different data scenarios indicate a log-log scaling relationship with slope

-½ between the precision (as measured by the SD in the posterior) of SNP effect estimates, and

group size or number of groups (this relationship in analytically confirmed in a follow up

paper [46]). For the majority of the simulations presented here, a moderate total population

size of 1000 or less individuals was assumed. The corresponding posterior standard deviations

for estimated SNP effects were generally above 0.01, and in the case of infectivity effects, more

often above 0.1. This would suggest that for datasets comprising of 1000 individuals or less,

SIRE is only able to detect SNPs of large effects on the epidemiological host traits, but identifi-

cation of SNPs of small to moderate effects on this trait requires significantly more data, in

particular for infectivity.

We chose a dataset comprising of 1000 individuals partly because of computational effi-

ciency but also because generating datasets of this size seems feasible for transmission experi-

ments in plants and most domestic livestock species, in particular aquaculture species

[19,59,60]. However, many existing field data, in particular in dairy cattle populations with

routine genotyping and frequent recordings of disease phenotypes e.g. for mastitis, bovine

Tuberculosis, and other infectious diseases [61–63] already exceed this number by several

orders of magnitude. As genotyping costs continue to fall and automated recording systems

are applied at rapidly increasing frequency in agriculture [64,65], the possibility of identifying

SNPs with small to moderate effects on the epidemiological host traits, and their mode of
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dominance, which was poorly estimated for the given sample size, would appear to be well

within reach in the near future.

It is widely recognised that disease traits are for the most part polygenic, i.e. regulated by

many genes each with small effect, and hence that SNPs with large effect on disease phenotypes

are the exception rather than the norm [10,62]. This is partly due to the fact that observed dis-

ease phenotypes, such as individuals’ binary infection status or infection time are the result of

many interacting biological processes, each controlled by a different set of genes or genetic

pathways and characteristics of the wider population. Hence the impact of an individual gene

on the disease phenotype is diluted. In contrast, the relative impact of a particular gene on

traits that are more closely related to specific biological processes, such as e.g. pathogen entry,

replication or shedding affecting susceptibility, recoverability or infectivity, respectively, may

be higher [66]. Therefore, it is not unreasonable to assume that SNPs with moderate to large

effects on these epidemiological traits, and in particular on host infectivity, may indeed exist.

Evolutionary theory suggests that alleles that confer low susceptibility to infection or fast

recoverability from infection are subject to strong directional selection when individuals are

commonly exposed to infection [67]. Hence, such beneficial alleles tend to become fixed

within only a few generations, and consequently, SNPs with large effects on disease susceptibil-

ity or recoverability would be expected to occur primarily only in populations that have not

experienced strong selection pressure for these traits. This is exemplified in the case of Infec-

tious Pancreatic Necrosis (IPN) in farmed Atlantic salmon that have only undergone a few

generations of selection, where a single SNP explains most of the variation in mortality of fish

exposed to the IPN virus [60,68]. In contrast, selection pressure on infectivity is expected to be

relatively low, since an individual’s infectivity genes affect the disease phenotype of group

members rather than its own disease phenotype [33,48,69]. Therefore, infectivity SNPs with

large effect may indeed exist, and may now be identifiable with the methods presented here.

The approach developed in this study and integrated into SIRE complement and succeed

previous studies that aimed to develop statistical methods for estimating genetic effects for the

different host epidemiological traits [24,29–31,33]. The key novelty of our approach lies in its

ability to estimate genetic and non-genetic effects associated with all three epidemiological

host traits from a range of temporal epidemic data, even when that data is incomplete.

Applications

Many disease challenge experiments and field studies have identified SNPs with moderate to large

effects on measurable disease resistance phenotypes [54,55,70]. However, the role of these SNPs

on transmission dynamics is often poorly understood. For example, it is generally not known

whether individuals that carry the beneficial allele for e.g. surviving infectious challenge are less

likely to become infected (i.e. less susceptible), or more prone to surviving infection (e.g. due to

better recoverability), and also less prone to transmitting infection, once infected (i.e. less infec-

tive). From an epidemiological perspective, SNPs with favourable pleiotropic effects on all three

host epidemiological traits are highly desirable for preventing or mitigating disease spread [71]. In

contrast alleles associated with better survival in existing GWAS would only bring the expected

epidemiological benefits if they don’t simultaneously confer greater infectivity. In other words,

knowing the SNP effects for all three underlying epidemiological host traits is desirable for effec-

tive employment of genetic disease control. Based on the results in this paper, SIRE can readily be

applied to disentangle such SNP effects using data from transmission experiments or field studies.

Furthermore, although this paper focused on estimating SNP effects, SIRE could also

immediately be applied to estimating breed, age, sex, treatment or vaccination effects, or any

other factor that may affect disease spread, even if genetic information is absent.
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Limitations of the current approach and future work

One of the potential practical limitations for accurately estimating infectivity SNP effects is

that they require a large number of epidemic groups. Previous work has shown that experi-

mental designs can have a significant impact on the precision and accuracy with which model

parameters can be estimated (as demonstrated to some extent in this paper and also investi-

gated for indirect genetic effects in numerous other studies [49]). In particular, theoretical

studies indicate that significant improvement in estimates of infectivity effects can be achieved

by appropriately grouping genetically related individuals [31,33]. Whilst this paper focused

entirely on a fixed A allele frequency p across groups, a follow up paper [46] will show that

appropriate variation in genotypes within and across contact groups can lead to substantial

improvements in the precision of the infectivity SNP effect af, without the need for large num-

bers of epidemic contact groups (interestingly, the susceptibility and recoverability SNP effects

cannot be substantially improved in this way).

A tool such as SIRE that can accurately estimate the effects of single SNPs on hitherto inacces-

sible epidemiological traits presents an important first step towards creating a statistically consis-

tent scheme for performing GWAS on epidemiological traits using potentially incomplete data.

GWAS, however, typically contains additional features beyond the scope of the simple single

SNP analysis presented here. In particular, the current software focuses on one SNP at a time for

estimating genetic effects for susceptibility, infectivity and recovery, but ignores the contributions

of other genes on these traits. In the current model design these are incorporated into the residual

effects. This simplifying assumption may have little impact for appropriately designed transmis-

sion experiments, but may lead to biased estimates of SNP effects if genetically similar individuals

are not randomly distributed across groups (S10 Appendix shows under random distribution no

bias is found). Theory also suggests that the required sample size for GWAS increases with the

number of loci affecting the trait under consideration [72]. Hence, further model development is

required for enabling GWAS for the three underlying epidemiological host traits. Previous work

in our group developed a Bayesian algorithm for estimating polygenic effects for host susceptibil-

ity and infectivity from incomplete epidemic data [30]. Combining both approaches may prove a

useful way forward to allow estimation of genetic effects under all realistic genetic architectures

and population structures. Furthermore whilst SIRE is fast for analysis of a single candidate SNP,

analysis across an entire genome will be computationally challenging. The development of a par-

allel implementation and fast filtering techniques (that leave perhaps 100–1000 potential SNPs

for full Bayesian analysis) will become necessary.

The SIR model used in this paper focuses on epidemic outbreaks, however in many cases

there is more field data from endemic diseases are so they may be more amenable to genetic

improvement. Analysis of these will require extending the model to include births, deaths or

animal movement, and potentially also waning immunity. However, there is no reason why, in

principle, these additional complications cannot be added to the framework proposed in this

paper, and this may provide a fruitful direction for future research.

In summary, this paper introduces, for the first time, software that can estimate genetic and

non-genetic effects for susceptibility, infectivity and recoverability simultaneously. This user-

friendly tool can be applied to a range of experimental and field data and will help move genetic

disease control significantly forward, beyond the focus on genetic improvement of resistance alone.
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