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Abstract

Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous

anti-angiogenic molecules identified, has long been considered a potent modulator of

human diseases. While the therapeutic effect of TSP-1 to suppress cancer was inves-

tigated in both research and clinical settings, the mechanisms of how TSP-1 is regu-

lated in cancer remain elusive, and the scientific answers to the question of whether

TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with

cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogene-

sis, inflammation and tissue remodelling, which are essential biological processes in

the progression of many cardiovascular diseases, and therefore, its dysregulated

expressions in such conditions may have therapeutic significance. Herein, we critically

analysed the literature pertaining to TSP-1 expression in circulating blood and patho-

logical tissues in various types of cancer as well as cardiovascular and inflammation-

related diseases in humans. We compare the secretion rates of TSP-1 by different

cancer and non-cancer cells and discuss the potential connection between the expres-

sion changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in

patients with cancer. Moreover, the pattern and emerging significance of TSP-1 pro-

files in cardiovascular disease, such as peripheral arterial disease, diabetes and other

related non-cancer disorders, are highlighted. The analysis of published TSP-1 data

presented in this review may have implications for the future exploration of novel

TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
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1 | INTRODUCTION

Complex multicellular organisms require surface adhesion and a

three-dimensional support system. The extracellular matrix provides

these necessary biomechanical structural elements.1 The generation

and maintenance of this enveloping structural system are coopera-

tively regulated by a variety of cellular activities and signals. A spe-

cialized group of secreted proteins interface with and bind to the

matrix and the cells contained by the matrix to act as intermediates

to alter cell response primarily from outside-in. This class of proteins
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has been termed matricellular proteins, and it represents an expand-

ing group of molecules that includes over nine subfamilies of pro-

teins that are increasingly recognized as playing important roles in

homoeostasis and recently in diseases.2 As the name implies matri-

cellular proteins function to span the area between the cell surface

and the matrix scaffold. Also important to the understanding of

these molecules is that they do not impart strength to the matrix

themselves, instead they can regulate matrix metabolism to alter the

biomechanical properties of the extracellular matrix.

A quintessential and founding member of this group is throm-

bospondin-1 (TSP-1), a protein first identified in the particulate frac-

tion of thrombin-activated platelets3 and this fact being incorporated

in its name. Like many secreted proteins post-development, TSP-1 is

minimally detectable in health but rapidly up-regulated with injury

and persists in chronic diseases, being found in the parenchyma as

well as fluid compartments including the blood,4 urine5 and cere-

brospinal fluid.6 TSP-1 is trimeric, with each monomer about 130-

150 kD, but the secreted protein is heavily modified by glycosylation

and weighs over 450 kD (Figure 1).7 Secreted TSP-1 directly trans-

duces signals through binding via discrete domains to cell-surface

receptors including but not limited to CD47, CD36 and integrins.8

Indirectly, TSP-1 regulates cell signalling through binding to other

molecules such as enzymes and growth factors.9,10 Consequently,

the manifold roles of TSP-1 in modulating cell functions are concen-

tration- and cell type-specific. Nonetheless, some trends have

emerged. From the perspective of pharmacology, high concentra-

tions of TSP-1 check the cell cycle in primary cells to impede self-

renewal and proliferation11 and can, at certain concentrations,

induce cell death.12,13 These effects arise, in part, from the ability of

TSP-1 to limit pro-growth signals and several key elements of meta-

bolism.14 Another essential feature of TSP-1 is its ability to control

tissue repair and remodelling in response to injury and stress, a prop-

erty enhanced by its important function to increase transforming

growth factor beta (TGF-beta) activity.15 In the central nervous sys-

tem, TSP-1 is expressed and secreted by astrocytes and is a pro-

moter of synapse formation as well as neuronal proliferation and

differentiation.16 During immune activation, TSP-1 has a supportive

role and can increase the activation of inflammatory cells including

monocytes,17 dendritic cells,18 macrophages19 and T cells.20 Con-

versely, in other settings such as during the resolution of inflamma-

tion, TSP-1 may act to suppress inflammation.21,22 A fundamental

and well-established property of TSP-1 is to limit endothelial cell

(EC)-mediated angiogenesis by inhibiting the activity of vascular

endothelial growth factor (VEGF)23 and the pleiotropic signals of the

gasotransmitter nitric oxide (NO).24 In this way, TSP-1 adversely

impacts angiogenesis and blood flow25 and modulates blood pres-

sure by limiting NO-mediated vasorelaxation.26 In this latter capacity,

TSP-1 is now recognized to alter cardiovascular responses in gen-

eral.25,27 In the light of its role to retard angiogenesis, TSP-1 is

shown to suppress tumour growth and is often found down-regu-

lated in the tumour microenvironment coincident with accelerated

tumour invasiveness.28 Increases in circulating TSP-1 expression

have also been found to be positively correlated with patient

survival in some cancers.29,30 Expectantly, TSP-1-derived drugs have

been developed in the interest of inhibiting angiogenesis and treat-

ing cancer.31,32 However, the effect of TSP-1 in cancer is not simple,

and it has been reported that TSP-1 can also support tumour growth

and spread.33 Interest has been growing in TSP-1 as a possible bio-

marker and an important contributor to human diseases, particularly

in age-related and metabolic diseases.34,35 At the same time, TSP-1

and several of its cell-surface receptors, notably CD36 and CD47,

have and continue to be pursued as therapeutic targets.36,37

Renewed appreciation of TSP-1 in the pathophysiology of dis-

eases has encouraged research into the expression of this protein in

different cells and body compartments. However, a systematic char-

acterization and quantification of published TSP-1 expression data in

diseases, both amount and rate of production, has not been previ-

ously approached. Such an analysis is important, and it can provide

insight into the sometimes conflicting activity of this molecule and

serve to guide therapeutic interventions that target pathways medi-

ated by TSP-1; it is also important for systems biology computational

studies of TSP-1.38-40 Herein, we present the results of a systematic

multilevel (cell, fluid, tissue) characterization of TSP-1 concentrations

in people in health and disease, specifically in cancer and cardiovas-

cular diseases, derived from analysis of the current literature. Inter-

estingly, strong patterns emerge. In cancer, TSP-1 expression is

surprisingly heterogeneous to the point of forestalling prediction as

to its role in many of these cases. Conversely, in inflammatory and

cardiovascular diseases, TSP-1 expression levels show a persistent

trend to be significantly elevated compared to non-diseased subjects.

The correlation between dysregulated TSP-1 expressions in diseases
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� Thrombospondin-1 (TSP-1), a matricellular protein, is
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between TSP-1 levels in patients and survival are also

cancer type-specific.

� Human TSP-1 protein expression in circulating blood is

uniformly up-regulated in a variety of cardiovascular and

inflammatory diseases and is often associated with worse

patient outcomes.
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and patient outcomes is also discussed. These results emphasize the

role of the protein, beyond the sphere of cancer, as indicative of

promoting disease and as a possible therapeutic index.

2 | TSP-1 SECRETION FROM
PARENCHYMA AND STROMA

Thrombospondin-1 is reported to be expressed and secreted by a

variety of normal cell types in human including ECs, fibroblasts, mus-

cle cells, immune cells, platelets (and megakaryocytes) as well as

transformed parenchymal cells in many types of cancer (Figure 1).41-43

Secreted TSP-1 proteins play key roles in the regulation of angiogen-

esis and immune response, both of which are critical processes in

the progression of tumours and cardiovascular diseases. However,

specific cell types exist in quite different numbers within the whole

tissue. Therefore, a direct, quantitative comparison of the absolute

TSP-1 secretion rates by different parenchymal and stromal cells will

introduce new insight into the research of heterogeneity in the

tumour microenvironment and other diseases.

Beginning at the cell level, a literature search was conducted and

TSP-1 secretion rates from different types of cells were analysed

(Table 1).44-54 Interestingly, secretion rates of TSP-1 protein from

the stromal components (eg fibroblasts, ECs) are at least one to two

orders of magnitude greater than those rates from cancer cells.

Among different types of stromal cells, ECs (represented by human

umbilical vein ECs) produce and secrete TSP-1 proteins at very high

rates. ECs usually occupy a fairly small portion (1%-2%) of the total

cells in a tissue, but this percentage can be significantly higher in

some highly vascularized tissues such as in certain tumours, lungs

and hearts.55,56 In this sense, modulating EC-specific pathways (eg

via transcription factors, receptor activation and microRNAs) that

F IGURE 1 Regulation of
thrombospondin-1 (TSP-1) at multiple
levels and TSP-1 secretion by different
cells. (A) TSP-1 gene transcription is
regulated by multiple transcription factors
and gene methylation status; TSP-1 mRNA
can be targeted by several microRNAs, and
TSP-1 protein which usually exists in
trimers interacts with several cell-surface
receptors. (B) Various types of cells in
humans produce and secrete TSP-1, which
can potently regulate many important
cellular processes. Note that not all TSP-1
receptors and functions are depicted here
(see Conclusions and Future
Considerations for more details)
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regulate TSP-1 production and secretion may substantially influence

the overall TSP-1 abundance in the tissue environment and vascula-

ture. In contrast, the many types of cancer cells examined, except

for glioma, Kaposi’s sarcoma and prostate cancer cells, contribute rel-

atively insignificant amounts of TSP-1 on a rate per million cells

basis. Analyses of tumour sample immunohistochemical staining con-

firm the high TSP-1 expression and localization in the tumour stroma

rather than in the tumour cells.44,57,58 In addition, published data of

TSP-1 mRNA expressions across various cell lines show a qualita-

tively similar trend compared with the secretion rates presented in

Table 1.59 Still, production and secretion rates of TSP-1 would

depend on various factors including the density of cultured cells and

also the appropriate stimuli which are present in tissue environments

in vivo but may not be contained in the culture media; therefore,

the differences between cell-specific secretion rates outlined here

should be interpreted in both quantitative and qualitative manners.

Further studies and measurements are needed to elucidate the

potential correlations between in vitro (summarized in this review)

and in vivo TSP-1 production capacities in the different cell types.

3 | QUANTITATIVE TSP-1 EXPRESSION
PROFILES IN PATHOLOGICAL CONDITIONS

3.1 | Human cancers

The potential of circulating and tissue TSP-1 protein as diagnostic or

prognostic markers for cancers, given its anti-angiogenic and pro-

apoptotic properties, has been studied extensively. Table 2 summa-

rizes the quantitatively measured TSP-1 protein levels in the plasma,

serum, platelet and tissue of individuals with various cancer condi-

tions.61-85 Most measured values of plasma TSP-1 protein levels are

in the range of a few hundred to a few thousand ng/mL, indicating

that physiological TSP-1 concentrations are relatively low in the cir-

culation.86 It should be noted that data on soluble plasma and serum

TSP-1 may be confounded by varying degrees of platelet activation

that serve as a reservoir of pre-formed TSP-1 in alpha granules dur-

ing sample acquisition and processing.42 Nonetheless, it is worth

noting that a large portion of the plasma TSP-1 data actually indicate

an up-regulation of TSP-1 in patients with cancer compared to nor-

mal controls, especially in breast cancer, which might be considered

counterintuitive to the well-established anti-angiogenic property of

TSP-1. In the case of breast cancer (general disease and not in the

context of any specific subtypes), four separate studies have found a

consistent, significant increase in plasma or tissue TSP-1 protein in

patients with cancer compared to healthy controls.67,71,83,87 A strong

positive correlation between plasma and intratumoural TSP-1 is

observed, and patients with lymph node metastasis have significantly

higher plasma TSP-1 compared to lymph node-negative patients.

Intratumoural TSP-1 expression is also positively correlated with

microvessel density, suggesting a pro-angiogenic role of TSP-1 in

breast cancer.67 The up-regulation of tissue TSP-1 expression in

breast cancer is further supported by TSP-1 mRNA and immunohis-

tochemical data.88,89 In non-small cell lung cancers, significantly

lower plasma and serum levels of TSP-1 have been observed in

patients,75 and higher baseline serum TSP-1 levels are found associ-

ated with increased overall survival in patients receiving treat-

ments.76 In colon cancer, conflicting results of plasma TSP-1 in

patients versus controls have been reported.72,73 In pancreatic can-

cer, serum TSP-1 is down-regulated in patients with cancer.78,79 In

glioblastoma, no significant difference is observed in serum TSP-1

levels in patients compared to healthy subjects, but higher pre-sur-

gery serum TSP-1 is prognostic of longer survival in patients after

tumour resection.80 Overall, these data suggest that the cancer-

driven regulation of TSP-1 expression in humans may be highly

TABLE 1 TSP-1 secretion rates from different cancer and non-
cancer cell types

Human cell type (cell line)

TSP-1 protein
secretion rate
(ng/106 cells/24 h) References

Pancreatic cancer (AsPC-1;

Colo-357; Panc-1; T3M4)

276; 61; 90; 94 [44]

Glioma (T98G; U251; A172;

KG-1-C; TM2; YMG1; YMG2;

YMG3; YMG4; YMG5)

2431; 275; 59; 43;

475; 69; 1081;

1450; 126; 250

[45]

Breast cancer (YMB-1) 3 [45]

Breast cancer (T47D; BT-474)a 3; 3 [46]

Lung cancer (A549) 20 [45]

Gastric cancer (NUGC-4) 31 [45]

Hepatic cancer (HLF) 89 [45]

Colon cancer (Colo-201) 3 [45]

Prostate cancer (PC3) 610 [45]

Melanoma (DFB) 8 [45]

Neuroblastoma (IMR-32) 4 [45]

B-Chronic lymphocytic leukaemia

(B cells from patients)

9 [47]

Promyelocytic leukaemia

(NB4; HL-60)b
55; 40 [48]

Kaposi’s sarcoma (IST-KS XVI;

IST-KS VIII; IST-KS XI; IST-KS IV)

6500; 3400;

4400; 8500

[51]

Human foreskin fibroblast 474 [44]

Human foreskin fibroblastc 15 700 [49]

Human foreskin fibroblastc 3333 [50]

Human foetal lung fibroblast

(GM1604)c
5800 [49]

Endothelial cell (HUVEC)c 21 000 [49]

Endothelial cell (HUVEC) 19 500 [51]

Endothelial cell (HUVEC)c 49 000 [52]

Human aortic smooth muscle cellc 9467 [50]

Human dendritic celld 10 153; 3053 [53]

Human retinal glial cell (MIO-M1) 125 [54]

aUnit conversion is implemented by assuming 150 pg of total protein per

cell.60

bCells are treated with all-trans retinoid acid.
cStudy did not specify that TSP data are limited to TSP-1.
dCells are treated with ATP and prostaglandin E2, respectively. Values

are rounded to the nearest integer.
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dependent on the specific cancer types and clinical stage and

deserves further investigation. Given the high TSP-1 secretion rates

in stromal cells, the potential for cancer cells to up- and down-regu-

late stromal cell TSP-1 production to favour cancer growth and

metastasis should also be considered in future TSP-1 studies.

3.2 | Cardiovascular diseases

In contrast to cancer, angiogenesis is often impaired and therefore

desired in many age-related and cardiovascular diseases, especially in

ischaemic vascular diseases such as coronary artery disease (CAD)

TABLE 2 Circulating and tissue TSP-1 protein levels in healthy (control) versus cancer subjects

Cancer type studied
Plasma TSP-1
(control) (ng/mL)

Plasma TSP-1
(patient) (ng/mL)

P value of
difference No. of subjects (C; P) References

Mixed N/A 54 (R = 7-551) N/A N/A; 50 [61]

Mixed 399 (SEM = 61) 491 (SEM = 66) .3 43; 43 [62]

Mixeda 440 (IQR = 270-559) 850 (IQR = 493-1336) <.01 20; 24 [63]

Mixed 31 (IQR = 25-34) 73 (IQR = 34-84) <.001 12; 20 [64]

AMLa 121 (IQR = 65-181) 11 (IQR = 7-15) <.01 12; 17 [65]

GI, breast, lunga 365 1095, 730, 1095 N/A 20; (22, 18, 17) [66]

EBC, ABC 221 (IQR = 175-247) 484, 588 (IQR = 344-877, 430-952) <.05, <.001 36; (71, 66) [67]

Breast N/A 280 (SEM = 53) N/A N/A; 12 [68]

Breast 396 (SD = 103) 419 (SD = 102) .45 65; 37 [69]

Breast (metastatic) 543 (IQR = 504-967) 2255 (IQR = 681-4553) .07 16;8 [70]

Breasta 190 (SD = 42) 2482 (SD = 4095) <.0001 31; 23 [71]

Colon (dukes stage
A, B, C, D)a

124 (SD = 63) 286, 389, 781, 1017
(SD = 211, 234, 589, 668)

<.05 for Stage B, C, D 20; (42, 24, 21, 28) [72]

Colon 1698 (IQR = 1437-2703) 328 <.001 36; 33 [73]

Colon 539 (SD = 389) 412 (SD = 367) NS 84; 35 [74]

NSCLC 4167 (IQR = 3585-5472) 2500 .004 46; 21 [75]

Cancer type studied
Serum TSP-1
(control) (lg/mL)

Serum TSP-1
(patient) (lg/mL) P value of difference No. of subjects (C; P) References

NSCLC 108 (IQR = 49-225) 35 .012 46; 21 [75]

NSCLC 48 (SD = 10) 45 (SD = 16) .3 60; 60 [76]

NSCLC 180 (R = 110-201) 177 (R = 97-206) .158 18; 40 [77]

Pancreatic 11 8 <.0001 30; 34 [78]

Pancreatica 16 14 <.01 227; 333 [79]

Glioblastoma 67 (SD = 37) 78 (SD = 26) .37 9; 23 [80]

HCC N/A 17 (IQR = 11-23) N/A N/A; 60 [81]

Cancer type studied
Platelet TSP-1 (control)
(ng/106 platelets)

Platelet TSP-1 (patient)
(ng/106 platelets) P value of difference No. of subjects (C; P) References

Breast 27 (IQR = 24-59) 29 (IQR = 22-78) .821 65; 37 [69]

NSCLC 9 (IQR = 2-22) 15 (IQR = 3-58) .092 68; 68 [82]

Colon 34 (R = 14-100) 35 (R = 17-139) .88 84; 35 [74]

Mixed 38 (IQR = 28-45) 29 (IQR = 18-38) .005 43; 43 [62]

Cancer type studied
Tissue TSP-1 (control/benign)
(lg/g of total protein)

Tissue TSP-1 (patient/cancer)
(lg/g of total protein) P value of difference No. of subjects (C; P) References

Breasta 22 317 <.000001 15; 101 [83]

Breasta N/A 6 (IQR = 4-10) N/A N/A; 166 [84]

Adrenocortical 142 (R = 40-390) 69 (R = 8-344) <.01 18; 13 [85]

HCC N/A 9 (IQR = 5-16) N/A N/A; 60 [81]

Mean/median values are shown in the left of the 2nd and 3rd columns; variations of measurements are shown in the right. Statistical analysis results

are shown in the 4th column.

R, range; SEM, standard error of the mean; IQR, interquartile range; SD, standard deviation; N/A, not applicable; NS, non-significant; AML, acute myeloid

leukaemia; GI, gastrointestinal; EBC, early breast cancer; ABC, advanced breast cancer; NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma.
aStudy did not specify that TSP data are limited to TSP-1. Values are rounded to the nearest integer. Rows with P values smaller than .05 (indicating

statistical significance of the difference observed) are bolded.
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and peripheral arterial disease (PAD). One hypothesis offered to

explain the pathophysiology of CAD and PAD is that anti-angiogenic

factors (eg TSP-1) may be highly up-regulated in the ischaemic tis-

sue, in addition to the insufficient induction of pro-angiogenic fac-

tors (eg VEGF, NO).39,90 To date, only a few studies have explored

this hypothesis and confirmed the increase in plasma and skeletal

muscle TSP-1 in PAD91-93 and CAD94 patients. Related to this,

blockade of TSP-1/CD47 signalling can enhance ischaemic tissue

survival in experimental PAD models.95 Further, TSP-1 protein levels

in the plasma are significantly elevated in patients who suffer from

other cardiovascular and inflammatory diseases, as well as diseases

that are commonly accompanied by cardiovascular complications,96

including diabetes97 and sickle cell disease4,98 (Table 3). Marked up-

regulations of TSP-1 have been observed in the various organs and

tissues of patients with diabetes and also in animal models of dia-

betes.99 This may be in part secondary to the known effects of high

glucose on TSP-1 production.100 In terms of disease outcome, strong

negative correlations between plasma TSP-1 protein levels and

patient survival have been observed for pulmonary hypertension,

acute ischaemic stroke and end-stage renal disease, all conditions

characterized by vasculopathy.101-103 Interestingly, on the other

hand, thrombospondin proteins including TSP-1 are involved in the

unfolded protein response (also known as the endoplasmic reticulum

stress response), and they are found to be induced and exert protec-

tive effects following myocardial injury in animal models, which adds

another layer of complexity to the functions of the up-regulated

TSP-1 in cardiovascular diseases.104

3.3 | Correlations between TSP-1 and VEGF

Paired data on quantitative TSP-1 and VEGF protein expressions in

cancers and PAD are shown in Table 4. While the trend of TSP-1

expression in cancers remains elusive, VEGF levels (plasma, serum,

platelet, tissue) tend to be up-regulated in most cases.105 Published

data so far have not suggested any correlation between circulating

levels of VEGF and TSP-1 in patients with cancer (Table 4), but ele-

vated circulating VEGF expression alone is a well-established prog-

nostic marker of decreased patient survival in several types of

cancer.106 Some previous studies have tried to elucidate the poten-

tial relationship between VEGF and TSP-1 expressions within

tumours. Although inverse correlation between tumour VEGF and

TSP-1 expressions has been suggested in prostate and endometrial

cancers,57,107 it may not always be the case, at least in bladder can-

cer, gastric cancer and hepatocellular carcinoma patients in which

TSP-1 protein levels are shown to be positively correlated with

VEGF protein levels in the tumour tissue.81,108,109 In PAD studies, so

far no correlations between TSP-1 and VEGF levels in patients have

been suggested, although both proteins are found up-regulated in

the patient plasma, and muscle interstitial TSP-1, but not VEGF, is

significantly induced in PAD patients which may indicate a potential

TABLE 3 Circulating and tissue TSP-1 levels in healthy (control) versus cardiovascular/CV-related disease subjects

CV-related disease studied
Plasma TSP-1
(control) (ng/mL)

Plasma TSP-1
(patient) (ng/mL)

P value of
difference No. of subjects (C; P) References

PAD 218 476 <.0001 184; 330 [91]

PAD 176 (SEM = 58) 160 (SEM = 62) NS 17; 17 [92]

Pulmonary hypertension 82 (SD = 16) 1114 (SD = 136) <.05 19; 93 [101]

Sickle cell disease 239 (IQR = 125-344) 303 (IQR = 187-939) .056 17; 27 [4]

Sickle cell disease 491 (R = 331-723) 536 (R = 333-1107) NS 8; 14 [98]

Ischaemic stroke 146 (SD = 50) 571 (SD = 226) <.001 150; 192 [102]

Type I diabetesa 91 (SEM = 14) 137 (SEM = 14) <.05 15; 30 [97]

Vasculitisa 59 (SD = 29) 791 (SD = 1412) .0002 33; 20 [96]

CAD and DM 518 (SD = 127) 579 (SD = 106) <.01 108; 103 [94]

CV-related disease studied
Interstitial TSP-1
(control) (ng/mL)

Interstitial TSP-1
(patient) (ng/mL)

P value of
difference No. of subjects (C; P) References

PAD (muscle dialysate) 54 (SEM = 24) 219 (SEM = 70) <.05 7; 6 [92]

Healthy (muscle dialysate) 100 (SEM = 18) N/A N/A 8; N/A [132]

CV-related disease studied
Proximal/healthy
tissue (AU)

Distal/ischaemic
tissue (AU) P value of difference No. of subjects (C; P) References

Tissue TSP-1 mRNA in amputated
limbs from CLI patients

2 (SEM = 0.8) 21 (SEM = 3.9) .0001 13 [93]

Mean/median values are shown in the left of the 2nd and 3rd columns; variations of measurements are shown in the right. Statistical analysis results

are shown in the 4th column.

R, range; SEM, standard error of the mean; IQR, interquartile range; SD, standard deviation; N/A, not applicable; NS, non-significant; DM, diabetes melli-

tus; CLI, critical limb ischaemia; AU, arbitrary units.
aStudy did not specify that TSP data are limited to TSP-1. Values are rounded to the nearest integer (except for values less than 1). Values are for TSP-

1 protein levels unless otherwise noted. Rows with P values smaller than .05 (indicating statistical significance of the difference observed) are bolded.
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imbalance between pro-angiogenic and anti-angiogenic factors in the

ischaemic tissue.91,92,110,111 Feedforward and feedback interactions

between VEGF and TSP-1 through direct intersection and with the

gasotransmitter NO likely also complicate these expression pat-

terns.23,38 Moreover, the interplay between VEGF and TSP-1 exists

not only in angiogenic pathways, as both VEGF and TSP-1 are

shown to be regulators of the immune system.19,20,112

4 | CONCLUSIONS AND FUTURE
CONSIDERATIONS

Herein, we systematically reviewed the literature characterizing

human TSP-1 expressions in the circulation and in tissues, its cell

type-specific secretion and its significance and correlations with out-

comes in human diseases. This analysis is driven by quantitative data

and demonstrated some interesting findings. In cancer, TSP-1

expression patterns in general are quite variable and, thus, appear to

have limited prognostic or diagnostic value, although in specific can-

cer types (eg breast cancer), TSP-1 up-regulation is relatively consis-

tent across independent datasets and is associated with malignancy

and metastasis. In addition, a similar paradox in expression patterns

pertains to TSP-1 and VEGF in general cancer conditions. Contrary

to the situation in cancer, TSP-1 expression is uniformly up-regu-

lated in cardiovascular and inflammatory diseases and is associated

with worse outcomes, albeit the studies testing the latter hypothesis

are of limited number. Interpretation of these results should be tem-

pered as expression data may not distinguish between changes in

TSP-1 production/secretion and uptake/degradation/cleavage.

Although TSP-1 in blood could likely have an effect on circulating

inflammatory cells, red blood cells and platelets to increase inflam-

mation, adhesion and aggregation, since TSP-1 binds to various com-

ponents in the extracellular matrix, its up- and down-regulations as

measured in circulating blood may not reflect the actual changes of

TSP-1 abundance and its functional activities in the matrix. A further

limitation is that very few quantitative data on tissue TSP-1 in dis-

eases are available in the literature, and it should be pointed out that

the protein expression levels may not correlate with activation of

downstream signalling. Finally, being obtained from human subjects,

the majority of these expression data lack time course analysis that

could contribute to a better understanding of the changes noted.

These caveats aside, the literature data collected and presented in

our quantitative analysis remain the first of their kind and should

serve to guide future basic and translational research.

Specific domains of TSP-1 interact with different proteins and

non-protein molecules in the extracellular matrix, and the affinity Kd

values of these interactions are mostly in the nmol L�1 range.9,113

The cell-surface receptors that TSP-1 interacts with also have impor-

tant therapeutic value in cancer and cardiovascular diseases. CD36 is

a low-affinity receptor which recognizes the type I repeats of TSP-1

TABLE 4 Circulating and tissue TSP-1/VEGF protein levels in healthy (control) versus disease subjects

Disease studied Plasma TSP-1 (control, patient) (ng/mL) Plasma VEGF (control, patient) (pg/mL) No. of subjects (C; P) References

Cancer (mixed) 399, 491 NS 7, 44 P = .003 43; 43 [62]

Breast cancer 396, 419 NS 53, 54 NS 65; 37 [69]

Breast cancer (metastatic) 543, 2255 NS 12, 29 P = .001 16; 17 [70]

Colon cancer 1698, 328 P < .001 2, 48 P < .001 36; 33 [73]

Colon cancer 539, 412 NS 53, 40 NS 84; 35 [74]

PAD 218, 476 P < .0001 14, 17 NS 184; 330 [91]

Disease studied Serum TSP-1 (control, patient) (lg/mL) Serum VEGF (control, patient) (pg/mL) No. of subjects (C; P) References

NSCLC 108, 35 P = .012 249, 452 P < .001 46; 21 [75]

NSCLC 48, 45 NS 147, 408 P < .0001 60; 60 [76]

NSCLC 180, 177 NS 189, 266 NS 18; 40 [77]

Disease studied
Platelet TSP-1 (control, patient)
(ng/106 platelets)

Platelet VEGF (control, patient)
(pg/106 platelets) No. of subjects (C; P) References

Breast cancer 27, 29 NS 0.9, 2 P < .001 65; 37 [69]

NSCLC 9, 15 NS 22, 41 P = .041 68; 68 [82]

Colon cancer 34, 35 NS 0.6, 1.3 P < .0001 84; 35 [74]

Cancer (mixed) 38, 29 P = .005 0.6, 1.4 P < .0001 43; 43 [62]

Disease studied

Tissue TSP-1
(control/benign, patient/cancer)
(lg/g of total protein)

Tissue VEGF
(control/benign, patient/cancer)
(ng/g of total protein) No. of subjects (C; P) References

Adrenocortical cancer 142, 69 P < .01 44, 404 P < .001 (18; 13), (15; 12) [85]

Disease studied Interstitial TSP-1 (control, patient) (ng/mL) Interstitial VEGF (control, patient) (pg/mL) No. of subjects (C; P) References

PAD 54, 219 P < .05 55, 63 NS (7; 6), (16; 16) [92]

Mean/median values are shown in the left of the 2nd and 3rd columns; statistical analysis results are shown in the right. P values greater than .05 are

denoted as NS (non-significant), and observations with P < .05 are bolded. Values are rounded to the nearest integer (except for values less than 2).
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and is reported to be an activator of the apoptotic pathways in ECs

and some cancer cells.114-116 The first TSP-1-based therapeutic

(ABT-510) was developed based on this interaction more than a dec-

ade ago. However, it failed to demonstrate clinical efficacy against

metastatic cancers and did not move forward beyond phase II tri-

als.117,118 Similar to ABT-510, several other peptides that are derived

from the type I repeats were shown to be anti-angiogenic

in vitro.119,120 In recent years, CD47, a high-affinity receptor which

interacts with the C-terminal domain of TSP-1, has garnered atten-

tion.121 Accumulating evidence has suggested that the TSP-1/CD47

axis could be a promising therapeutic target in cancer as well as in

cardiovascular diseases.32,36 Besides its well-established anti-angio-

genic and anti-proliferative effects when engaged with TSP-1,23

CD47 also participates in immune suppression of macrophages and is

found widely overexpressed in different types of cancer.122 As a self-

recognition signal, CD47 on cancer cells associates with SIRPa (signal

regulatory protein alpha) on macrophages and inhibits phagocytic

activities. Interestingly, TSP-1 also interacts with SIRPa expressed on

non-phagocytic cells; however, the potential role of how TSP-1 mod-

ulates the CD47/SIRPa axis during macrophage activation remains

unclear.32,123 Another class of TSP-1 receptors is the integrins that

recognize the RGD motifs (Arg-Gly-Asp) of TSP-1,124 and intuitively,

TSP-1 can facilitate the adhesion of various cells, including cancer

cells, to the extracellular matrix.125 Other major factors that TSP-1

interacts with include heparin, CD148, syndecan-1, calreticulin/LRP-1

complex (low-density lipoprotein receptor-related protein 1), and it

has also been suggested that TSP-1 may trigger pro-survival and

pro-migratory functions in cells through binding with some of its

receptors.9,45,126 Indeed, few studies have tracked TSP-1 protein

expression concurrent with its receptor level expression. In terms of

studying how TSP-1-mediated signal transduction contributes to dis-

eases, it will be important to track both the ligand TSP-1 as well as its

specific receptors in cell and tissue compartments.

Besides diseases, many natural biological processes can also con-

tribute to the endogenous regulation of TSP-1. Preclinical studies in

mice have demonstrated age-associated up-regulation of TSP-1 in

kidney,127 heart128 and skin.129 The fact that both TSP-1 and CD47

are significantly induced in the skin of aged mice and negatively act

on blood flow may imply a deleterious role of TSP-1/CD47 axis in

ageing and ageing-related complications.95 In addition, diabetes-

induced up-regulation of TSP-1 may contribute to ageing-related

vascular rarefaction in the hearts of leptin-resistant mice, and loss of

TSP-1 expression can attenuate this pattern.130 Exercise is another

factor that seems to control TSP-1 dynamics. Confirmed in both

mice and humans, TSP-1 expression is greatly increased in skeletal

muscles following active training and this is accompanied by an

increase in VEGF expression.131,132 Interestingly, a delay is observed

between TSP-1 induction and VEGF induction (VEGF induction pre-

ceding TSP-1), which suggests endogenous feedback mechanisms

through timely regulation of pro- and anti-angiogenic factors to sus-

tain adequate but not excessive angiogenesis and blood flow during

and after exercise.133 Gestation status can also affect TSP-1 expres-

sion in the uterus, in which TSP-1 expression was shown to increase

over the last few weeks before labour and peak during labour,134

putatively where its role to promote platelet activation by resisting

NO-mediated effects on platelets135 and blood vessels26 may have

beneficial effects to limit haemorrhage.

The inconsistent pattern of TSP-1 expression observed in differ-

ent types of cancer is reflected in the equally controversial role of

tumour TSP-1 expression as a survival predictor. In accordance to its

anti-angiogenic property, high tumour expression of TSP-1 is corre-

lated with increased patient survival in colon,136 lung,137 bladder,138

ovarian,139 cervical140 and gastric cancer.109 However, high tumour

tissue TSP-1 is also associated with decreased survival in patients

with hepatocellular carcinoma,81 breast cancer141 and melanoma.142

Along with the observation that high VEGF in cancer is usually associ-

ated with worse prognosis and increased metastasis,106 it is very

likely that certain types of cancer (eg breast cancer) may have devel-

oped compensatory mechanisms to counteract the anti-angiogenic

pathways activated by TSP-1.143,144 Resistance to apoptosis and

increased VEGF secretion in response to the hypoxic environments

resulting from the TSP-1-induced loss of tumour vascularization are

possible explanations, which hints future investigations of combina-

tion therapies that target both molecules in cancer treatments. Sepa-

rate from cancer, anti-angiogenic molecules such as TSP-1 and

VEGF165b have emerged as new promising targets in ischaemic vas-

cular diseases (eg PAD).145,146 Therapeutics that inhibit TSP-1 as well

as its downstream pathways through small molecule/RNAi-based

inhibitors, modulation of upstream transcription factors and TSP-1

receptor antibodies or morpholino oligonucleotides could potentially

be novel modes to accelerate muscle perfusion and regeneration,

given that single-agent gene therapies that deliver pro-angiogenic fac-

tors (eg VEGF, FGF, HGF) so far have been unsuccessful clinically.147

Conversely, in the scenario of age-related macular degeneration

where TSP-1 levels in the eye are greatly reduced, enhancing TSP-1

expression may help to counteract the excessive angiogenesis and

restore the balance between pro- and anti-angiogenic factors.148
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