Hindawi Publishing Corporation
Anesthesiology Research and Practice
Volume 2011, Article ID 416590, 8 pages
doi:10.1155/2011/416590

Review Article

Clinical Applications of Heart Rate Variability in the Triage and
Assessment of Traumatically Injured Patients

Mark L. Ryan, Chad M. Thorson, Christian A. Otero, Thai Vu, and Kenneth G. Proctor

Divisions of Trauma and Surgical Critical Care, Ryder Trauma Center, Dewitt-Daughtry Family Department of Surgery,
University of Miami Miller School of Medicine, 1800 NW 10th Avenue, Miami, FL 33136, USA

Correspondence should be addressed to Kenneth G. Proctor, kproctor@med.miami.edu

Received 16 November 2010; Accepted 12 January 2011

Academic Editor: Jamal Alhashemi

Copyright © 2011 Mark L. Ryan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Heart rate variability (HRV) is a method of physiologic assessment which uses fluctuations in the RR intervals to evaluate
modulation of the heart rate by the autonomic nervous system (ANS). Decreased variability has been studied as a marker of
increased pathology and a predictor of morbidity and mortality in multiple medical disciplines. HRV is potentially useful in trauma
as a tool for prehospital triage, initial patient assessment, and continuous monitoring of critically injured patients. However, several
technical limitations and a lack of standardized values have inhibited its clinical implementation in trauma. The purpose of this
paper is to describe the three analytical methods (time domain, frequency domain, and entropy) and specific clinical populations
that have been evaluated in trauma patients and to identify key issues regarding HRV that must be explored if it is to be widely

adopted for the assessment of trauma patients.

1. Introduction

Heart rate variability (HRV) is defined by the fluctuating
time between normal sinus beats (RR intervals) [1] and
indicates modulation of the heart rate by the autonomic
nervous system (ANS) [2]. Afferent inputs from sensory and
baroreceptors within the heart and great vessels, respiratory
changes, vasomotor regulation, the thermoregulatory sys-
tem, and alterations in endocrine function determine ANS
influence on the heart [1].

In 1997, a consensus panel issued a set of guidelines
regarding the measurement and interpretation of HRV [3].
Changes in HRV are now an accepted method of assessing
autonomic dysfunction in patients in several pathologic
states, with and without structural heart disease. In the 14
years since that report, there have been major technological
advances and hundreds of publications in various patient
populations, but there has been no comprehensive review
specifically directed at trauma. This paper attempts to fill that
gap.

It is now well established that absence of HRV is an early
predictor of brain death [4, 5] and that low HRV corre-
lates with increased mortality and morbidity after trauma

[6—13]. Abnormal HRV is associated with increased intracra-
nial pressure and decreased cerebral perfusion pressure [5,
9, 10, 14, 15]. Recently, it was suggested that HRV is a
“new vital sign” and could be used as a trauma triage tool
(7, 8, 11, 16, 17]. However, the mechanisms responsible for
these associations are not clearly established, and no specific
therapy is currently available to treat patients with abnormal
HRYV. Furthermore, there is no consensus on exactly how to
measure HRV. Typically, it is quantified using at least one of
three analysis domains: time, frequency, or entropy. Despite
its enormous potential for assessment and triage, HRV has
not been widely adopted in trauma patients. This paper will
attempt to address the reasons for this and explore the major
advances in various analytical techniques since the initial
consensus report on HRV was issued in 1997.

2. Methods

2.1. Literature Search and Retrieval. The U.S. National
Library of Medicine (Pubmed) Database was queried from
January 1997 to August 2010 using the following keywords

alone or in combination: “heart rate variability,” “trauma,”
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TABLE 1: Definitions of time-domain metrics of heart rate variability.
Variable Abbreviation Description
Standard deviation of normal-normal RR Measures the standard deviation of RRI for an entire
. SDNN
intervals (NN) measurement [3]
L . Measures the standard deviation of RRIs for short
Standard deviation of average NN interval SDANN segments of ECG (usually 5 minutes) [3]
Root mean squared successive difference RMSSD C.a lculatlon. of the square root of the mean squared
differences in successive RRIs [3]
Number of the number of interval differences of
Proportion of successive NN intervals >50 ms pNN50 successive NN intervals >50 ms divided by total
number of NN intervals [3]
- - . Calculation of the standard deviation of the integer
Integer heart rate variability/heart rate volatility HRVi heart rate for 5-minute increments [11, 15, 19-21]

. e . . Percentage of time per 24-hour period that HRVi falls
Cardlaclyolatlhty-related dysfunction/cardiac CVRD within a critically low range (0-0.5 or 0.3-0.6 bpm)
uncoupling (6,12, 22]

“volatility,” “complexity,” “entropy,” “heart period vari-  system implemented at Vanderbilt in 1998 for the continuous

ability,” “autonomic,” “physiology,” “high frequency,” “low
frequency,” “time domain,” “frequency domain,” “nonlinear
dynamics,” and “triage.” Results of the electronic searches
were supplemented by recommendation of peers and by
reading reference lists of included studies.

2.2. Inclusion/Exclusion Criteria. Cohort studies, case control
studies, and case series in the English language in adult or
pediatric trauma patients were included in this paper. Studies
not performed in human trauma patients or case reports
were excluded.

3. Time Domain

3.1. Overview. This method subjects the integer heart rate
or the R-R interval to basic statistical analysis (Table 1).
Calculations which utilize interbeat (RR) intervals are taken
from data sampled at a high rate (>100 Hz). Those derived
from the integer HR are sampled less frequently (0.25-1 Hz).
All time-domain variables provide information regarding
global autonomic function but differ in whether they provide
information on short-term variability (SDNN, RMSSD, and
PNNS50) or long-term variability (SDANN, HRVi) [3, 18].

3.2. Clinical Applications in Trauma

3.2.1. Prehospital. In 2009, King et al. evaluated ECG data
from 75 patients transported by helicopter to a level 1
trauma center to test if HRV could prospectively identify
patients who would most benefit from urgent intervention.
They reported that SDNN was a more accurate predictor
of the presence of major injury and the need for life-saving
operation than heart rate, systolic blood pressure (SBP),
Glasgow Coma Scale (GCS), or paramedic judgment [16],
but real-time data were not available.

3.2.2. ICU. In 2004, Grogan et al. published a report on the
Signal Interpretation and Monitoring (SIMON) project, a

capture of physiologic data in patients admitted to the
trauma ICU. They noted that heart rate volatility (which
would later be referred to as integer HRV) and cardiac
volatility-related dysfunction (later to be called uncoupling)
during the first 24 hours of hospitalization were accurate
independent predictors of morbidity and mortality, out-
performing traditional vital signs [19]. Since its inception,
published reports using data from this system have shown
that HRVi and coupling predict mortality with as little as
12 hours of data [11, 20]. Increased uncoupling has been
correlated with diminished physiologic reserve (defined as
acidosis, coagulopathy, and hemorrhage severity), infection,
multiple-organ system failure (MOSF), adrenal insufficiency,
traumatic brain injury (TBI), and mortality [6, 11, 12, 20,
22]. These patients are particularly of interest, since they are
at risk for multiple conditions associated with autonomic
dysfunction such as sepsis, MOSF, adrenal insufficiency,
as well as the frequent need for sedation and mechanical
ventilation. A 2007 study by Proctor et al. showed that in
patients assessed in either the ICU or the resuscitation bay,
SDNN and RMSSD were correlated with the presence of TBI
on computed tomography (CT) scan of the head as well as
mortality [23].

3.3. Limitations. There are several drawbacks specific to
time-domain analysis. Although data acquired using the
SIMON system is available continuously, HRVi and uncou-
pling are only capable of predicting outcome after data has
been acquired for 12 or 24 hours, respectively. SDNN and
RMSSD are both depressed by increases in heart rate [18],
which suggests the possibility that decreases in these variables
with morbidity and mortality are due to tachycardia in
severely injured patients. However, these associations have
not been shown when the mean heart rate is examined
in these studies, suggesting that decreased time-domain
variability is not solely a response to tachycardia. Time-
domain analysis is also unable to distinguish between distinct
biological signals [18], and more sophisticated measures
such as frequency analysis are able to distinguish the effects
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TaBLE 2: Definitions of frequency-domain metrics of heart rate variability.

Variable Abbreviation  Description Interpretation
Total power of periodic oscillations in the
Total power TP ECG signal—represents total RR interval Global measure of autonomic function [3]
spectral power
. Power spectral density of high-frequency Function of respiratory rhythms under vagal
High frequency power HE oscillations (0.15-0.4 Hz) (parasympathetic) regulation [18, 24, 31]
. Baroreceptor reflex-related modulation of
Power spectral density of low-frequency . RS .
Low frequency power LF oscillations (0.04-0.15 Hz) cardiac pacemaker activity via sympathetic
: ’ and parasympathetic stimulation [4, 18, 31]
. Associated with vasomotor, thermal, and
Very low frequency power VLF Power spectral density at humoral regulation via sympathetic nerve
very-low-frequency oscillations (<0.04 Hz) o
activity 24, 31]
Low/high frequency ratio LE/HE Ratio of low-frequency power to Represents ratio of sympathetic to

high-frequency power

parasympathetic nerve activity [31]

of different ANS components on regulation of the heart
rate.

4. Frequency Domain

4.1. Overview. This method involves analysis of the oscil-
lations of RR intervals over time. Data are recorded at
high frequency (>125Hz) and the recording audited for
ectopic beats and electrical artifact prior to analysis [24].
The digitized ECG tracing is analyzed such that the entire
wave form is represented as the sum of periodic sine waves
of different frequencies (Table 2) adjusted with respect to
amplitude and phase so that the final sum replicates the
original data [24]. This is done using mathematical pro-
cesses such as continuous wavelet transformation (CWT),
fast Fourier transform (FFT), and complex demodulation
(CDM). The various energies that contribute to the heart
rate impulse are grouped into three different peak levels,
based upon their location on the power spectrum. Each peak
corresponds with a different component of the ANS.

4.2. Clinical Applications in Trauma

4.2.1. Prehospital. In 2006, Cooke et al. demonstrated that
an increase in the HF/LF ratio was associated with increased
mortality in a series of 42 patients transported by helicopter
to a trauma center [7]. In a similar study evaluating the
prehospital ECG data of 31 patients in 2009, Batchinsky et
al. showed that HF amplitude (HFA) distinguished survivors
from nonsurvivors with a data set as small as 100 beats [25].
HFA, an assessment of the amplitude of the oscillations in
the HF range derived via CDM, was found to be a reliable
predictor despite reductions in data set length or changes in
patient status during the recording. This makes it a practical
solution for the prehospital trauma setting where the average
length of recording may be as little as one minute or 100 beats
in length and the patient’s condition is dynamic [25].

4.2.2. TBI. The majority of the research on HRV in the
frequency domain in trauma has focused on TBI patients.
Goldstein et al. published several reports in children

demonstrating suppression of LF and HF in association
with brain death, decreased GCS, severity of neurologic
injury, and poor outcome [4, 26]. Other studies in children
have demonstrated that decreases in LF/HF are correlated
with increases in intracranial pressure (ICP) greater than
30 mmHg, decreases in cerebral perfusion pressures (CPP)
below 40 mmHg, and increased mortality [5]. Multiple
subsequent studies in adults with TBI have shown that
decreases in LF, HE, LF/HE and total power (TP) are
associated with brain death, increased mortality, decreased
CPP, increased ICP, and poor outcome [10, 27-29]. Patient
with decreased frequency-domain values in the postinjury
period exhibited a prolonged duration of rehabilitation
and neurologic recovery [30]. Regardless of the age group
studied, frequency-domain variables have been proven to be
indicative of severity and accurate predictors of outcome in
TBI patients.

4.3. Limitations. Frequency-domain analysis is more sensi-
tive to artifact or ectopy than the statistical time-domain
methods. Since it is not feasible to screen patients for
ectopy prior to monitoring in a trauma setting and ectopy
has been shown to be common in healthy volunteers and
trauma patients [32], this would appear to limit the utility
of this method in the prehospital triage of trauma patients.
Assumptions of stationarity and periodicity must be fulfilled,
meaning that the overall condition of the patient must
not change during the recording and the signal must be
comprised of oscillations [18]. Long-term recordings of
frequency-domain variables are not as useful, since the
detailed information given about specific ANS components
is obscured when recordings are averaged over long periods

[3].

5. Entropy Domain

5.1. Overview. This method analyzes overall disorder or
randomness in the ECG signal. It encompasses numer-
ous methods which are summarized in Table 3. Nonlinear
dynamic methods can be applied to the R-to-R interval
to assess the complex variability present within the signal
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TABLE 3: Definitions of entropy metrics of heart rate variability.

Variable Abbreviation  Description Interpretation

Approximate entropy ApEn Measures the amount of irregularity in the

Sample entropy SampEn RRI signal [40, 41] Lower value reflects less complex signal
Multiscale entropy MSE The sum of sample entropies [37]
oo T The p‘robabi‘lity‘of s‘irnilar RRI sigr}al Higher SOD reflects more similarity and less
Similarity of distributions SOD amph[tuc}e distributions as a function of complex regulation
time [33
Pf’int C(?rrelation PD2i Measures time-dependent changes in the Lower Va_lue signifies loss of regulatory
dimension degrees of freedom of a data set [33] complexity
EFactal .dlmensmr.l by FDDA Determines the fractal organization of the ~ Lower value implies lower complexity of
ispersion analysis . e . . .
. ; signal; measures self-similarity in the signal ~ signal regulation
Fractal dimension by curve FDCL structure [41]
lengths
] Determines fractal-like correlation Distinguishes between fluctuations
Detlr er}ded fluctuations DFA properties and uncovers S}.IOI: t-and generated by complex systems and those
analysis l[on]g—range correlations within the signal arising from external stimuli
42
Assesses whether the mean and SD of the
Signal stationarity StatAv signal change during time in each dataset ~ Lower value reflects a more stationary signal
(8]
Symbol d i t SymD
yHno ynafrrfnc;e; dropy yrem Lower value implies a more predictable
Percentage of forbidden FW Measures the probability of certain patterns  signal with less complex regulation
words within the RRI time series [33]
Symbol distribution .
DisnEn

entropy

[33]. All measures of entropy are a global representation
of autonomic nervous system functioning and complexity.
The entropy methods quantify the probability of a repetitive
pattern in the RR interval. If the next pattern can be predicted
from the previous section, the signal is considered low
in entropy and is therefore less complex [34]. The most
commonly used variables are approximate entropy (ApEn)
and sample entropy (SampEn), which are a reflection of the
amount of irregularity in the R-to-R interval. Calculation
of entropy can be accomplished with the use of proprietary
software such as WinCPRS software (Absolute Aliens Oy,
Turku, Finland) [13, 35, 36] and MATLAB 5.3 (the Math-
Works, USA) [37] or by importing integer HR data into
a publically available algorithm derived by Costa et al. at
http://www.physionet.org/ [38, 39].

5.2. Clinical Applications in Trauma

5.2.1. Prehospital. The first study with use of heart rate
complexity in trauma in the prehospital setting originated
at the Army Institute for Surgical Research [8]. A total of
117 patients were screened in the prehospital setting for
ectopy-free, 800 beat ECG segments, but only 31 patients
met criteria. The data showed that prehospital loss of RR
interval complexity as measured by ApEn, SampEn, FDDA,
and DFA distinguished survivors from nonsurvivors. ApEn
outperformed traditional vital signs such as heart rate
and blood pressure and was an independent predictor of

in-hospital mortality [8]. In a follow-up study published
two years later, the same cohort of patients was re-examined
using slightly different methodology. They found that Sam-
pEn was consistently associated with mortality down to a
data set size of 200 beats and was the only independent
predictor of mortality [25]. These data suggested that
SampEn may still be useful as an overall reflection of com-
plexity in settings where longer sections of ECG cannot be
obtained.

The same group conducted another study in the prehos-
pital setting with regard to life saving interventions (LSI). LSI
was defined as endotracheal intubation, cardiopulmonary
resuscitation, cricothyroidotomy, and needle decompression.
Complexity measures (ApEn, SampEn, FDDA, and DFA)
were all lower in those patients who required LSI. SOD
was higher in those patients, which is also consistent with
decreased complexity. Because SampEn is relatively unaf-
fected by a decrease in number of beats or RRIs, down to
a data set of 200 beats, it may be more useful for emergency
triage situations where only short segments of ECG data are
available [43]. In 2010, Rickards et al. examined the use of
HRYV in identifying need for LSI in prehospital patients with
normal initial vital signs. Out of multiple time-, frequency-,
and entropy-domain variables evaluated only FDCL was
associated with the need for LSI on multivariate analysis
[17]. Before widespread application in the prehospital setting
can be adopted, meaningful real-time interpretation of short
interval data must be available.
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TaBLE 4: Heart rate variability analysis techniques and their uses in trauma.

Technique Description Metrics Evidence of changes in trauma Population
. | predicts mortality, ICH, adrenal insufficiency
HRVI [11, 15, 19-22, 36] ICU
Estimation of variability . 1 reflects acidosis, coagulopathy, MOSE, Al severe TBI,

Time domain using statistics and Uncoupling 1 ICP, predicts mortality [6, 9, 12, 22] Icv
measures of central Prehospital
tendency [3] SDNN | predicts TBI, mortality, acidosis, LSI [16, 23] ER

ICU
. ER
RMSSD | reflects TBI, hemorrhage, mortality [23, 28, 47] IcU
TP | reflects 1ICP, TBI, prolonged neurologic recovery, ICU
need for LSI, mortality, brain death [10, 28, 43] Outpatient
Calculation of power | reflects 1ICP, TBI, hemorrhage, need for LSI,
Erequ.ency (amplitude) of LF mortality, brain; 1 reflects 1CI, HR, MAP death I]éII{J
omain
contributing frequencies to (4, 10, 27, 28, 37, 43, 48, 49].
an underlying signal [18] | reflects trauma, 1ICP, need for LSI, hemorrhage, .
HE brain death, and mortality [10, 37, 43, 47, 50, 51] Prehospital
1 reflects 1ICP, | CPP; | reflects brain death, mortality, Prehospital
LE/HF hemorrhage, | GCS, poor neurologic outcome I Cl?
5,7, 10, 27, 48, 51]
MSE | predicts mortality [13, 35, 36, 45] ICU
| reflects trauma, burn, hemorrhage, brain death, and
ApEn 1ICP, MOSE, predicts mortality; 1 reflects resuscitation Prehospital
(8, 14, 25, 29, 34, 37, 52]
Measurement of overall q litv b dh hace:

Entropy disorder, randomness, or SampEn bre ﬂects traum?, rr'10rj[a 1t};,1. urmn, and hemorrhage; Prehospital
irregularity of a physiologic 1 reflects resuscitation; predicts LSI [8,A25,. 43]
signal [18] | reflects hemorrhage; 1 reflects resuscitation; .

FDCL | predicts LSI [17] Prehospital
| reflects need for LSI, hemorrhage, mortality .

FDDA (8, 25, 43] Prehospital

DFA | reflects mortality; predicts LSI [8, 25, 43] Prehospital

SOD 1 reflects need for LSI, mortality [8, 25, 43] Prehospital

StatAv | reflects mortality [25] Prehospital

HRVi: integer heart rate variability; ICH: intracranial hypertension; MOSF: multiple-organ system failure; Al: adrenal insufficiency; TBI: traumatic brain
injury; SDNN: standard deviation of normal-normal RR Intervals (NN); RMSSD: root mean squared successive difference; LSI: life-saving intervention; ICP:
intracranial pressure; TP: total power; LF: low-frequency oscillations power spectral density; HR: heart rate; CI: cardiac index; MAP: mean arterial pressure;
HE: high-frequency oscillations power spectral density; LE/HF: low-to-high-power spectral density ratio; MSE: multiscale entropy; ApEn: approximate
entropy; SampEn: sample entropy; SymDyn: symbol dynamics entropy; DisnEn: symbol distribution entropy; FDCL: fractional dimension by curve length;
FDDA: fractional dimension by dispersion analysis; DFA: detrended fluctuations analysis; SOD: similarity of distributions; StatAv: signal stationarity; PS2i:

point correlation dimension.

5.2.2. ICU. Intensivists have traditionally relied on sampling
markers of hemodynamic and physiologic status at a single
time point and can only compare these values with those
collected at other discrete time points [44]. Because heart
rate complexity data reflects overall balance of autonomic
outflow, responsiveness, and neuroendocrine mechanisms,
there is tremendous potential for the use in the care for
critically ill patients [45]. Whereas other measures of HRV
have correlated with multiple disease states including sepsis
[46], multiorgan system dysfunction [29], and adrenal insuf-
ficiency [22], entropy has not been studied until recently.
Batchinsky et al. found that entropy, as measured by
ApEn and SampEn, was lower in burn patients within 8

hours of admission to the intensive care unit [34]. Decreased
ApEn has also been associated with mortality in acute TBI
[37]. Norris et al. have investigated another measure of
complexity in the intensive care unit, multiple-scale entropy
(MSE). They found that MSE was significantly lower in
nonsurvivors and was predictive of mortality using as little
as 3 hours of heart rate data [36]. MSE measured within the
first 24 hours was able to identify trauma patients at risk of
in-hospital death [13]. Subsequent studies have correlated
decreased MSE and beta-adrenergic receptor polymorphisms
with increased mortality [35] and have shown that MSE
predicts mortality independent of probability of survival
based on location and mechanism of injury [45].



5.3. Limitations. Despite the overwhelming evidence of
associations between heart rate complexity and numerous
clinical outcomes, measurement and interpretation have
limitations. A major constraint for clinical use is the fact that
data needs to be analyzed off line with the use of proprietary
software or algorithms. At this point, there is no way to
conduct real-time evaluation of complexity data, and nearly
all of the studies have been done retrospectively. In addition,
analysis of ECG data requires that they be free of ectopy. If
ectopic beats are encountered in a data set, the data must
either be excluded, or the beat must be replaced via linear
interpolation [33, 36]. The removal of patients with ectopic
beats from analysis can introduce selection bias into the
sample [3].

6. Summary

There are at least 23 different variables using the 3 different
methods of analysis that reflect HRV (Table 4), each with
strengths and weaknesses. Decreases in HRV in trauma
patients indicate significant injury or pathology and accu-
rately predict morbidity and mortality. However, there are
multiple challenges which must be overcome before HRV can
become a routine monitoring and triage tool in trauma. The
key issues for future investigations are

(1) how to implement HRV in the triage of civilian and
military trauma,

(2) guidelines for the monitoring and assessment of
trauma patients using HRV,

(3) development of normal values and thresholds for
treatment,

(4) target values for resuscitation.

If HRV is to be a useful tool, real-time, simplified variability
data must be made available to medics and physicians.
Multiple wireless vital signs monitoring technologies are
currently in development, several of which are able to
provide continuous measurements of variability. Future
trials integrating these devices into the triage and treatment
of trauma patients will determine the clinical utility of HRV.
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