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Members of the arginine–serine-rich protein family (SR proteins) are multifunctional RNA-
binding proteins that have emerged as key determinants for mRNP formation, identity
and fate. They bind to pre-mRNAs early during transcription in the nucleus and accom-
pany bound transcripts until they are translated or degraded in the cytoplasm. SR pro-
teins are mostly known for their essential roles in constitutive splicing and as regulators
of alternative splicing. However, many additional activities of individual SR proteins,
beyond splicing, have been reported in recent years. We will summarize the different
functions of SR proteins and discuss how multifunctionality can be achieved. We will also
highlight the difficulties of studying highly versatile SR proteins and propose approaches
to disentangle their activities, which is transferrable to other multifunctional RBPs.

Introduction
Serine/arginine-rich splicing factors (SRSFs, SR proteins) are a phylogenetically conserved family of
RNA-binding proteins (RBPs) present in all metazoans and plants [1]. Initially described as essential
regulators of constitutive and alternative pre-mRNA splicing [2,3], we now know that SR proteins
influence all steps in the life cycle of mRNAs from transcription, splicing, polyadenylation and mRNP
packing in the nucleus to mRNA export, translation and decay in the cytoplasm [3–5]. Apart from
canonical and non-canonical functions in mRNA metabolism, SR proteins also participate in the pro-
cessing of non-coding RNAs, the regulation of post-translational modifications (PTMs), and the for-
mation and dynamics of nuclear compartments (see below) [6–9].
SR proteins are essential for normal development as gene knockouts (KOs) cause embryonic lethal-

ity in mice and Drosophila [3]. They maintain pluripotency of embryonic stem cells and show highest
expression levels in undifferentiated cells [10]. SR protein levels are down-regulated during differenti-
ation but their aberrant overexpression promotes dedifferentiation, tumorigenesis and metastasis [2].
Individual SR proteins are implicated in different cancers [2]; for example, SRSF1 is associated with
acute lymphoblastic leukemia (ALL), prostate, lung and breast cancer [2,3], SRSF2 and SRSF4 with
acute myeloid leukemia (AML) [2,11,12], SRSF3 with colon cancer and osteosarcoma [5,13], SRSF5
with lung and breast cancer [2,14] and SRSF6 with breast and skin cancer [2,14]. Dysregulation of
canonical and non-canonical functions of SR proteins also gives rise to neurological disorders, liver
disease as well as coronary and cardiac diseases [5,15–17].
Being involved in a plethora of different functions, SR proteins are truly all-rounders —multifunc-

tional and highly versatile RBPs that connect and control subsequent steps in eukaryotic gene expres-
sion. Here, we will describe how this multifunctionality is achieved and what we need to consider to
disentangle specific functions of individual SR proteins.

The SR protein family
The 12 canonical SR proteins contain at least one RNA recognition motif (RRM) at the N-terminus, a
glycine-rich spacer region and a domain rich in arginines and serines (RS domain) at the C-terminus
[3,18] (Figure 1). The RNA-binding specificity of SR proteins differs among the family members but
is surprisingly promiscuous [6,18] (Table 1). It is determined by the number and spacing of the
RRMs, their accessibility and the relative contribution of linker regions and additional domains.
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The RS domain is composed of at least 50 amino acids with >40% RS dipeptide content and is intrinsically
unstructured [55]. This domain mediates mainly protein–protein interactions with other RS domain-containing
proteins but was also shown to interact with RNA [6]. The reversible phosphorylation of most serines within
the RS domain is crucial for the regulation of SR protein activities. Fully phosphorylated RS domains are
required for the recruitment of SR proteins to transcription sites and spliceosome assembly, while RS depho-
sphorylation promotes splicing catalysis, mRNP packaging and nuclear export [18,36]. Serving as a nuclear
localization signal, the RS domain also regulates the subcellular localization and the nucleo-cytoplasmic shut-
tling of SR proteins [18].

SR proteins and pre-mRNA splicing
Pre-mRNA splicing refers to the removal of introns and ligation of exons. Moreover, the differential inclusion
of exons or introns can give rise to several alternative splice isoforms from one single gene. The major spliceo-
some, a multiprotein–RNA complex assembled from five small nuclear ribonucleoprotein particles (snRNPs,
U1, U2, U4, U5 and U6), catalyzes the splicing reaction. SR proteins bind to splicing enhancers located in
exons and introns and promote the recruitment of U1 snRNP to 50 splice sites and U2 auxiliary factor (U2AF)
to 30 splice sites. Recruitment occurs in a phosphorylation-dependent manner through interactions with the U1
subunit U1-70k and U2AF65 via their RS domains. SR protein binding to intronic splicing silencers inhibits
U1 and U2 recruitment. SR proteins also stabilize the base-pairing of U2 snRNP with the branchpoint and
promote the recruitment of the U4/U6–U5 tri-snRNP and U6 snRNP binding. The catalytically active

Figure 1. Phylogenetic tree of the SR protein family and their domain structure.

Human SR protein sequences were obtained from UniProt (last modified Feb 2, 2021) [19] and aligned with mafft, v7, L-INS-I

method [20,21]. A maximum likelihood phylogenetic tree was produced with RAxML, v1.0.0, using LG +G4 as substitution

model [22]. The domains were produced with DoMosaics utilizing the hmmer and Pfam protein domain database [23–25]. The

annotations were manually curated according to [18].
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spliceosome is formed through extensive remodeling of RNA–RNA and RNA–protein interactions, which is
coupled to the dephosphorylation of SR proteins [1,3,6,18,36,56].
Pre-mRNA splicing occurs co-transcriptionally, and SR proteins are stored in nuclear speckles until tran-

scription is activated [56]. Release of SR proteins from nuclear speckles is regulated by phosphorylation of their
RS domain. Hyper-phosphorylated SR proteins leave nuclear speckles, move to sites of active RNA polymerase
II (Pol II) transcription, bind to pre-mRNAs and engage in co-transcriptional splicing [18]. SR proteins usually
promote splice site usage depending on their binding strength, expression levels, and extent of cooperation and
competition with other SR proteins and hnRNP proteins [36]. However, SR proteins sometimes repress splicing
by binding to splicing silencers. SRSF10, SRSF11 and SRSF12 act as general splicing repressors when they
become dephosphorylated under certain stresses [18,36,54].

Table 1. Consensus binding motifs and cellular functions of individual SR proteins

SR
protein Aliases Binding motifs Functions References

SRSF1 ASF, SF2, SRp30a, SFRS1 RGAAGAAC
AGGAC[A/G][G/A]AGC
GAAGAA
GGAGGA

Constitutive and alternative splicing activator,
Transcriptional elongation, Genome stability,
mRNA stability, nonsense-mediated decay,
mRNA export, Translation, miRNA
processing,
Sumoylation, Nuclear speckle assembly

[6,18,26–35]

SRSF2 SC35, SRp30b, SFRS2 [C/G][C/G]NG
AGGAGAU
GUUCGAGUA
UGCNG[C/U]

Constitutive and alternative splicing activator,
Genome stability, nonsense-mediated decay,
Transcriptional elongation

[3,6,30,31,36]

SRSF3 SRp20, SFRS3 [A/U]C[A/U][A/U]C
CUC[U/G]UC[C/U]
CA-rich
CNYC

Constitutive and alternative splicing activator,
Transcriptional termination, Nuclear decay,
Alternative polyadenylation, mRNA export,
mRNA translation,
Assembly of stress granules and P-bodies,
miRNA processing, nonsense-mediated
decay

[3,6,18,27,30,
31,36–44]

SRSF4 SRp75, SFRS4 GAAGGA
GAAGAA

Constitutive and alternative splicing activator,
Transcription, inhibition of polyadenylation,
ncRNA processing, nonsense-mediated
decay

[6,30,31,43,45]

SRSF5 SRp40, HRS, SFRS5 GAGCAGUCGGCUC AC[A/C/U]G[G/
C]
CUG

Constitutive and alternative splicing activator,
(viral) mRNA translation, mRNA export,
nonsense-mediated decay

[6,30,31,36,46,47]

SRSF6 SRp55, B52, SFRS6 U[C/G]CG[U/G][A/C]
UCAACCAGGCGAC
GAAGAA

Constitutive and alternative splicing activator,
(viral) mRNA translation,
nonsense-mediated decay

[6,30,31,36,46,48]

SRSF7 9G8, SFRS7 UCAACA
ACGAGAGA[C/U] GGACGACGAG
GAYGAY

Constitutive and alternative splicing activator,
mRNA export, alternative polyadenylation,
(viral) mRNA processing and translation,
miRNA processing, nuclear body assembly,
nonsense-mediated decay

[6,30,31,36,37,
44,49–51]

SRSF8 SRp46, SFRS2B ND Constitutive and alternative splicing activator [36,52]

SRSF9 SRp30c, SFRS9 GACGAC
AAAGAGCUCGG CUGGAUU
GGAGGA

Constitutive and alternative splicing regulator,
mRNA translation, SUMOylation

[6,7,30,32,34,53]

SRSF10 SRp38, SRrp40, TASR1,
SFRS13A

AAAGACAAA
[A/T/G]GA[A/G][A/G][A/G]

Inducible, global splicing repressor
mRNA translation

[6,18,36,54]

SRSF11 SRp54, p54, SFRS11 AAGAAG Alternative splicing repressor,
Genome stability

[6,30,36]

SRSF12 SRrp35, SFRS13B ND Positive and negative regulator of alternative
splicing

[18,30]
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Non-canonical functions of SR proteins in the mRNA life
cycle
SR proteins perform diverse non-canonical functions that can be either related or unrelated to splicing [3].
While all SR proteins regulate pre-mRNA splicing in a partially redundant manner [6,30,36], non-canonical
functions are often specific for a subset of SR proteins. The well-studied SR proteins SRSF1, SRSF2, SRSF3 and
SRSF7 appear particularly versatile, each conveying a plethora of functions (Table 1, Figure 2). Other less-
studied SR proteins may hide interesting novel functions.
During transcription, SR proteins interact with Pol II via its C-terminal domain (CTD) and contact nascent

pre-mRNAs as soon as splice sites emerge [18]. SRSF2 is also part of the inhibitory 7SK snRNP complex that
causes Pol II to pause at promoters and regulates transcription elongation. The emergence of SRSF2-binding
sites in nascent pre-mRNAs causes SRSF2 to leave the 7SK complex, which destabilizes it and releases Pol II
from pausing [3]. SRSF1 also regulates transcription, e.g. of HIV-1 genomic RNA during early stages of infec-
tion [35]. It also prevents the hybridization of newly synthesized pre-mRNA to the complementary DNA tem-
plate during transcription (R loops), which reduces the occurrence of DNA double-strand breaks and
maintains genome stability [28].
After completion of co-transcriptional splicing, dephosphorylated SR proteins stay bound to mRNAs and

regulate downstream steps of gene expression [18]. They mark mRNAs as mature and export competent and
assist in packaging and compaction of mRNPs through interactions with the exon-junction complex (EJC),
which binds ∼20–24 nucleotides upstream of each exon–exon junction [57]. SRSF3 and SRSF7 modulate the
length of 30UTRs through alternative polyadenylation (APA) independently of splicing and enhance the
RNA-binding capacity of the nuclear export factor NXF1 [31,44]. Several other SR proteins also recruit NXF1
via their linker domains and promote the nuclear export of bound target transcripts [18,31,47,58]. Differences
in the shuttling capacities of SR proteins are due to the length and phosphorylation state of their RS domains
and the ability to recruit NXF1 [18,47].
Once in the cytoplasm, SRSF1 activates translation of a subset of bound transcripts by recruiting the protein

kinase mammalian target of rapamycin (mTOR) [18,32]. In contrast, SRSF3 represses translation of target
RNAs, e.g. tumor suppressor PDCD4 [6,38]. SRSF9 also enhances the translation of β-catenin in an
mTOR-dependent manner [6,32]. SRSF5 and SRSF6 stimulate the translation of gag proteins from unspliced
HIV-1 mRNA, while SRSF3 and SRSF7 promote the translation of unspliced viral RNAs containing internal
ribosomal entry sites (IRES) or a constitutive transport element (CTE) [36,51].

Figure 2. Canonical and non-canonical functions of SR proteins in the mRNA life cycle.

Pol II, RNA polymerase II; EJC, exon junction complex; PAS, polyadenylation site; NB, nuclear body; SG, stress granule; EXO,

exosome.
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SR proteins also affect the stability of mRNAs in the cytoplasm by promoting or inhibiting nonsense-
mediated decay (NMD). This occurs either directly by promoting the deposition of EJCs downstream of prema-
ture termination codons (PTCs) and by recruiting the NMD factor UPF1, or indirectly through unproductive
splicing and selective export [18,29]. Unproductive splicing occurs when SR proteins promote the removal of
introns located within the 30 UTRs of transcripts or the inclusion of alternative exons containing a PTC, which
both render transcripts sensitive to NMD [59].

SR proteins and non-coding RNAs
SR proteins also interact with non-coding RNAs, such as small nucleolar RNAs (snoRNAs), microRNA
(miRNAs) and long non-coding RNAs (lncRNAs) [43,60]. Binding of SRSF1 and SRSF3 promotes miRNA pro-
cessing by enhancing Drosha-mediated cleavage in a splicing-independent manner [8,27,33,39]. SRSF1 regu-
lates maturation of miR-7, which targets the 30UTR of SRSF1 and represses its own translation [61]. It also
influences the conformation of an inhibitory stem loop in the pri-miR-10b, which enables the hairpin selection
by the Microprocessor [33]. SRSF3 binds to a specific pri-miRNA binding motif (CNNC) [49], and enhances
the processing of CNNC-containing pri-miRNAs through Drosha recruitment [40].
By interacting with lncRNAs, SR proteins also contribute to the formation and dynamics of nuclear compart-

ments. For example, the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) localizes to
nuclear speckles where it interacts with all SR proteins [3]. SRSF1 and MALAT1 assemble nuclear speckles, and
MALAT1 regulates the levels and phosphorylation of SRSF1 [34]. However, different SR proteins have distinct
binding sites and show distinct effects on MALAT1 and its nuclear speckle localization and functions [62]. SRSF1
and SRSF9 assemble nuclear stress bodies (nSBs) when cells are exposed to high temperatures [7]. Heat stress
induces transcription of non-coding HSATIII transcripts and SR protein dephosphorylation [63].
Dephosphorylated SRSF1 and SRSF9 bind to HSATIII lncRNAs, which consist mainly of GGAAU repeats and
are sequestered in nSBs [7]. Recruitment of the SR protein-specific kinase CLK1 to nSBs upon stress relief
enhances the selective re-phosphorylation of SRSF1 and SRSF9 and promotes their release from nSBs to regulate
splicing of heat-shock response genes [7]. SRSF7 also assembles nuclear bodies as part of an intricate auto-
regulatory feedback mechanism [50]. Overexpression of SRSF7 promotes the inclusion of an alternative exon con-
taining a PTC and a downstream (re)initiation codon resulting in a bi-cistronic SRSF7 transcript that is NMD
resistant. Translation yields two SRSF7 protein halves precisely separating the RNA-binding domains from the RS
domain (Split-ORFs). Accumulation of the first SRSF7 half in the nucleus inhibits splicing and SRSF7 Split-ORF
production and instead causes the retention of a specific intron containing 76 SRSF7 binding motifs. Repeated
binding of SRSF7 to this intron and oligomerization of bound SRSF7 leads to the assembly of large nuclear
bodies which sequester SRSF7 proteins and SRSF7 transcripts and restores SRSF7 homeostasis [50]. It remains to
be tested whether other SR proteins with a similar gene architecture also assemble nuclear bodies.
Some SR proteins (SRSF1, SRSF2, SRSF3, SRSF7 and SRSF10) are recruited to cytoplasmic stress granules

(SGs) along with non-translated mRNAs [26]. For SRSF1, recruitment occurs through binding to its target
transcripts [26], whereas SRSF3 appears to regulate SG and P-body assembly [5]. Neddylation of specific
lysines in SRSF3 is crucial for the assembly of SGs upon arsenite stress [41]. Disassembly of SGs upon stress
relief requires the small ubiquitin-related modifier (SUMO) pathway [64,65]. SRSF1 promotes SUMOylation
either by recruiting the SUMO conjugating enzyme UBC9 or by regulating the activity of the SUMO E3 ligase
PIAS1 [26,66–68]. SRSF1 also influences the SUMOylation of specific RBPs and spliceosomal components,
which relies on its RRM2 domain [9,26].
The functional flexibility of the SR protein family is truly impressive and crucial for the plasticity, robustness

and adaptability of gene expression programs. In the following chapters, we will highlight how SR proteins are
able to perform their unique functions and achieve multifunctionality.

RS domains as versatile protein-interaction hubs
The RS domain is a highly versatile and tunable platform for protein–protein interactions and one of the main
reasons for the multifunctionality of SR proteins. Differential phosphorylation regulates protein interactions,
RNA-binding specificity and nucleo-cytoplasmic shuttling of SR proteins [18]. RS domains interact preferen-
tially with other RS or RS-like domains (RE/RD) that are found in most splicing factors [69]. However, several
non-splicing factors, including the cleavage and polyadenylation (CPA) factors FIP1 and CPSF6, the m6A
reader YTHDC1 and the the metallo-oxygenase JMJD6, also contain RS-like domains. They are known interac-
tors of specific SR proteins [44,70–72] and enable their non-splicing functions. RS domains allow promiscuous
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but also specific interactions through differences in number, length and spacing of RS dipeptides, interspersed
hydrophobic residues and the presence of specific domains embedded within the RS domain.

Unique protein features
Additional functions are also possible when individual SR proteins contain unique protein domains or
sequence features that increase their RNA-binding specificity, enable unique protein interactions or mediate
distinct subcellular localizations [18]. For example, a zinc knuckle is found exclusively in SRSF7, which changes
its RNA-binding specificity from CNYC to GAY triplets [44] and allows modulation of its binding to RNA by
iron levels [73]. An additional pseudo RRM (ΨRRM), present in SRSF1, SRSF4, SRSF5, SRSF6 and SRSF9
(Figure 1), was shown to determine the RNA-binding specificity and splicing activity of SRSF1 [6,74]. The
length and amino acid composition of the linker regions and RS domains also differ between SR proteins [18].
The unique RS domain of SRSF1 regulates the subnuclear localization of topoisomerase I, which was not
observed for other SR proteins [75]. A unique hydrophobic stretch of 27 amino acids in the RS domain of
SRSF7 contributes to its ability to assemble NBs and regulate APA [44,50]. Other unique domains are the
PAP-inhibitory domain found exclusively in SRSF4, which inhibits the activity of the poly(A) polymerase PAP
in vitro [45], and the phosphatase resistance domain found exclusively in SRSF2, which prevents its depho-
sphorylation during splicing and inhibits its nucleo-cytoplasmic shuttling [60,76,77]. Interestingly, SRSF2 shut-
tles in undifferentiated cells, suggesting that the functionalities of unique SR protein domains depend on the
cell type or state [47].
Recent Gencode annotations (v38, Ensembl 104) reveal a multitude of novel alternative isoforms for some

canonical SR protein genes, including SRSF5, SRSF6, SRSF10 and SRSF11. These isoforms have shorter or
missing RS domains and unique N-termini, which could provide them with novel functionalities that await
investigation.

Unique and overlapping RNA-binding specificities
SR proteins come in evolutionarily related pairs with similar RNA-binding specificities and functions, which
are distinct from those of other pairs (Figure 1) [1]. For example, SRSF1 and SRSF9 are structurally very
similar and both bind to GGA triplets [74,78,79]. SRSF9 and SRSF1 regulate the same splicing events, bind
strongly to repetitive sequences within HSATIII lncRNAs using their ΨRRM, and promote SUMOylation
[7,9,32]. SRSF4 and SRSF6 are closely related and both bind to GAA triplets and can partially compensate for
each other [31,48,80]. The RNA-binding specificities of the paralogs SRSF3 and SRSF7 are different (CNYC
and GAY), and both proteins often act in an antagonistic manner. However, genome-wide identification of
SRSF7 binding motifs suggest that SRSF7 can bind to both GAY and CNYC sequences [50]. This suggests that
the contribution of the zinc knuckle to RNA binding varies and that both proteins could in principle compete
for binding to CNYC motifs.
SRSF2 and its paralog SRSF8 likely display the most promiscuous RNA-binding specificity of all SR proteins

(SSNG) [81]. Interestingly, a mutation in SRSF2 (SRSF2P95H) associated with myelodysplastic syndromes skews
the binding specificity of SRSF2 from GGNG towards CCNG, affecting its binding to exons but not the global
alternative splicing pattern [82]. This suggests that the main function of SRSF2 is probably to enhance the tran-
scription of pre-mRNAs, which requires a promiscuous RNA-binding specificity, rather than regulating alterna-
tive splicing [3]. Accordingly, the lack of SRSF2-binding sites in most lncRNAs could contribute to their low
abundance [83].

mRNA modifications
SR protein functions are also modulated by N6-methyladenosine (m6A), the most abundant internal modifica-
tion of mRNAs [2]. The methylation of adenosines in the vicinity of SR protein-binding sites could prevent or
enhance SR protein binding and thus overwrite the expected outcome of gene regulation. m6A-mediated weak-
ening of secondary structures may expose single-stranded RNA regions where SR proteins could bind [84], or
m6A-bound reader proteins could recruit or repel SR proteins. For example, the nuclear m6A reader YTHDC1
selectively recruits dephosphorylated SRSF3 to neighboring splice sites and simultaneously blocks binding of
SRSF10, thereby promoting the inclusion of specific exons [70,85]. The GGAAU repeats of HSATIII lncRNAs
are partially m6A modified, and while unmodified GGAAU preferentially binds SRSF9, m6A-modified repeats
are bound by YTHDC1, assembling distinct nSBs [7]. YTHDC1 also directs m6A-modified transcripts towards
faster nuclear export through its interaction with SRSF3 and NXF1 recruitment [86]. Thus, through mutually
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exclusive interactions with specific SR proteins, YTHDC1 confers an additional layer of regulation and might
modulate other non-canonical functions of SR proteins, such as APA, translation, nuclear body dynamics and
mRNA decay.

Binding to intronless transcripts and untranslated regions
SR proteins bind preferentially to exons, in a distance of 30–60 nt from splice sites [31,43], which allows their
dephosphorylation during splicing. When SR proteins bind to intronless transcripts or far away from splice
sites, e.g. within 50 or 30 untranslated regions (UTRs), they likely perform splicing-independent functions. For
example, fully phosphorylated SRSF3 inhibits the translation of LPS-induced transcripts in microglia when it
binds within their 30UTRs [87]. SRSF1 binding within 30UTRs of inflammation-related mRNAs prevents their
nuclear export in murine macrophages [88]. Similarly, the insertion of purine-rich (GAA) SR protein-binding
sites into intronless transcripts causes their retention in the nucleus [89]. In fact, hyper-phosphorylated SR pro-
teins interact preferentially with nuclear retention factors, such as U1 snRNP, and fail to recruit NXF1
[20,47,90]. Surprisingly, sequence-specific binding of SRSF1/SRSF7 (GA-rich) to the intronless lncRNA NKILA
and SRSF3/SRSF7 (CU-rich) to a 22-nt element in the coding region of intronless histone H2A mRNAs pro-
motes their nuclear export through NXF1 recruitment [37,91].
SRSF3 and SRSF7 also regulate the length of 30UTRs by binding upstream of proximal poly(A) sites (pPAS)

and activating or inhibiting them in a splicing-independent manner [44]. SRSF7 is dephosphorylated during
CPA, likely by phosphatases that are associated with the CPA complex [92], and subsequent recruitment of
NXF1 could sort transcripts with different 30UTR lengths prior to nuclear export [31]. In the absence of dedi-
cated export factors, SRSF3 was shown to promote the degradation of intronless viral transcripts via the
nuclear exosome [42], but it is unknown whether this is also true for cellular mRNAs.

Post-translational modifications
Unique PTMs also contribute to the multifunctionality of individual SR proteins. PTMs are reversible and
dynamically regulated under stress and they can alter RNA-binding specificity, protein interactors, protein sta-
bility and subcellular localization of SR proteins. In addition to serine phosphorylation within the RS domain,
lysine acetylation, arginine methylation, neddylation, proline hydroxylation, ubiquitination and SUMOylation
influence SR protein functions [9,18]. For example, Tip60-mediated acetylation of lysine 52 within the RRM of
SRSF2 decreases its levels through enhanced proteasomal degradation [18,93]. In contrast, Tip60-mediated
acetylation of lysine 125 within the ΨRRM of SRSF5 protects it from proteasomal degradation by antagonizing
Smurf1-mediated ubiquitylation of the same residue [94]. SRSF2 protein stability is also regulated through the
hydroxylation of proline residues within its RRM [95]. Arginine methylation within the linker regions of
SRSF1 and SRSF5 influences their subcellular localization and shuttling capacity [47], while arginine methyla-
tion within the RRM enhances the RNA-binding capacity of SRSF2 [96]. Neddylation (Nedd8) was detected on
SRSF1 and SRSF3, and neddylation of lysine 85 in the linker region of SRSF3 was shown to be crucial for the
assembly of SGs [41].

Challenges and opportunities in studying multifunctional
SR proteins
Classical SR proteins are structurally very similar, and the functions of paralogs are especially difficult to tease
apart. Furthermore, many SR-like proteins play roles in splicing, chromatin remodeling, and transcription [30].
A dense network of auto- and cross-regulation among SR- and SR-like proteins has recently been discovered,
where the removal of one SR protein affects the levels of several others [10,43,97]. SR proteins interact with
each other, co-operate and compete for binding sites and compensate for the loss or increased abundance of
other SR proteins [78]. More distantly related SR proteins tend to co-operate, act in pairs or positively regulate
each other’s expression, while closely related SR proteins tend to compete or negatively regulate each other
[10,31,44]. To discriminate between the functions of individual SR protein paralogs, we suggest endogenous
tagging, e.g. with GFP. To minimize compensation and cross-regulation, acute degradation of individual SR
proteins, e.g. through auxin-inducible degrons, should be used [98]. Short depletion times should help to
dissect indirect from direct effects.
The activities of SR proteins depend on the phosphorylation of their RS domains and their subcellular local-

ization, which rapidly changes in response to stress and signaling [18,99]. This should be considered in all
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functional studies. However, phosphoproteomics with SR proteins are particularly challenging due to their high
number of potential phosphosites, the repetitive nature of their RS domain, their high charge (which impairs
mobility and detection) and high arginine content (which precludes most peptide digestion strategies).
However, individual SR proteins could be purified from mammalian cells and analyzed by native mass spec-
trometry (MS), which allows analysis of intact SR proteins and visualization of the distribution and number of
phosphosites in the mass spectra [100].
It remains particularly challenging to disentangle the specific contributions of individual SR protein func-

tions to gene expression and disease. Reduced levels of a target protein result from all gene expression steps
that SR proteins regulate or connect, and loss-of-function or overexpression approaches will affect all of them.
Thus, experiments must be designed very carefully to tease their different functions apart. Domain-swap or
mutation experiments that inhibit interconnected pathways in cis may be useful. For example, Haward et al.
[101] created a mouse model where they fused the phosphatase resistance domain of SRSF2 to SRSF1, thereby
converting SRSF1 into a non-shuttling protein while preserving all its nuclear functions and allowing them to
determine the contribution of SRSF1 shuttling on gene expression. Interconnected pathways can also be inhib-
ited globally. For example, inhibition of the NMD pathway allowed to examine the contribution of all SR
protein isoforms (including unstable ones) to alternative splicing [102], whereas inhibition of the mRNA
export pathway allowed to assess the roles of SRSF3 in nuclear mRNA degradation of intronless viral transcripts
[42]. Another possibility to separate non-canonical functions of SR proteins from their roles in splicing is the
use of intronless reporter genes. With this approach, we have shown that 3’UTR APA regulation by SRSF7 is
splicing independent [44]. Artificial SR proteins would also be a very interesting option to study the functions
of individual SR proteins at specific splice sites or in UTRs by recruiting their RS domain fused to catalytically
inactive dCasRX using specific guide RNAs [10,103].

Perspectives
• SR proteins are essential multifunctional RBPs that have emerged as molecular adapters con-

necting and controlling gene expression and processing machineries at each step of the
mRNA life cycle.

• Non-splicing functions are described for only a few well-studied members of the SR protein
family and their individual contribution to total gene expression remains largely unknown.

• To better understand the contribution of individual SR proteins and their diverse roles in
human disease, we need to develop methods and approaches to dissect the post-
transcriptional and post-translational networks of SR proteins, study their functions at the
single-cell level, explore their regulation by lncRNAs and subcellular compartments (riboregu-
lation) and disentangle their non-splicing from their splicing functions. Also, better characteriz-
ing the less-studied family members and alternative splice isoforms will help us discover novel
cellular functions and mechanisms.
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