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In recent years, numerous substances have been identified as
so-called ‘‘endocrine disruptors’’ because exposure to them
results in disruption of normal endocrine function with pos-
sible adverse health outcomes. The pathologic and behav-
ioral abnormalities attributed to exposure to endocrine
disruptors like bisphenol-A (BPA) have been studied in ani-
mals.Mental conditions ranging from cognitive impairment
to autism have been linked to BPA exposure by more than
one investigation. Concurrent with these developments in
BPA research, schizophrenia research has continued to
find evidence of possible endocrine or neuroendocrine in-
volvement in the disease. Sufficient information now exists
for a comparison of the neurotoxicological and behavioral
pathology associated with exposure to BPA and other en-
docrine disruptors to the abnormalities observed in schizo-
phrenia. This review summarizes these findings and
proposes a theory of endocrine disruption, like that ob-
served from BPA exposure, as a pathway of schizophrenia
pathogenesis. The review shows similarities exist between
the effects of exposure to BPA and other related chemicals
with schizophrenia. These similarities can be observed in 11
broad categories of abnormality: physical development,
brain anatomy, cellular anatomy, hormone function, neuro-
transmitters and receptors, proteins and factors, processes
and substances, immunology, sexual development, social
behaviors or physiological responses, and other behaviors.
Some of these similarities are sexually dimorphic and sup-
port theories that sexual dimorphisms may be important to
schizophrenia pathogenesis. Research recommendations for
further elaboration of the theory are proposed.
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Introduction

Several theories of schizophrenia pathogenesis have been
proposed including genetic abnormalities, infectious dis-
eases, poor nutrition, and stress. These theories have led
to major advances in both treatment and understanding
of the neurochemical and anatomical underpinnings of
the disease, but there remains the possibility that alterna-
tive routes of disease pathogenesis exist that have not
been fully elucidated. The current study proposes a mech-
anism of so-called ‘‘endocrine disruption’’ that possibly
causes an abnormal endocrine environment, predomi-
nantly in fetal life, that leads to schizophrenia. Endocrine
and neuroendocrine causes of schizophrenia have been
proposed before, but the notion of endocrine disruption
as it has been used in recent years to describe certain
exposures to environmental contaminants offers a new
paradigm and class of risk factors in schizophrenia
research.
Endocrine and neuroendocrine abnormalities in

schizophrenia have been extensively described in the
past.1,2 These abnormalities have included impaired
growth hormone (GH) regulation, prolactin abnormali-
ties especially related to antipsychotic medications,
various changes in adrenocorticotropic hormone and
cortisol, effects on vasopressin and oxytocin, and possi-
ble neuroprotective roles of estrogen and progesterone
(PG).1 Many of these studies have concentrated on the
neuroendocrine status of adults with schizophrenia.
Others have reported on neuroendocrine changes from
prenatal stress that causes alterations of glucocorticoid
function in developing fetuses.3

One recent theory has proposed that factors involved in
the normal development of sexual dimorphisms in the hu-
man brain may also interact with risk factors associated
with schizophrenia.4 As these dimorphisms develop at the
same critical fetal stages associated with schizophrenia
vulnerability, research on factors that influence sexual
dimorphisms was suggested for future schizophrenia
research.4 That schizophrenia and abnormal sexual devel-
opment share at least one risk factor associated with
endocrine disruption is demonstrated by hypospadias,
the abnormality in which the male urethra opens on
the underside of the penis or on the perineum. Some inves-
tigators suggest that exposure to endocrine-disrupting
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chemicals (EDCs) in the environment is the most likely
explanation for the worldwide increase in hypospadias
in the last 3 decades.5 Concurrently, the risks of hypospa-
dias and schizophrenia are both significantly cor-
related with maternal influenza in the first 3 months of
pregnancy.6,7

The following discussion will propose endocrine dis-
ruption such as that caused by the endocrine disruptor
bisphenol-A (BPA) as a putative cause of schizophrenia
with 5 objectives in mind. First, estrogen and steroids will
be reviewed as to their possible roles in schizophrenia.
This will include a discussion of research that suggests
dysregulation of hormones could be involved in the path-
ogenesis of schizophrenia. Second, BPA will be described
as to its basic history, possible known involvement with
psychiatric illness, and its commercial and environmental
significance. Third, the effects on animals of BPA and
other selected endocrine disruptors will be compared
with parallel literature in schizophrenia research. The
comparison will show these chemicals cause 11 categories
of pathological abnormalities with similar findings in
schizophrenia. Fourth, the comparison will include a de-
scription and summary of sexually dimorphic changes in
brain and behavior induced by BPA that have relevance
to schizophrenia. Finally, an endocrine disruption theory
of schizophrenia is presented using BPA as a model of
how estrogenic endocrine disruptors could cause schizo-
phrenia. The theory will describe that while BPA expo-
sure is a possible model of schizophrenia, BPA is just
one possible endocrine disruptor that could cause schizo-
phrenia. The theory will propose that other chemical
exposures and certain genetic, infectious, nutritional,
and stress-related risk factors for schizophrenia could
also be acting through endocrine disruption.

Estrogen and Schizophrenia

The majority of studies of estrogen in schizophrenia in-
dicate that estrogen may prevent but not necessarily treat
schizophrenia. Low estrogen levels are associated with
schizophrenia symptoms in males8–10 and females.11–14

The later age of onset of schizophrenia in women com-
pared with men has been correlated with protective
effects of higher levels of estrogen in women,15,16 and es-
trogen variations through the menstrual cycle correlate
with schizophrenia symptom severity.17 Hypoestrogen-
ism in schizophrenia has been attributed to medication
side effects such as hyperprolactinemia, but hypoestro-
genism can occur with and without antipsychotic-
induced hyperprolactinemia.18

Estrogen exerts a protective role in sensorimotor gat-
ing deficits,19–21 serotonin transporter and receptor func-
tion,22–25 and N-methyl-D-aspartate (NMDA) receptor
binding in schizophrenia models.26 However, studies of
the efficacy of treating schizophrenia with estrogen
have had mixed results. A recent Cochrane Database

review27 and 2 double-blind, placebo-controlled trials
of estrogens as adjuvant therapy to antipsychotics in
treating schizophrenia did not find any beneficial effect
from the addition of estrogen.28,29

Evidence that prenatal estrogen exposure may have the
opposite effect than in adulthood emerged from reports
of psychosis in patients prenatally exposed to the syn-
thetic estrogen, diethylstilbestrol (DES).30 Attempts to
produce animal models of schizophrenia with synthetic
estrogens have had variable results.31 One study of pre-
natal exposure to 17alpha-ethinylestradiol in rats did not
find abnormalities in prepulse inhibiton of the startle re-
flex in offspring, which argued against prenatal estrogen
exposure as a cause of schizophrenia.31 That study ex-
posed the fetuses for only 6 days (gestational day
9–14), a brief time compared with endocrine-disruption
studies that commonly expose pregnant animals from
mating to weaning. Exposure times and duration must
be long enough to ensure exposure occurs on days of
brain development. Variability of outcomes from endo-
crine disruption may be explained by the exquisite sensi-
tivity of the developing brain to the dose, timing, and
durations of exposures to hormones.32

Other indications that estrogen may be involved in
schizophrenia have been found in genetic conditions
that cause abnormal estrogenic function. Turner (XO)
and Klinefelter’s syndromes (XXY) are possible genetic
models of endocrine disruption although not directly
comparable to chemical exposures as entire chromosomes
are involved in these syndromes. Turner syndrome, in
which there is a missing X gene causing an absence of es-
trogen during prenatal/perinatal life, is associated with
cognitive problems and psychosis.33–35 One study found
Turner syndrome patients have 3 times the risk for schizo-
phrenia as normal controls.36 Klinefelter’s syndrome,
which often presents with hypogonadism, has been pro-
posed as a genetic model of psychotic disorders.37

Stress-Related Hormones and Schizophrenia

Although mood disorders are frequently associated with
the hypothalamic-pituitary-adrenal (HPA) axis, recent
research has found HPA axis involvement in schizophre-
nia.38 Research on the role of theHPA axis in schizophre-
nia generally focuses on the effects of glucocorticoid
elevations from stress. A recent study found that chronic
glucocorticoid elevation in rats leads to neurotoxic struc-
tural changes in hippocampal dendritic arbors.39 Corti-
costerone exposure of rats also causes degeneration of
the prefrontal cortex.40 Further evidence of the role of
the HPA axis in schizophrenia is that corticosterone
modulates prepulse inhibition in rodents, an animal
model of schizophrenia.41,42 The HPA axis is potentially
vulnerable to disruption by estrogenic EDCs as estrogen
directly and indirectly regulates the fetal HPA in
baboons.43,44
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Other steroids that may be involved in the HPA axis
include neurosteroids such as pregnenolone, allopregna-
nolone, and dehydroepiandrosterone (DHEA). Neuro-
steroids are important in the regulation of
neuroexcitability during early development.45 The neuro-
protective and neurotrophic effects of neurosteroids on
inhibitory GABA(A) and excitatory NMDA receptors
may have potential treatment applications for several
neurological and psychiatric diseases including schizo-
phrenia and bipolar disorder.46,47

The effect of EDCs on DHEA has not been signifi-
cantly researched, although EDCs do affect other neuro-
steroids involved in schizophrenia as discussed below.
The neurosteroid allopregnanolone, a metabolite of
PG, regulates GABA(A) inhibitory receptors strongly
implicated in several psychiatric diseases.48 Allopregna-
nolone concentrations are altered in various brain
regions in schizophrenia and bipolar disorder,46 and neo-
natal allopregnanolone administration disrupts normal
brain development in rats.49 The efficacy of certain anti-
psychotic medications including olanzapine and cloza-
pine involves these GABAergic effects.50,51

The effects of plastic-related endocrine disruptors on
allopregnanolone have not been studied, but allopregna-
nolone synthesis can be disrupted through changes in es-
trogen,52 PG,53–55 and the primary enzymes involved in
allopregnanolone synthesis, 5alpha reductase type 1 and
3alpha-hydroxysteroid dehydrogenease.56 The control by
estrogen and PG of allopregnanolone modulation of
striatal N-methyl-D-aspartic acid–evoked dopaminergic
activity57,58 also implies vulnerability to endocrine disrup-
tion. Examples of endocrine disruption of these pathways
include several naturally occurring endocrine disruptors
(phytoestrogens) that inhibit not only 5alpha reductase
type 1 but also 3alpha-hydroxysteroid activity.59–61 The
endocrine disruptor, tributyltin, which causes ‘‘imposex’’
(male sex organs on females) in marine invertebrates also
inhibits 5alpha reductase type 1,62 and the phytoestrogen,
genistein, inhibits allopregnanolone in invertebrates.63

BPA and Other EDCs

Because several lines of evidence suggest a possible role of
estrogenic endocrine disruption in schizophrenia as de-
scribed above, the author examined the literature of
EDCs to determine which EDCs have a research base suf-
ficient to compare to schizophrenia research. Major
EDCs in the present environment include commercial
chemicals such as BPA, phthalates, nonylphenol, octyl-
phenol, organotins, polychlorinated biphenyl (PCB),
and other organohalogens; and the naturally occurring
substances, cadmium, genistein, and other phytoestro-
gens. The author chose to compare the endocrine-
disrupting effects of BPA and a few other selected
endocrine disruptors to schizophrenia primarily because
there is substantial BPA-related literature available for

review, and highly controversial claims have been
made that BPA could be involved in other mental prob-
lems or psychiatric illnesses such as autism and attention-
deficit hyperactivity disorder (ADHD).64,65 In addition,
a recent government-sponsored panel expressed concern
that BPA can impair normal neural and behavior devel-
opment in fetuses, infants, and children.66

BPA is a common ingredient of many plastic and resin
products including food and drink containers, internal
linings of food cans, and dental enamels.67 Also known
as 2,2-bis(4-hydroxyphenyl) propane, BPA was invented
in the 20th century68 and is manufactured by combining
acetone and phenol.69 Emerging research indicates BPA
is an estrogenic EDC that alters or interferes with normal
endocrine development in various vertebrate and inver-
tebrate species.70

Because BPA leaches from containers to food, the es-
timated daily human BPA intake is some amount less
than 1 lg/kg body weight/day.69 BPA is found in various
human fluids including fetal serumand full-term amniotic
fluid indicating the ability of BPA to pass through the pla-
centa.71 One study found a 5-fold higher concentration of
BPA in human 15- to 18-week amniotic fluid compared
with other fluids.71 A partial fetal-maternal barrier to
BPA exists in the second trimester as another study found
that in the majority of pregnant women, maternal serum
levels of BPA were higher than amniotic fluid levels.72

Measured over a span of 10 years in pregnant women
in Japan, the yearly BPA median level in amniotic fluid
ranged from 0 to 2.98 nM, which is environmentally sig-
nificant as mouse embryo development is altered at BPA
concentrations ranging from 1 to 3 nM.72

Comparison of the Effects of BPA and Other EDCs to
Schizophrenia

The current study compares the effects of BPA and se-
lected other EDCs in 11 broad categories of pathology
to schizophrenia (table 1). These categories do not
presume to include all abnormalities reported in either

Table 1. Categories of Comparison

Physical development

Brain anatomy

Cellular anatomy

Hormone function

Neurotransmitters and receptors

Proteins and factors

Processes and substances

Immunology

Sexual development

Social behaviors or physiological responses

Other behaviors
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schizophrenia or from BPA exposure but rather to orga-
nize the literature where parallels in the 2 areas of re-
search can be found. Research is rapidly evolving in
both fields, and information is lacking in some of the cat-
egories described below. In 2 such instances, the discus-
sion utilizes literature about endocrine disruption in
invertebrates. By doing this, the author intends to suggest
that similarities could exist in vertebrates although such
assumptions are prone to error. In other instances of
emerging evidence, psychiatric diseases other than
schizophrenia such as autism, bipolar disorder, depres-
sion, dementia, and others are mentioned as possible
indicators of what might be important to schizophrenia
as psychiatric illnesses often share risk factors or be risks
for other psychiatric illnesses.

Abnormalities of Physical Development

A relationship between schizophrenia and BPA exposure
exists in the involvement of retinoic acid and transform-
ing growth factor-beta (TGFB) in one type of minor
physical abnormality (MPA) that is associated with psy-
chosis. MPAs possibly reflect an insult during the first
trimester of pregnancy73 and include cleft palate74 that
is associated with upregulated mRNA expression of ret-
inoic acid and TGFB.75 Upregulation of retinoic acid re-
ceptor alpha (RARalplha) also results from in utero BPA
exposure of mice,76 and in utero BPA exposure of rats
causes upregulation of TGFB-3 in the medial preoptic
area of the brain.77

Another area of parallel between schizophrenia and en-
docrine disruption related to physical development can be
found in the changesof the estrogen-associated fingerdigit
ratio in schizophrenia. Schizophrenia is associated with
a more ‘‘feminized’’ 2nd to 4th finger digit ratio (2D-to-
4D).78–80 This ratio is normally sexually dimorphic and
reflects prenatal androgen/estrogen levels that could be
vulnerable to disruption and act as a predisposing factor
in schizophrenia.79Several studieshavedescribedprenatal
and neonatal BPA-induced disruption of estrogen in the
rodent brain,68,81–85 which, if occurring in humans, could
influence sexual dimorphisms such as the 2D-to-4D ratio.

Abnormalities of Brain Anatomy

Cerebellum. Effects of BPA exposure on the cerebellum
are similar to cerebellar changes found in schizophrenia.
Abnormalities of the cerebellum in several functional
domains are reported in schizophrenia.86 The abnormal-
ities include reduced cerebellar inhibition and reduced
Purkinje cell size87,88 and alterations of factors control-
ling synaptogenesis.89 BPA, acting as an estrogen mimic,
inhibits and disrupts estrogen-induced signaling in rats
that regulates cell growth and death in the cerebellum.90

BPA also induces Purkinje dendritic growth in neonatal
mice, the same effect that estrogen has onmouse Purkinje
dendritic growth.91,92

Locus Coeruleus. Alterationsof the locus coeruleus (LC)
in schizophrenia can be compared with those observed
from BPA exposure in animals. In schizophrenia, there
is a trend for reduced LC volume, and the human LC
expresses both estrogen receptor alpha (ERalpha) and es-
trogen receptor beta (ERbeta), the latter of which is re-
duced in persons committing suicide.93 One postmortem
study of the LC in schizophrenia found no abnormality.94

That study was a case-control study that combined males
and females, with roughly two-thirds of the groups being
male, a male-to-female ratio that could have possibly
veiled gender-related LC sizes.
Sexually dimorphic responses occur in the LC in re-

sponse to BPA. Prenatal and neonatal exposure to BPA
in rats causes increased LC volume inmales and decreased
volumes in females ultimately resulting in reversal of the
sex differences normally observed in the rat LC.81 The re-
versal likely results from BPA’s estrogenic effect on ERal-
pha and ERbeta that are expressed in the LC.

Abnormalities at the Cellular Level

Neuronal Differentiation, Migration, Cell Growth, and
Apoptosis. Parallels are found between schizophrenia
andBPA exposure in neuronal differentiation, migration,
and apoptosis. Both decreased and increased prolifera-
tion and/or migration of neural stem cells are described
in schizophrenia95 and in BPA exposure.96,97 BPA inter-
feres with differentiation of ectodermal tissues, including
neural tissues, in cynomolgus monkeys.98 In tadpoles,
BPA also induces apoptosis in central neurons of Xeno-
pus laevis resulting in head, vertebral, and abdominal de-
velopmental defects.99

Increased neurogenesis in a rat ketamine model of
schizophrenia100 parallels increased cortical and hippo-
campal neuronal growth from BPA exposure that affects
caspase-3, a protein involved in the apoptosis process, in
rat brains.101 BPA interferes with normal brain develop-
ment by inhibiting caspase-3 thus preventing desirable
neuronal cell death. A different study determined that
high levels of BPA activate caspase-3 and cause cell
death.102 Similar opposing variations in caspase-3 activ-
ity have been observed in schizophrenia. Caspase-3 is ac-
tivated by both phencyclidine (PCP)-induced neuronal
death103 and treatment with antipsychotic medication.104

In chronic schizophrenia, normal caspase-3 levels are
reported,105 indicating apoptosis is not active in the
chronic phase although the chronic phase exhibits a high-
er Bax-to-Bcl-2 ratio (proteins that regulate apoptosis),
suggesting cortical vulnerability to apoptosis. BPAmight
also alter the Bax-to-Bcl-2 ratio as in male offspring of
dams fed BPA during gestation to weaning, caspase-3
increases, and bcl-2 decreases.106

Possible models of apoptosis in schizophrenia have in-
cluded transferase-mediated dUTP nick end-labeling
(TUNEL)–positive hippocampal neurons in rats treated
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with neonatal kainic acid.107 Cells that are TUNEL pos-
itive are apoptotic. In neonatal rats injected with BPA,
a reduction in the midbrain of tyrosine hydroxylase
(TH) immunoreactivity occurred with the appearance
of TUNEL-positive cells indicating neurodegenera-
tion.108 In that study, BPA also increased gene expression
of dopamine (DA) transporter in adult rats after neonatal
exposure. The exposed rats were hyperactive, and the
investigators proposed the hyperactive rats as possible
models of autism or ADHD.

Abnormalities in synaptogenesis are found in both
schizophrenia and BPA exposure. The mitogen-activated
kinase (MAPK) cascade likely influences estrogen-
induced CA1 pyramidal dendrite spine synapse
density109 and may be involved in the pathogenesis of
schizophrenia.110 BPA exposure in rats impairs estrogen-
induced hippocampal synaptogenesis that may occur
through inhibition of MAPK.109 BPA also exerts estro-
genic protective effects on hippocampus cells, providing
neuroprotection against glutamate and amyloid beta
protein toxicity.111

In schizophrenia and BPA exposure, similar abnormal-
ities in cortical neurons are observed. In schizophrenia
and other psychiatric illnesses, neuronal size is decreased,
and neuronal density is increased in cortical layers 5 and 6
of the anterior cingulate cortex.112 Prenatal BPA expo-
sure also affects layers 5 and 6 in mice in which BPA
increases neuron growth in the 5th and 6th cortical layers
and disrupts thalamocortical projections.113

Oligodendrocytes. Pathological changes in oligoden-
drocytes are observed in both schizophrenia and BPA ex-
posure. Abnormalities of oligodendrocyte survival and
differentiation as well as abnormal expressions of oligo-
dendrocyte and myelin genes are reported in schizophre-
nia.114,115 Reductions in oligodendrocyte numbers and
abnormalities of myelin sheaths also occur in schizophre-
nia.116 BPA inhibits differentiation of oligodendrocyte
precursor cells in rodents117 and impairs the expression
of myelin basic protein.117

Astrocytes. Astrocytes are affected in both schizophre-
nia and BPA exposure. In a schizophrenia animal model,
leukemia inhibitory factor (LIF)–treated rats have de-
creased motor activity and prepulse inhibition in the
acoustic startle test at adolescence, an abnormality that
may involve glial cells.118 LIF is a IL-6 cytokine, a class
that is elevated in schizophrenia, Alzheimer’s disease
(AD), and autoimmune diseases.118–122 When astrocyte
progenitor cells are exposed to LIF, then treated with
BPA, the expression of glial fibrillary acid protein
(GFAP) is enhanced.123 BPA treatment of LIF-stimulated
cells enhances GFAP expression through activation of ex-
cessive ‘‘signal transducer and activator of transcription 3’’
(STAT3) and ‘‘mothers against decapentaplegic homolog
1’’ (Smad1).124 This effect on GFAP may be due to the

‘‘cross-talk’’ reported between STAT3 and estrogen recep-
tor (ER) signaling.125 LIF, like BPA, also induces STAT3
phosphorylation and increasesGFAP.118 A cross-talk also
exists between Smad proteins and MAPKs (mentioned
above under the section on cell growth) that has been
linked with the pathogenesis of AD.126

The increase of GFAP expression by BPA is important
to schizophrenia because treatment of rat brain with the
NMDA antagonist, MK-801, also increases GFAP-
positive astroglial cells that are believed to play a role in
schizophrenia pathology. This increase in GFAP-positive
astroglial cells, a reaction that is suppressed by the anti-
psychotic medication clozapine, probably represents glial
cell activation in response to glutamate toxicity that acti-
vates peptidase activity.127

Activations of astrocytes in schizophrenia and AD are
also reflected by subpopulations of patients with increased
S100B serum concentrations.128,129 S100B is an astrocytic
protein that regulates calcium homeostasis. BPA activates
mouse astrocytes as shown by BPA induction of stellate
morphology and increased GFAP.102 Nonylphenol, an-
other commercial chemical identified as an endocrine
disruptor, also increases GFAP in cultured rat hypotha-
lamic cells.130 Although BPA’s effect on S100B expression
has not been reported, BPA does impact calcium homeo-
stasis through other pathways discussed below.

Abnormalities of Hormone Function

Estrogen. BPA is an estrogenic endocrine disruptor,
and BPA exposure causes estrogen-associated changes
relevant to schizophrenia. As described above, various
lines of evidence support a role of estrogen or estro-
gen-related abnormalities in schizophrenia. ERs may
also play a role in neuropsychiatric disorders as ERalpha
mRNA is decreased in the amygdala, frontal cortex, and
hippocampus in major psychiatric illnesses.93,131,132

The human forebrain has discrete ERalpha mRNA ex-
pression,133 and synapses in the hippocampus depend
on estrogen.134,135 Estrogen also regulates the growth-
associated protein, GAP-43, in the rat hypothalamus,
and GAP-43 is abnormal in schizophrenia.136–138

In rodent models, the effect of BPA exposure on ERs is
often complex and sex related. Neonatal and pubertal ex-
posure to BPA alters or disrupts hypothalamic ERalpha
transcription in a sexually dimorphic manner.82,85 Neo-
natal BPA exposure of female animals causes increases
of ERalpha but not ERbeta in the medial basal hypothal-
amus but not in the anterior pituitary.84 In males, BPA
increases both ERalplha and ERbeta in the pituitary but
not in the hypothalamus.84 BPA treatment causes
delayed and sustained hyperprolactinemia in both sexes
of offspring,84 which could explain some portion of these
changes in ERs.
Another study of sexually dimorphic responses to BPA

examined the effects in rats of postnatal BPA exposure on
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hypothalamic ERs by the time of puberty.85 By postnatal
day 37, BPA exposure increased ER-labeled neurons in
the ventromedial nucleus of the hypothalamus of males
compared with exposed females and control groups. But
by postnatal day 90, BPA-exposed females had higher
ER-labeled neurons in the ventromedial nucleus and me-
dial preoptic area of the hypothalamus. Other research
found that in postnatally treated rats, BPA ‘‘defemi-
nized’’ (a word commonly used in the literature to de-
scribe the estrogenic effects of endocrine disruptors)
double-labeled cells of ERalpha and TH in the medial re-
gion of the anteroventral periventricular nucleus (AVPV)
of the hypothalamus.68

Progesterone. As with estrogen, PG changes from BPA
exposure could be important to schizophrenia pathogen-
esis despite the lack of association of PG with symptom
severity or stress in males.139,140 Although PG’s link with
schizophrenia may be less direct than that of estrogen,
endocrine disruption of PG could be involved in schizo-
phrenia through PG’s effects on neurosteroids, especially
allopregnanolone, as discussed above. Other involvement
of PG in schizophrenia could occur through augmenta-
tion of estrogen. For example, estrogen or estrogen plus
PG protects against 8-hydroxy-2-dipropylaminotetralin–
induced disruption of prepulse inhibition of acoustic star-
tle, an animalmodel of schizophrenia.20 Estrogen and PG
also restore TH innervation following reductions in fiber
density in the dorsolateral prefrontal cortex in ovariecto-
mized female macaque monkeys,141 and subtle ‘‘miswir-
ings’’ of TH-immunoreactive varicose fibers in the
cingulate gyrus have been reported in schizophrenia.142

PG with estrogen also augments DA D5 receptor expres-
sion in certain hypothalamic neurons.143 D5 receptors are
D1 like, and decreases in D1-like receptors are associated
with schizophrenia.143

Reports of PG changes from BPA exposure mostly
concern the effects on hypothalamic PG receptors. For
the following discussion, the effects of other EDCs on
PG have been added for additional detail. The informa-
tion reflects a sexually dimorphic variation of EDCs on
PG expression that would, like with estrogen, have rele-
vance to sexually dimorphic abnormalities. Perinatal ex-
posure of rats to diisononyl phthalate downregulates
hypothalamic PG receptors in females but not inmales.144

Perinatal exposure to the phytoestrogen, genistein, also
reduces PG levels in mature females but not in males.145

BPA injection of only female rats causes dose-
dependent increases in PG receptor cells in the preoptic
and ventromedial areas of the hypothalamus.146,147 BPA
also increases PG receptor mRNA in the frontal cortex of
ovariectomized female rats.148

Luteinizing Hormone and Testosterone. Schizophrenia
and BPA exposure both have mostly negative effects
on luteinizing hormone (LH) and testosterone (T). Al-

though women with schizophrenia treated with conven-
tional and atypical antipsychotic medications have low
levels of estrogen and LH due to medication effects on
prolactin, the low estrogen and LH are not always asso-
ciated with hyperprolactinemia.18 In chronic schizophre-
nia, reductions of basal LH have been reported.149 LH
levels in male suicide attempters have been foundmargin-
ally elevated, but T levels were decreased, and the lowest
T levels were in the subgroup with schizophrenia.150

One study examined the effects of BPA exposure on
LH and T when exposure occurred during the postnatal
period in rats.67 BPA exposure suppressed serum LH and
T and decreased LHbeta and ERbeta pituitary mRNA.
Treatment of adult Leydig cells also decreased the ste-
roidogenic enzyme, 17alpha-hydroxylase/17-20 lyase.
Another portion of the same study found decreased T
in the testicular interstitial fluid of adult offspring
from BPA-exposed pregnant and nursing dams. Because
rats exposed to BPA develop sustained hyperprolacteni-
mia,84 the reduced LH possibly results from its suppres-
sion by prolactin like in other species.151

Somatostatin. The literature concerning somatostatin
in both BPA exposure and schizophrenia is limited but
specific. One study of schizophrenia found altered
somatostatin/neuropepetide Y-containing GABA neu-
rons and GABA(A) receptors.152 BPA exposure of rats
causes layer V of the frontoparietal cortex to have de-
creased somatostatin receptor subtype 3 mRNA espe-
cially in the presence of GABA(A) subunits alpha
(1,5).153 The estrogen-like effects of BPA are also pro-
moted by somatostatin receptor subtype 2 alpha in asso-
ciation with the GABA(A) receptor.154

Oxytocin. Oxytocin is implicated in animal models of
schizophrenia, and central oxytocin function is affected
by BPA exposure. In an animal model of schizophrenia,
prenatally stressed rats exhibit social withdrawal similar
to schizophrenia that is reversible with oxytocin admin-
istration.155 Stressed male rats have less oxytocin mRNA
in the paraventricular nucleus and increased oxytocin re-
ceptor binding in the central amygdala.155 Other studies
have also found that the central oxytocinergic system
may be responsible for social impairments in schizophre-
nia.156 Reduced oxytocin receptors downregulate reelin
that may contribute to social behaviors of schizophrenia
and autism.157 Oral BPA exposure reduces certain mater-
nal behaviors such as licking-grooming and arched back
posture related to oxytocin.158 These effects are likely re-
lated to BPA’s effect on estrogen-inducible central
oxytocin receptors.158

Corticotropin-Releasing Hormone. Schizophrenia and
BPA may be related through effects on corticotropin-
releasing hormone (CRH) and the bed nucleus of the
stria terminalis (BST). This information highlights the
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sexually dimorphic effects of BPA previously mentioned.
Alterations of the BST and/or CRH neurons may be in-
volved in schizophrenia. In rat models of schizophrenia,
rats with brain lesions to induce deficits in prepulse inhi-
bition of the startle reflex, blood perfusion is increased in
several brain areas including the BST.159 In both rats and
mice, CRH reduces prepulse inhibition associated with
schizophrenia.160,161 Upregulation of CRH by lipopoly-
saccharide injection in pregnant rats indicates activation
of the fetal stress axis described above as probably in-
volved in schizophrenia.162

One study examined CRH in the brains of offspring of
rats prenatally and perinatally exposed to BPA.163 Ordi-
narily, this study reported there are more CRH neurons
in the preoptic area and BST in females than in males.
After BPA exposure, no change in neurons was observed
in the preoptic area, but CRH neurons in the BST of
males increased while they decreased in females resulting
in an equalization of CRH neurons in the BST. The
researchers concluded the BST is more sensitive to endo-
crine disruption than the preoptic area regardless of sex.

Growth Hormone. GH regulation appears abnormal in
schizophrenia although the changes are subtle and influ-
enced by several neurotransmitters.1

In ovine pituitary cells, BPA suppresses basal and
growthhormone–releasinghormone(GHRH)–stimulated
GH release.164 This study also demonstrated that BPA
reduces cellular GH content and cell number, suppresses
GHmRNA, and eliminates GHRH-induced increases in
cAMP and Ca2þ.

Abnormalities of Neurotransmitters and Receptors

TH, DA, and Related Effects. Several studies have inves-
tigated the effects of BPA exposure on TH and DA, and
research on TH and DA in schizophrenia is extensive.
There is a well-known association of enhanced DA D2
function in schizophrenia, and theD1A receptor function
may also be abnormal in schizophrenia.165 The level of
expression of DA transporter is possibly an illness trait
in schizophrenia,166 and mouse models of schizophrenia
have reduced expression of DA transporter.167 Increased
transcription of TH in the substantia nigra is also found
in schizophrenia,168 and transgenic mice used as animal
models of schizophrenia have reduced density and
numbers of TH neurons in the substantia nigra pars
compacta.169

Much of the BPA literature concerning TH continues
to emphasize the recurring theme of prenatal BPA caus-
ing sexual dimorphisms. In mice, populations of TH neu-
rons in the rostral periventricular preoptic area are
normally sexually dimorphic.170 Mice exposed to BPA
from gestation through lactation lose this sexual dimor-
phism due to fewer TH neurons in the exposed brains.170

Other sexually dimorphic responses are observed in the

substantia nigra in which BPA increases TH neurons
in female but not male rats.171 Likewise, in the medial
AVPV of the hypothalamus, double-labeled cells for
ERalpha and TH are defeminized in number in postnatal
rats treated with BPA.68 These researchers noted that
females normally would have 3 times as many of these
double-labeled cells than were observed.
Other studies relevant to schizophrenia examined the

effect of BPA on TH and DA functions in the developing
animal brain. Some studies focus on how BPA exposure
causes hyperactivity. In the midbrain of rats injected with
BPA at 5 days of age, DA transporter gene expression
increases and is associated with hyperactivity.172 These
rats were additionally assessed following treatment in
the midbrain at 5 days of age with other synthetic endo-
crine disruptors including dibutylphthalate (DBP), dicy-
clohexylphthalate (DCHP), and diethylhexylphthalate
(DEHP). These substances reduced DA receptor D1A.
Similar treatment with the endocrine disruptors, nonyl-
phenol and DBP, increased DA D2. Another study
that administered BPA to 5-day-old rats correlated the
onset of hyperactivity at 4–5 weeks of age with increased
DA D4 receptor expression and reduced DA transporter
expression in the midbrain.173 One study of only male
mice exposed to BPA prenatally and neonatally did
not find changes in DA transporter,174 although a similar
study found BPA increased TH and DA transporter
immunoreactivity in the limbic area.175

The effects of BPA on DA have been observed in other
experimental settings. BPA rapidly releases DA from
PC12 cells,176 and treatment of mouse astrocyte/neuronal
cells with BPA enhances Ca2þ response to DA.102 In
males exposed prenatally and neonatally to BPA, DA
D1 receptor mRNA is upregulated in the whole brain.174

BPA also attenuates DA D3 receptor–mediated
G-protein activation by 7-OH-DPAT in themouse limbic
forebrain.177 In this case, BPA acts more as an antipsy-
chotic,178 but attenuation of prenatal DA D3 may have
entirely different effects than enhanced D3 activation in
adult life. A possible difference between effects on D3 in
prenatal versus adult life is supported by the finding that
D3 appears early in murine development and is believed
to have an important role in prenatal development.179

D3R-deficient mice also have decreased TH, increased
DA transporter mRNAs, and increased DA reuptake,180

which parallel the effects of BPA. Brain-derived neuro-
trophic factor (BDNF), discussed below, controls the ex-
pression of DA D3 receptor, and a link has been
proposed between BDNF and DA neurotransmission
in schizophrenia.181

Peroxisome Proliferator–Activated Receptor gamma. Si-
milarities exist between peroxisome proliferator–activated
receptor gamma (PPAR-gamma) in schizophrenia and the
effect of endocrine disruption on PPAR-gamma. Several
lines of evidence show antagonism of PPAR-gamma

262

J. S. Brown Jr.



would be detrimental for normal brain functioning.
PPAR-gamma agonists regulate brain inflammation and
microglial activation,182 regulate neural stem-cell prolifer-
ation and differentiation,183 confer neuroprotection in
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-inducedPar-
kinson’s disease,184 protect cerebellar cells from apoptosis
by reducing the expression of nitric oxide synthase,185,186

increase glucose utilization in the rat cortex and reduce
oxidative damage from stress,187 reduce the risk of
AD,188 and are useful in treating multiple sclerosis
(MS) and other neurodegenerative disorders.189,190

PPAR-gamma antagonism enhances behavioral sensiti-
zation to methamphetamine in mice.191 Polymorphism
of the PPAR-gamma gene appears to impact the suscep-
tibility to both younger age and late-onset AD.192,193

No studies have shown whether BPA interacts with
PPAR-gamma but a product likely formed endogenously
from BPA does. Bisphenol A diglycidyl ether (BADGE),
formed by a coreaction of BPA with epichlorohydrin, is
a PPAR-gamma antagonist and endocrine disruptor used
in liquid epoxy resins.194 BADGE has potential as an an-
titumor drug that induces apoptosis through Bax,
caspases-2 and -8, and stimulation of mitochondrial
release of apoptosis-inducing factor.195 BADGE may
form BPA endogenously as shown in BADGE-exposed
workers.196 BADGE induces several cellular reactions
through antagonism of PPAR-gamma including disrup-
tion of microtubule networks,197 increase of the severity
and duration of experimental allergic encephalomyelitis
which is a Th1 cell–mediated autoimmune disease model
of MS,198,199 induction of cell death in astrocytomas,200

and blockage of 15-dioxy-PGJ(2)–induced neuronal dif-
ferentiation of rat embryonic midbrain cells.201

Norepinephrine Transporter. An indirect link may be
found between schizophrenia and BPA through the nor-
epinephrine transporter (NT) gene. Although genetic
linkage studies have not demonstrated a clear relation-
ship between schizophrenia and NT, the repression of
a polymorphism of the NT gene is associated with
ADHD.202 ADHD is a risk factor for velocardiofacial
syndrome (22q11.2 deletion syndrome), which carries
a risk of psychosis and mania.203 The effect of BPA on
NT function has not been studied in animal brains,
but BPA inhibits NT function in cultured bovine adrenal
medullary cells.204

Choline Acetyltransferase. Choline acetyltransferase
(ChAt) is reduced in the nucleus accumbens and pontine
tegmentum in schizophrenia and correlates with cogni-
tive measures of the individuals.205 BPA induces memory
impairment and dramatic reductions of ChAt-like immu-
noreactivity in the hippocampus of mice exposed prena-
tally and perinatally.206 ChAt is also reduced by neonatal
exposure to the endocrine disruptor, PCB, which induces
hypothyroidism that causes reduced ChAt.207

GABA and Neurosteroids. The importance of neuroste-
roids and GABA(A) receptors in schizophrenia was dis-
cussed above. Additional evidence indicates that BPA’s
effects on GABA and neurosteroids are similar in schizo-
phrenia. As previously described, endogenous neuroste-
roids modulate inhibitory transmission by GABA(A)
receptors,208 and abnormal steroid regulation of
GABA is implicated in several psychiatric diseases in-
cluding schizophrenia.48

BPA influences hippocampal neurosteroid synthesis
and completely suppresses the estradiol enhancement
of long-term potentiation through a mechanism involv-
ing steroidogenic proteins and ERalpha.209 BPA also
increases GABA-induced currents that are decreased
by GABA(A) receptor modulators in dissociated rat
CA3 pyramidal neurons.210 BPA further reduces the am-
plitude of GABAergic miniature inhibitory postsynaptic
currents (GabaMIPC).210 Reduced GabaMIPCs are as-
sociated with seizure-prone rats in which there are abnor-
mal GABA subunit expressions compared with normal
rats.208 Reduced GabaMIPCs are also associated with
alterations of the growth factor, neuregulin1, which
may contribute to schizophrenia and epilepsy.211

BPA’s GABA effects could relate to the known relation-
ship between epilepsy, infantile spasms, and schizophre-
nia that is based on the effects of neurosteroids and
GABA(A) receptors.212

Abnormalities of Proteins and Factors

Sonic Hedgehog. The signaling molecule and dopami-
nergic neuron development factor, sonic hedgehog
(SH), is involved in embryonic development of the brain,
eyes, limbs, and foregut. A relationship between schizo-
phrenia and BPA disruption of SH is suggested because
disruption of SH is associated with developmental disor-
ders of the brain, especially holoprosencephaly (HPE).213

HPE is a brain malformation associated with facial and
cerebral malformations, developmental delay, epilepsy,
and endocrine abnormalities.214 HPE is believed to result
from combined environmental and genetic factors; one
gene in particular being Zic2.214 The Zic2 knockdown
mouse is an animal model for HPE. The Zic2kd/þmouse
is an animal model for diseases of sensorimotor gating
abnormalities which would include schizophrenia.215

Chronic and prenatal BPA exposures both produce a sig-
nificant decrease and disruption of SH.175

Glial Cell Line–Derived Neurotrophic Factor. Glial cell
line–derived neurotrophic factor (GDNF) may play
a role in schizophrenia as certain GDNF alleles appear
toprotect against schizophrenia.216GDNF, adopaminer-
gic neuron development factor, protects DA neurons
from toxic effects of amphetamine in animal models.217

Chronic and prenatal BPA exposures both significantly
decrease GDNF.175
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Galanin. Parallel changes of the neuropeptide, galanin,
can be found in schizophrenia and BPA exposure.
Galanin has modulating and inhibitory effects on seroto-
nergic and dopaminergic neurotransmission, respec-
tively.218,219 Decreased galanin-R2 may be involved in
schizophrenia as galanin reduces glutamate toxicity
and modulates neurotoxicity in hippocampal cells.220

Galanin is upregulated in Alzheimer’s,221 and galanin-
R1 and -R2 inhibit kindling epileptogenesis. Galanin re-
ceptor 2 null mutant mice also exhibit an anxiogenic-like
phenotype,222,223 which parallels the effects of BPA,
DBP, DCHP, and DEHP injection in the midbrain of
rats at 5 days of age that reduces gene expression of gal-
anin receptor 2.172

[(35)S]GTP-gamma-S. Ketamine and PCP, often
used as selective NMDA receptor antagonists in animal
models of schizophrenia, increase GTPgamma-S bind-
ing, a G-protein–activating protein.224,225 DA induction
of [(35))S]GTP-gamma-S is markedly stimulated by BPA
in prenatally and neonatally exposed male mice.174

Calbindin. The effect of BPA on calbindin is another
example of BPA’s disruption of sexual dimorphisms.
These dimorphic effects can be directly compared with
schizophrenia. First, in an animal model of schizophrenia
using female rats, calbindin immunoreactive cells are de-
creased in isolation-reared rats, an alteration that resem-
bles neuronal abnormalities in schizophrenia.226 Second,
a case-control study of schizophrenic and normal brains
found reduced densities of calbindin-immunoreactive
interneurons in the planum temporale. That study used
brains from both male and female subjects, and the inves-
tigators noted that mean calbindin cell size was increased
in female and decreased in male patients.227

Postnatal exposure of rats to BPA has sexually dimor-
phic effects and increases the number of calbindin neu-
rons in the sexually dimorphic nucleus (SDN) of the
preoptic area of male rats compared with females used
as controls.32 The authors of that study referred to this
BPA response as ‘‘hypermasculinizing’’ the number of
neurons as if the SDN had been exposed to estrogen
(in fetal male mammals, T activates estradiol that mascu-
linizes the male brain). They further observed that no
change occurred in the volume of the brain area. Their
conclusion was that ‘‘lack of a morphometric disruption
does not necessarily indicate lack of functional disrup-
tion.’’ This same study found that genistein, but not
BPA, ‘‘demasculinized’’ the AVPV volume demonstrat-
ing differential prenatal effects of 2 endocrine disruptors
on different parts of the hypothalamus.

Retinoids, Neurogranin, and Thyroid Proteins. Reti-
noids, thyroid proteins, and neurogranin are combined
in this discussion as they are best described together
in their relation to both schizophrenia and BPA. In

schizophrenia, evidence supports a role of retinoids.
RARalplha is increased 2-fold in schizophrenia,228 and
retinoid X receptor gamma1 is known to modulate
DA-mediated processes.229 There is also evidence of ret-
inoid and thyroid hormone gene interactions with the en-
vironment in schizophrenia.230 Thyroid hormones
regulate both neurogranin and retinoids, and thyroid
hormones also regulate neuronal calmodulin-Ca(2þ)
downstream of the NMDA receptor.231 In schizophrenia,
the prefrontal cortex has reduced neurogranin in area 9
and 32,232 and there is an association of the neurogranin
gene in males with schizophrenia.231 The schizophrenia
candidate gene,HOPA, codes amember of thyroid recep-
tor coactivator protein (TRAP) that is associated with
psychosis, autism, and hypothyroidism.233–235 The asso-
ciation of hypothyroidism induced by PCB and its effect
on ChAt and potential relationship with schizophrenia
was discussed above.
BPA exposure impacts the same systems. BPA

increases RARalpha and retinoid X receptor alpha
mRNA expression in the cerebrum and cerebellum of
male and female mouse embryos.76 In Xenopus (tadpole)
tail culture, BPA upregulates thyroid hormone receptor
alpha and beta and downregulates RXRgamma.236

When rats are fed BPA during pregnancy and lactation,
total thyroid hormone T4 increases in the dentate gyrus of
offspring without effect on thyroid-stimulating hor-
mone.237 These changes are accompanied by upregulation
of the thyroid hormone-response gene that encodes RC3/
neurogranin.237 Another study of perinatal BPA expo-
sure found RC3/neurogranin expression was unchanged
by BPA administration, but steroid receptor coactivator-
1 was upregulated in the hippocampus of male pups.238 In
that study, exposed dams developed temporary hypothy-
roidism, but male pups developed transient hyperthyroid-
ism followed by hypothyroidism. Thyroid hormone
receptor alpha and beta were not changed. BPA also
impairs thyroid function by inhibiting T3 binding to
the thyroid receptor.239 In uterine tissue, BPA activates
ER transcription in association with TRAP220.240

Protein Disulfide Isomerase. The effects of BPA expo-
sure on protein disulfide isomerase (PDI) are more rele-
vant to neurodegenerative disorders in general than
specifically to schizophrenia. PDI provides neuroprotec-
tion by facilitating protein folding and preventing mis-
folding.241 PDI is believed to prevent nitrosative stress
that leads to protein misfolding and neuronal cell death
that causes degenerative brain disorders.241 Several neu-
rodegenerative disorders are linked to protein misfolding
including dementia with Lewy bodies.242 BPA binds to
PDI and inhibits its activity.243 The deactivation of
PDI may be responsible for various effects of BPA,243

and one could speculate that inhibition of PDI
by BPA would increase the risk of neurodegenerative
disorders.
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Brain-Derived Neurotrophic Factor. A relationship be-
tween BDNF in schizophrenia and BPA may be found
through BDNF involvement with DA, glutamatergic,
and c-fos functions. As mentioned previously, BDNF
and DA neurotransmission appear linked in schizophre-
nia.181 Increased BDNF associated with hyperactive glu-
tamatergic neurons has been found in cerebellar granule
cells in schizophrenia.244 Another study of schizophrenia
found reduced plasma levels of BDNF in first-episode
psychosis compared with normal.245 In mouse cerebellar
granule cells, BPA decreases induction of both BDNF
and c-fos mRNA.246 These results are difficult to in-
terpret as induction of c-fos may be altered in similar
directions by amphetamine, PCP, and antipsychotic
treatment depending on brain region, dose, timing,
and environment.247–250

cAMP-Responsive Element-Binding Protein and Mitogen-
Activated Protein. The discussion of abnormalities in
synaptogenesis discussed above described the possible
role of MAPK in BPA impairment of estrogen-induced
hippocampal synaptogenesis.109 Schizophrenia and
BPA exposure may be further related through MAPK
by BPA’s effects on the transcription factor cAMP-
responsive element-binding protein (CREB). CREB
stimulates the expression of several genes and influences
signal transduction of DA and serotonin receptor sub-
types. Novel variants of CREB genes have been associ-
ated with schizophrenia.251 Increased CREB-stained
cells have been found in the amygdalar nuclei of subjects
who died by suicide252 and has been found in the cerebel-
lar vermis in schizophrenia.253

In pancreatic islet cells, low-dose BPA activates CREB
through a nonclassical ER-related mechanism.254 There
is some controversy as to whether and how BPA influen-
ces mitogen-activated protein (MAP) although CREB
may be a downstream target ofMAP.253 One study found
only the brominated form of BPA, tetrabromobisphenol
A (TBBPA), influences MAPKs in a cell-specific and
dose-dependent manner.255 Another study found that
in cultured rat hypothalamic cells, BPA increases both
MAP2 and synapsin I.130 Synapsin I has not been asso-
ciated with schizophrenia, and generally synapsin reduc-
tions instead of increases are found in schizophrenia.256

However, reductions in synapsin are associated with de-
velopmental thyroid insufficiency. Thyroid insufficiency
may contribute to persistent behavioral abnormalities257

and was mentioned above as possibly related to other ab-
normalities of endocrine disruption.

Epidermal Growth Factor. What effect BPA may di-
rectly have on epidermal growth factor (EGF) is un-
known, but a comparison with schizophrenia is made
below by using the effects of the endocrine disruptor,
4-tert-octyphenol (OP) on EGF. EGF and EGF receptor
abnormalities are reported in schizophrenia, and EGF

administered to rats causes abnormalities of prepulse in-
hibition of acoustic startle.258 The age of onset in males
with schizophrenia may be related to a polymorphism of
the EGF gene.259

Embryonic ERbeta modulates EGF that influences
calretinin-immunoreactive GABEergic interneurons
and neuronal migration.260 This would suggest that es-
trogenic disruption involving ERbeta would alter
EGF. OP increases estrogen-responsive gene expression
including that of EGF.261 One study of calretinin neurons
in the cerebral cortex of neonatally and perinatally BPA–
exposed mice did not find any differences between ex-
posed and controls.171

Abnormalities of Miscellaneous Processes and Substances

Methylation. There is evidence that hypomethylation
occurs in both schizophrenia and BPA exposure. DNA
methylation in general may influence gene-environment
interactions associated with schizophrenia.262 Hypome-
thylation in particular has been proposed as an epigenetic
modification involved in schizophrenia.263,264 BPA hypo-
methylates DNAby decreasing cytosine-guanine dinucle-
otide methylation (CpG) that changes the coat color of
mice offspring.265 CpG methylation and hypomethyla-
tion are found in schizophrenia,266–268 AD,269 Hunting-
ton disease,270 and bipolar disorder.271

Calcium Signaling. Calcium signaling is a broad field
with numerous possible avenues of involvement in schizo-
phreniaandBPA.The followingdiscussionhighlightspar-
ticular involvements of calcium signaling in schizophrenia
and certain findings of BPA’s effects on calcium signaling.
In schizophrenia, Ca2þ abnormalities may be the link
throughwhich elevations of calcyonandneuronal calcium
sensor-1 protein influence the development of schizophre-
nia.272–274 The calcium sensor protein caldendrin, with
an important role in brain Ca2þ signaling, is reduced
in cortical neurons in chronic schizophrenia.275,276

BPA enhances Ca2þ signaling in NMDA-responsive
neurons through a pathway involvingERs.277 In astrocyte/
neuron cocultures, BPA also increases Ca2þ response to
DA.102One study suggestedBPAhas a role in neurodegen-
erative disorders based on BPA’s purported Ca2þ-based
potentiation of 1-methyl-4-phenylpyridinium ion–induced
hydroxyl radical (�OH) in rat striatum.278 The previously
mentionedbrominatedformofBPA,TBBPA,alsodisrupts
calcium homeostasis.279

Glutathione Redox. Abnormalities of glutathione-
related functions can be found in both schizophrenia
and BPA exposure. There is evidence of both altered an-
tioxidant status in schizophrenia280 and a decreased glu-
tathione to glutathione disulfide ratio (GSH-to-GSSG)
in schizophrenia compared with controls.281 Glutathione
deficit may cause hypofunction of NMDA receptors and
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be associated with cognitive deficits in schizophre-
nia.282,283Male mice injected with BPA develop increased
GSSG in the brain with a decreased GSH-to-GSSG
ratio.284

Thiobarbituric Acid–Reactive Substances. Increased thi-
obarbituric acid–reactive substances (TBARS) are found
in never-medicated individuals with schizophrenia and
correlate with symptom severity.285 BPA exposure of
mice during fetal life and infancy results in increased
TBARS in the brain, kidney, and testis.286

Abnormalities of the Immune System

There are parallels between immunological hypotheses in
schizophrenia and BPA exposure. Immune hypotheses
have been proposed for schizophrenia,287–289 and genetic
studies have identified IL-2 and IL-4 polymorphisms as
candidate genes in schizophrenia.290 A correlation be-
tween schizophrenia and autoimmune diseases is well
known.291

Several studies have demonstrated the immunological
effects of BPA exposure in animals. BPA increases anti-
body response to protein antigens in vivo292 and enhan-
ces autoantibody production by B1 cells that may
influence the development of autoimmune diseases.293

Th1 greater than Th2 cytokine induction is nearly univer-
sal in immunological studies of mice exposed to BPA
tending to support an autoimmune response.294–298

One study found BPA exposure suppressed the Th-2
(IL-4) response.299 Another found that BPA impairs lym-
phocyte proliferation.295

A shift to Th2 with reduced Th1 is usually observed in
schizophrenia,291 which is the reverse of BPA exposure
although interferon-gamma production has also been
reported as either increased or decreased by BPA expo-
sure.295,299 However, the maternal immune environment
maybemore important to the pathogenesis of schizophre-
nia through an immune response involving IL-6.300 In
the section above concerning astrocytes, the stimulating
effect of BPA on the effects of IL-6 (LIF) was discussed.
The stimulation of LIF by BPA would afford one path-
way through which BPA could alter the maternal im-
mune environment. Another pathway would involve
the sexual dimorphism of the immune function in
which androgens and estrogens influence the Th1/Th2
balance.301–304

BPA also enhances IL-4 production by antigen-primed
CD4þ T cells that is mediated by a Ca2þ/calcineurin/
nuclear factor-AT signaling pathway.299 Schizophrenia
research has found a genetic association between altered
calcineurin signaling with schizophrenia.305 The same re-
search identified the early growth-responsive-3 (EGR-3)
gene as the possible susceptibility gene. EGR3 is a novel
estrogen-responsive gene,306 which suggests vulnerability
to disruption by estrogenic compounds like BPA.

Abnormalities of Sexual Development

The effect of BPA on sexual dimorphisms has been a re-
current theme in this discussion. Sexual differentiation of
the brain, sexual dimorphism, and the vulnerability of
schizophrenia have been linked in previous studies.4

One study described these so-called ‘‘gender effects in
schizophrenia’’ as ‘‘the most robust phenomena of the
disease, yet they have defied explanation..’’1 The effect
of BPA and other endocrine disruptors on sexual devel-
opment in animals has been reported by numerous inves-
tigators. Some studies have focused on the effects on
actual behaviors whereas others have evaluated the effect
on the sexual differentiation of brains in animals. Many
of the latter findings have been discussed above.
The sensitivity of the developing brain to the timing,

duration, and dose of endocrine influences has been pre-
viously mentioned, and a difference in timing by 1 or 2
days of exposure has been described as causing different
outcomes of brain development.32 The correct timing and
duration of these influences are vital for normal develop-
ment in mammals as female brain and anatomy will de-
velop without aromatization of testicular T to estradiol
that induces male brain development.68

Several examples of BPA-induced sexually dimorphic
behavioral changes have been reported that can be asso-
ciated with disrupted brain development. BPA eliminates
the normally sexually dimorphic differences in mouse
sexual behaviors in open-field tests, indicating disruption
of brain development.170 Sexual behaviors of offspring of
pregnant rats exposed during pregnancy and lactation to
BPA are also changed. Female behaviors are increased
whereas male behaviors are decreased.307 The opposite
effect for females, that is, defeminization of some aspects
of behavior, was observed in another study.308 Male off-
spring of rats exposed from pregnancy through lactation
with BPA exhibit feminized levels of impulsive behav-
ior.309 Female offspring of rats exposed from pregnancy
through lactation develop altered estrous cycles including
persistent estrous.310

Abnormalities of Behavior or Physiological Response

Fear. Symptoms of schizophrenia include paranoia,
and paranoid schizophrenia is one type of schizophre-
nia.311 Male offspring of pregnant rats exposed to prena-
tal and perinatal BPA exhibit changes in normal
responses to fear-inducing stimuli.312 These investigators
suggested BPA ‘‘may render male offspring exceedingly
vulnerable to intolerable levels of fear.’’

Pain Sensation. Changes of pain sensitivity are ob-
served in both schizophrenia and BPA exposure. In
schizophrenia, pain sensitivity appears altered in some
patients and in experimental animals treated with sub-
chronic ketamine.224 Changes in pain sensitivity in ani-
mal models of schizophrenia result from modifications
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of the mu opioid receptor.224 There is also a suggestion
that abnormalities of opiate-DA interactions are in-
volved in schizophrenia.313

Pre- and perinatal BPA administration to pregnant
rats alters pain perception in male and female off-
spring.314 Specifically, BPA increases flexing and licking
hyperalgesia, the licking more prominent in females sug-
gestive of a dimorphic effect. The researchers concluded
these responses likely resulted from BPA’s estrogen-like
effects on supraspinal neural or opioid effects. Postnatal
BPA, however, decreased paw-jerk frequency in both
males and females suggesting a greater tolerance of pain.

Abnormalities of Other Behaviors

The following behavioral changes caused by BPA in ani-
mals are not specific to schizophrenia but are frequently
observed in the clinical setting. Socially important behav-
iors with parallels in endocrine disruption research in-
clude ‘‘neophobia,’’ or the aversion to new or novel
stimuli, changes in exploratory behaviors, aggression,
and drug- or reward-seeking behaviors. Some of the
behaviors show sexual dimorphisms like others discussed
above. For example, female but not male rats prenatally
and/or perinatally exposed to BPA exhibit increased neo-
phobia.309 Female Mongolian gerbils exposed to varying
levels of BPA display decreased exploratory behaviors,315

and perinatal BPA exposure of mice results in the de-
crease or elimination of sexual differences exhibited by
mice in exploration and emotional response tests.316

Male rat offspring exposed prenatally to BPA exhibit
greater aggression before but not after puberty.317

Sex-related differences are also observed in the behav-
ioral effects of prenatal and/or perinatal BPA exposure
that impacts the rewarding or activating effects of drugs
onoffspring.Male rats prenatally andperinatally exposed
to BPA display less drug-induced activity in response to
amphetamine challenge than controls.309 BPA exposure
of femalemice exposedprenatally eliminates expectedam-
phetamine-induced place conditioning,318 but in male
mouse offspring BPA enhances methamphetamine-
induced place preference174 that is accompanied by in-
creased methamphetamine-induced hyperlocomotion.
BPA also enhances the rewarding effect of morphine

indicated by altered place preference inmice whosemoth-
ers were exposed to BPA in the prenatal or neonatal
stage.102,319 Increased place preference for morphine in
BPA-exposed animals was accompanied by increased
morphine-induced hyperlocomotion.319

Similar changes of place preference have been applied
as models of schizophrenia. One study used place prefer-
ence as a model for the reduction in reward-seeking
behaviors observed in anhedonia or negative symptoms
of schizophrenia.320 Rats treated with EGF during the
neonatal period have higher conditioned place preference
and exhibit abnormalities in prepulse inhibition.258 Neo-

natal hippocampal lesions in rats result in abnormalities
of amphetamine-induced place preference,320 and PCP
treatment of adult rats but not neonatal rats disturbs
place preference.321

Summary of the Sexually Dimorphic Effects of BPA
Relevant to Schizophrenia

Table 2 lists the sexually dimorphic effects of BPA rele-
vant to schizophrenia that were discussed in preceding
sections. Sexual dimorphisms that were discussed above
and are specific to schizophrenia include the ‘‘feminized’’
finger-to-digit ratio, and sexually dimorphic calbindin
neurons in schizophrenia which are directly comparable
to the effects of BPA. Table 2 does not include literature
regarding the effects of other EDCs. Table 2 demon-
strates that endocrine disruption by BPA induces sexual
dimorphisms, and if sexual dimorphisms are related to
schizophrenia, there is evidence for BPA to be related
to schizophrenia through this mechanism.

Conclusions

Although the review above may have important implica-
tions for the current controversy over the toxicity and
permissible levels of human exposure to BPA, the focus
of this study has been whether endocrine disruption like
that from BPAmight be involved in schizophrenia. How-
ever, the current debate over the safety of human BPA
exposure has raised the question whether endocrine dis-
ruption increases the incidence of diseases such as autism
and ADHD, diseases that may have associated risk with
schizophrenia. For this reason, perhaps the current study
may apply to other diseases like autism and ADHD. Be-
cause schizophrenia epidemiology has similarities to that
of MS,322,323 the role of BPA in promoting autoimmune
reactions and repressing myelin basic protein described
above supports the addition of diseases like MS to the
list of diseases as possibly related to endocrine disruption.
The primary goal of the foregoing discussion was, how-
ever, to emphasize the several lines of evidence suggesting
a possible role of endocrine disruption in the pathogen-
esis of schizophrenia.

Table 2. Sexual Dimorphisms Induced by BPA

Locus coeruleus volume

Hypothalamic ERs

Hypothalamic PG receptors

Corticotropin-releasing factor neurons

TH neurons

Calbindin neurons

Pain perception

Sexual behaviors
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The author does not suggest that BPA is the only pur-
ported cause of endocrine disruption leading to schizo-
phrenia. The review above demonstrates that an
estrogen mimic or other endocrine signal from some
source in prenatal life could be reduced, delayed, in-
creased, or premature which disrupts brain development
so as to cause schizophrenia. The theory’s validity also
does not depend on whether experiments with BPA
and other EDCs have used environmentally significant
levels of exposure. The purpose of the review was to
show the similarities of endocrine disruption to schizo-
phrenia at whatever dose is necessary to induce disrup-
tion regardless of the specific agent involved.

The proposed theory is also not limited to suggesting
that only fetal or neonatal exposures to EDCs are psychi-
atrically pathogenic. BPA tissue levels, or exposures to
any other major EDCs, have not been studied in children
or adults with schizophrenia or other major mental ill-
nesses. It is possible that such studies could reveal previ-
ously unsuspected exposures or undiscovered metabolic
and/or other abnormalities that would render children
or adults with schizophrenia more susceptible to
EDCs. It is also possible that exposure of adults with
schizophrenia to EDCs could explain certain adverse
reactions to medications or disease states believed to
have been traits.

However, EDCs invented during the 20th century such
as BPA and other plastic-related endocrine disruptors
could not be directly related to the existence of schizo-
phrenia in centuries prior to the invention of plastics.
This does not mean such chemicals could not enhance
the disease’s prevalence or severity in the 21st century,
and this possibility should be ruled out before any final
policy is made about the safety of endocrine disruptors in
the environment. This is especially true now that endo-
crine disruptors have been shown to cause transgenera-
tional mutations that evolve new disease conditions
that perpetuate in future generations.324,325

There are several synthetic and naturally occurring en-
docrine disruptors that were not examined in detail in this
study. Many of these, such as cadmium and genistein,
have been in the human environment perhaps for thou-
sands of years. The human exposure to cadmium as an
environmental contaminant from coal burning326 and to-
bacco smoking327 probably increased with urbanization,
a risk factor often associated with schizophrenia.328 The
higher urban risk of schizophrenia has been attributed to
higher urban rates of infectious diseases, risk-prone ge-
netic populations, poor nutrition, and stress.329 Although
cadmium has never beenmentioned as a risk factor in this
context before, perhaps it should be included as it has
estrogenic-disrupting potential at low doses.330

More than one pathway may exist for endocrine dis-
ruption from infections, genetics, malnutrition, and
stress. The influence of maternal influenza on gender-
related birth defects has been mentioned previously,

and nutritional sources of endocrine disruptors include
modern chemicals like BPA and naturally occurring sub-
stances like genistein. Fetal injury from maternal influ-
enza could be enhanced in an endocrine-disrupted
fetus as perinatal exposure to low doses of the endocrine
disruptor, PCB-126, impairs maternal and neonatal im-
munity in a fashion similar to the immune effects induced
by perinatal exposure to DES that acts through estro-
genic mechanisms.331

Stress has been shown to alter the changes of sex-
related behaviors in mice that are influenced by intrauter-
ine positions.332 Studies have shown that gender-related
behaviors of both male and female mice are influenced
by intrauterine positions that cause variations in expo-
sure to estradiol and T.332,333 Prenatal stress can elimi-
nate these effects,332 acting as an endocrine disruptor
of the intrauterine hormonal state. In an endocrine dis-
ruptionmodel of schizophrenia, this would imply that the
maternal genetics of responding to stress influences the
prenatal risk factors of schizophrenia. The notion of ‘‘dis-
entangling’’ maternal genes from environmental risk fac-
tors for chronic diseases is not new334 and should be
considered for future genetic studies of schizophrenia.
Other assessments of schizophrenia that should be per-
formed based on the proposed model would be measures
of exposure to endocrine disruption or disruptors,
whether synthetic, endogenous, or natural substances,
in utero and in later life. This author is proceeding
with review of the literature to identify and describe other
endocrine disruptors that cause pathological changes
similar to those observed in schizophrenia and other dis-
eases as described above.
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