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Abstract

Background: Branch points (BPs) map within short motifs upstream of acceptor splice sites (3’ss) and are essential
for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP,
Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability
to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3’ss.

Results: We used a large set of constitutive and alternative human 3’ss collected from Ensembl (n = 264,787 3’ss)
and from in-house RNAseq experiments (n = 51,986 3’ss). We also gathered an unprecedented collection of
functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes.
Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative
3’ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best
performance to predict effects on mRNA splicing, with an accuracy of 89.17%.

Conclusions: Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3’ss, and that
BPP was most relevant to predict splicing alteration due to variants in the BP area.
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Variants
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Background
Pre-mRNA splicing by the spliceosome is essential for
maturation of mRNA. Moreover, splicing plays a crucial
role for protein diversity in eukaryotic cells [1]. This
process, named alternative splicing, produces several
mRNA molecules from a single pre-mRNA molecule
and concerns approximately 95% of human genes [2].
RNA splicing requires a mandatory set of splicing signals
including: the splice donor site (5’ss), the splice acceptor
site (3’ss) and the branch point (BP) site. The 5’ss de-
fines the exon/intron junction at the 5′ end of each in-
tron with two highly conserved nucleotides, mainly GT.
The 3’ss delineates the intron/exon junction at the 3′
end of each intron and is characterized by a highly con-
served dinucleotide (mainly AG), which is preceded by a
cytosine and thymidine rich sequence called the polypyr-
imidine tract. The branch site is a short motif upstream
of the polypyrimidine tract that includes a BP adenosine,
in 92% of human BP [3]. During the first step of the spli-
cing reaction the 2’OH of the BP adenosine attacks the
first intronic nucleotide (nt) of the upstream 5’ss to form
a lariat intermediate [4]. In the second step, the 3’OH of
the 5′ exon attacks the downstream 3’ss thereby releas-
ing the intronic lariat and joining the two exons
together.
The 5’ss and 3’ss sequences are well characterized,

mostly having been experimentally mapped, which
allowed the assembly of large datasets of aligned se-
quences [5–7]. Therefore, several reliable in silico
tools dedicated to splice site predictions emerged,
reaching an accuracy of 95.6% [8]. In contrast, the
branch sites are short and degenerate motifs that are
still poorly known and difficult to predict [3]. Indeed,
only the branch A and the T located 2 nucleotides
(nt) upstream, are highly conserved within a 5-mer
motif of CTRAY [9]. More than 95% of BPs are lo-
cated between 18 and 44 nt upstream of 3’ss [10],
hereafter named the BP area. However, some BPs can
be located up to 400 nt upstream of the 3’ss [11]. The
identification of relevant BPs, i.e. BPs used by the
spliceosome, represents a major challenge given the
high variability of these BPs, both at localization and
motif level. Disease-causing variants have most fre-
quently been shown to be splicing motif alterations
[12] and these variants can also alter BPs [13]. An ac-
curate prediction of BP alteration represents a chal-
lenge to molecular diagnosis.
A major limit to develop accurate BP prediction tools

was the limited access to experimentally-proven BPs.
The first tools Human Splicing Finder (HSF) [14] and
SVM-BPfinder [15] used only 14 and 35 experimentally-
proven BPs in development. In 2015, a large but not
comprehensive dataset of BPs was built from lariat
RNA-seq experiments [10]. This collection of BPs was

extended by two further studies: the first used 1.31 tril-
lion reads from 17,164 RNA-seq data sets [16], and the
second identified BPs by the spliceosome iCLIP method
[17]. Thus, several bioinformatics tools for BP prediction
have recently emerged: Branch Point Prediction (BPP)
[18], Branchpointer [19], LaBranchoR [20] and RNA
Branch Point Selection (RNABPS) [21] (Table 1). Briefly,
HSF uses a position weighted matrix approach with a 7-
mer motif as a reference (5 nt upstream and 1 nt down-
stream of the branch point A) (Fig. 1). SVM-BPfinder
was the first to take into account, not only the branch
site motif, but also the conservation of 3’ss, as well as
the AG exclusion zone algorithm (AGEZ) [11] derived
from the work of Smith and collaborators [23]. BPP
combines the BP and 3’ss sequences and the AGEZ algo-
rithm by a mixture model, a popular motif inference
method. Branchpointer uses machine learning algo-
rithms trained from a set of experimentally proven BPs.
LaBranchoR and RNABPS are based on a deep-learning
approach. LaBranchoR re-used the dataset of Branch-
pointer and implemented a bidirectional long short-term
memory network (LSTM) that was shown to be perfor-
mant for modeling sequential data such as natural lan-
guage. RNABPS, as LaBranchoR, used the LSTM model
and also implemented a dilated convolution neural net-
work algorithm.
Here, we present a benchmarking of these six BP-

dedicated bioinformatics tools on their capacity to detect
a relevant BP signal and to predict a variant-induced BP
alteration. The resolution of the first issue allowed
highlighting the specificity of each tool, i.e. the identifi-
cation of BPs among background noise. For this part, we
used two sets of data: a large set of 3’ss described in
Ensembl database and a series of alternative 3’ss ob-
served in RNA-seq experiments. The detection of BP al-
teration by a variant represents also a challenge for
molecular diagnostics. To this end, we used an unprece-
dented collection of human variants (within the BP area)
with their in vitro RNA studies to assess the prediction
of variant effect on BP function.

Results
Bioinformatic detection of branch points among the
physiological and alternative splice acceptor sites
In this study, two sets of 3’ss data were used, 3’ss de-
scribed in Ensembl dataset and alternative 3’ss with their
expression data from RNA-seq analyses (Table 2). The
running times showed that BPP is one of the faster tools
and Branchpointer one of the slower tools (Additional
file 1: Figure S3).
We first retrieved 264,787 Ensembl 3’ss from the

Ensembl data. Adding to these 3’ss, 114,603,295 random
AGs were used as control data (see the “Methods” sec-
tion for details). Thus, we collected 114,868,082 3’ss.
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ROC curve analysis was then performed for SVM-
BPfinder, BPP, LaBranchoR and RNABPS on the set of
Ensembl 3’ss, as illustrated in Fig. 2a. Table 3 shows the
levels of accuracy, sensitivity, specificity, positive predict-
ive value (PPV) and negative predictive value (NPV) de-
rived from these ROC curve analyses. In terms of the
area under the curves (AUC), the score provided by BPP
exhibited the best performance (AUC = 0.818). However,
Branchpointer presented the highest performances with
an accuracy of 99.49% and PPV of 30.06%. Thus,
Branchpointer was the most stringent of the bioinfor-
matic tools for detecting putative BPs upstream of
Ensembl 3’ss. Indeed, SVM-BPfinder, BPP, LaBranchoR

and RNABPS detected putative BPs for each Ensembl
3’ss and random AGs. For these 4 tools, the best accur-
acy to distinguish Ensembl 3’ss from random AGs was
reached by BPP (75.23%). Overall, 74,539,834 3’ss had a
BP predicted by at least one tool. The maximum overlap
of predicted BPs was observed between LaBranchoR and
RNABPS (28.63%; 21,337,483/74,539,834 3’ss) (Add-
itional file 1: Figure S4). The percentage of 3’ss with BP
predicted by the five tools was 0.15% (111,937/74,539,
834). Seventy-five percent (83,892/111,937) of these 3’ss
were Ensembl 3’ss (Additional file 1: Figure S5).
Among the alternative junctions of whole transcrip-

tome analysis, 51,986 alternative 3’ss were identified (see
the “Methods” section for details and Additional file 1:
Figure S6), to which we added the same number of con-
trol 3’ss. In all, we had 2 subsets of 51,986 (103,972) ac-
ceptor sites for whole transcriptomic data
(Additional file 2: Table S1). The SpliceLauncher ana-
lysis revealed that 99.5% of splicing junctions (51,703/51,
988, data not shown) did not have a significant expres-
sion difference across the different cell culture condi-
tions and the different variants. The relative expression
of the alternative 3’ss appeared to follow a log-normal
distribution (Shapiro-Wilk p-value = 0.09 and Additional
file 1: Figure S7). From these data, Branchpointer

Table 1 Bioinformatics tools for branch point analyses, Human Splicing Finder (HSF), SVM-BPfinder, Branch Point Prediction (BPP),
Branchpointer, LaBranchoR, RNA Branch Point Selection (RNABPS), with their main features and their accessibility

Tools Features Input Accessibility Refs

HSF • Position weighted matrix of 7-mers
(YNYCRAY)

DNA sequences1 or variants1

(nomenclature HGVS2)
Available as a web-application http://www.umd.be/
HSF3/

[14]

• Train on conserved sequences from the
Ensembl transcripts

SVM-BPfinder • Support vector machine combining BP
predictions and PPT3 features

DNA sequences (between 20
and 500 nt length)

Available as a web-application + Perl script http://
regulatorygenomics.upf.edu/Software/SVM_BP/

[15]

• Train on conserved sequences from 7
mammalian species (with Human)

BPP • Mixture model combining BP
predictions and PPT3 features

DNA sequences (unlimited
sequence length)

Available as a python script https://github.com/
zhqingit/BPP

[18]

• Train on conserved sequences from
human introns

Branchpointer • Machine learning taking into account
the primary and secondary structure of
the RNA molecule

Text files with genomic
coordinates (format defined
by Branchpointer)

Available as an R Bioconductor package https://
www.bioconductor.org/packages/release/bioc/
html/branchpointer.html

[19]

• Train on high-confidence BPs [10]

LaBranchoR • Deep learning based on bidirectional
LSTM4 network

DNA sequences (70 nt
upstream of the di-nucleotide
AG)

Available as a python script + UCSC genome
browser
http://bejerano.stanford.edu/labranchor/

[20]

• Train on high-confidence BPs [10]

RNABPS • Deep learning based on dilated
convolution and bidirectional LSTM4

network

DNA sequences (70 nt
upstream of the di-nucleotide
AG)

Available as a web-application https://home.jbnu.
ac.kr/NSCL/rnabps.htm

[21]

• Train on high-confidence BPs [10] plus
[16]

1 Batch analyses are not available; 2 HGVS Human Genome Variation Society [22], https://varnomen.hgvs.org/; 3 PPT PolyPyrimidine Tract; 4 LSTM Long
Short-Term Memory

Fig. 1 Illustration of position weight matrix used by HSF [14]
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outperformed all tested tools for detecting putative BPs
(Table 4). Indeed, the AUC of the three tools, SVM-
BPfinder, BPP, LaBranchoR and RNABPS, did not per-
form above 0.612 (RNABPS) (Fig. 2b). Branchpointer
showed the best accuracy of 65.8% on the alternative
splice sites. Furthermore, this tool demonstrated a simi-
lar specificity with the Ensembl and RNA-seq data, 99.6
and 99.5%, respectively. However, on the whole tran-
scriptome data, the sensitivity decreased by more than
60% (from 95.5 to 32.1%) (Table 3 and Table 4). The al-
ternative 3’ss and control 3’ss had BPs predicted by at
least one of the tools in 91.2% (94,806/103,972). The
maximum overlap was observed between the four tools
SVM-BPfinder, BPP, LaBranchoR and RNABPS (7227/
94,806 3’ss). More than 95% of 3’ss with a BP predicted
only by Branchpointer were alternative splice sites (Add-
itional file 1: Figure S8). In a paired comparison, the two
tools LaBranchoR and RNABPS displayed a maximum
overlap of 34.57% (32,777/94,806 3’ss) with common
BPs (Additional file 1: Figure S4).
We compared the expression of alternative sites, from

RNA-seq data, with and without the presence of a puta-
tive BP predicted by the bioinformatic tools (see the
“Methods” section for details). This analysis revealed
that 3’ss with a predicted BP were significantly more
expressed than 3’ss without a predicted BP, regardless of

the bioinformatics tool (Fig. 3). The greater difference of
expression was observed for Branchpointer. The average
expression was 34.00 and 1.35%, for alternative 3’ss with
Branchpointer-predicted BP or not, respectively. In the
subgroup of 3’ss with a predicted BP, the Branchpointer
score was not correlated with the expression of these sites
(R2 = 0.00001, p-value = 0.24). The other bioinformatics
tools presented a weak correlation between their score
and the expression (Additional file 1: Figure S9). Among
SVM-BPfinder, BPP, LaBranchoR and RNABPS, the best
correlation was obtained with RNABPS (determinant co-
efficient (R2) = 0.0062, p-value = 4.14 × 10− 70).

Bioinformatic prediction of splicing effect for variants in
the branch point area
The last set of data was a collection of experimentally
characterized potentially spliceogenic variants mapping
within BP areas (see the “Methods” section for details),
n = 120 variants among 86 introns in 36 different genes
(Table 2 and Additional file 3: Table S2). Part of this col-
lection was obtained from unpublished data (n = 62 vari-
ants). From the 120 variants, 38 (31.7%) were found to
induce splicing alteration, and were therefore considered
as spliceogenic, whereas 82 (68.3%) did not show spli-
cing alterations under our experimental conditions. Fig. 4
indicates the repartition of the 120 variants within the

Table 2 Summary of datasets used to compare the prediction tools

Name Used Origin Control data N (Positive / Control; %)

Ensembl
data

Identification of BPs among
background noise

3’ss supported by the transcripts described
in Ensembl database

Any AG dinucleotides in
the gene sequence

114,868,082 (264,787 /
114,603,295; 0.23%)

RNA-seq
data

Correlation between expression of
3’ss and BP predictions

Alternative 3’ss observed in RNA-seq
experiments

Random selection of 3’ss
with MES score > 0

103,972 (51,986 / 51,986;
50%)

Variants
collection

Detection of BP alteration by a
variant

Variants occurring in the BP area (−44;
−18) with in vitro RNA studies

Variants without impact
on splicing

120 (38 / 82; 31.7%)

Fig. 2 ROC curves of the bioinformatics scores. For each possible score threshold, sensitivity and specificity were plotted. a. The detection of
branch points from the set of Ensembl acceptor splices sites (n = 114,868,082) of BPP, SVM-BPfinder, LaBranchoR and RNABPS scores. b. The
detection of branch points from the alternative 3’ss by the SVM-BPfinder, BPP and LaBranchoR (n = 103,972). c. The delta scores of HSF, SVM-
BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS to class variants (n = 120)
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corresponding BP areas and their impact on RNA spli-
cing. The 38 spliceogenic variants were identified in 30
different introns; 22 variants induced exon skipping, 10
variants caused full intron retention and six remaining
variants activated the use of another cryptic 3’ss located
up to 147 nt upstream of the 3’ss and 38 nt downstream
of the initial acceptor site (Additional file 3: Table S2).
After the prediction of BPs for each intron affected by

the variants, we analyzed the distribution of each variant
according to the position of the predicted BP (Additional
file 1: Figure S10). First, we assayed the different size
motifs to classify variants (see the “Methods” section for
details). The best common motif was the 4-mer starting
2 nt upstream of the A and 1 nt downstream (Additional
file 1: Figure S11), that corresponds to the motif TRAY.
For this size motif, BPP presented the best accuracy with
89.17% and LaBranchoR had the lower performance with
an accuracy of 78.33% (Table 5). Branchpointer did not
predict a BP for the intron 24 of BRCA2 gene causing a

missed data point, corresponding to BRCA2 c.9257-
18C > A variant.
As shown in Additional file 1: Figure S10, variants af-

fecting splicing were mostly located at putative branch
point positions 0 (the predicted branch point A) and − 2
(the T nucleotide 2 nt upstream of the branch point A
itself). BPP pinpointed the highest number of spliceo-
genic variants in these positions. More precisely, splicing
anomalies were detected for all of the ten variants occur-
ring at position − 2, and for 15 out of 18 variants pre-
dicted to be located at the branch point A. The three
remaining variants predicted by BPP to alter the branch
point A position (BRCA1 c.4186-41A > C, MLH1 c.1668-
19A > G and RAD51C c.838-25A > G), and not experi-
mentally validated, were also predicted to alter a BP ad-
enosine by SVM-BPfinder while Branchpointer and
LaBranchoR placed these variants outside BP motifs.
Next, we assessed the discriminating capability of each

tool, including HSF, by calculating delta scores, to

Table 3 Performance of tools derived from contingency table with Ensembl dataset (n = 114,868,082)

SVM-BPfinder BPP Branchpointer LaBranchoR RNABPS

Cutoff 0.706 5.384 – 0.653 0.653

TP 166,135 198,708 252,967 171,511 193,430

FP 36,526,998 28,315,554 583,920 40,370,908 30,878,750

TN 72,145,972 86,003,592 114,019,375 74,232,290 83,724,448

FN 84,113 65,422 11,820 93,276 71,357

Missing data 5,944,864 284,806 0 97 97

AUC 0.728 0.819 – 0.711 0.811

Accuracy 66.39% 75.23% 99.48% 64.77% 73.06%

Sensitivity 66.39% 75.23% 95.54% 64.77% 73.05%

Specificity 66.39% 75.23% 99.49% 64.77% 73.06%

PPV 0.45% 0.70% 30.23% 0.42% 0.62%

NPV 99.88% 99.92% 99.99% 99.87% 99.91%

TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative), AUC (Area Under the Curve), PPV (Positive Predictive Value), NPV (Negative
predictive value)

Table 4 Performance of the bioinformatics tools on the alternative acceptor splice sites (n = 103,972)

SVM-BPfinder BPP Branchpointer LaBranchoR RNABPS

Cutoff 0.76997 5.55569 – 0.66239 0.6962

TP 28,990 29,953 16,671 29,346 29,320

FP 22,608 22,033 206 22,640 21,894

TN 29,132 29,953 51,780 29,346 30,092

FN 22,499 22,033 35,315 22,640 21,274

Missing data 743 0 0 0 1482

AUC 0.595 0.591 – 0.592 0.612

Accuracy 56.3% 57.6% 65.8% 56.4% 57.9%

Sensitivity 56.3% 57.6% 32.1% 56.4% 57.9%

Specificity 56.3% 57.6% 99.6% 56.4% 57.9%

TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative), AUC (Area Under the Curve)
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identify splicing defects from BP variants (Fig. 2c). In
terms of delta score, SVM-BPfinder outperformed the
other tools with an AUC of 0.782. From this ROC ana-
lysis, we identified an optimal decision threshold (see
the “Methods” section for details) of − 0.136, i.e. the var-
iants were predicted as spliceogenic if the variant score
was less than 13.6% of the wild-type score. The perfor-
mances achieved with this threshold are reported in
Table 6. SVM-BPfinder reached the maximum accuracy
of 81.67%.
The achievement of cross-validation, from the logistic

regression model, highlighted the performance of com-
bination of the BPP and Branchpointer tools (see the
“Methods” section for details). This model was to infer
variants as spliceogenic if they occurred within a TRAY
4-mer BP motif predicted by both BPP and Branchpoin-
ter. Although this combination was mostly found in the
1000 simulation, this model appeared in only 26% of
these simulations (see Additional file 1: Figure S12). The

likelihood ratio test between this model and a model
with only the BPP tool was not systematically significant,
with 60.1% of simulations having p-value above 1%. This
approach also showed that for a variant in intron with
different and non-overlapping predicted BP sites by BPP
and Branchpointer, the model could not provide
prediction of potential spliceogenicity. We continued the
cross-validation without the positions of predicted BP
for all tools except BPP. However, the delta scores of
other tools did not improve the model, as the major-
ity of simulations converging to BPP-alone model
(Additional file 1: Figure S13). Thus, the analysis re-
vealed that the position of the BPs predicted by BPP
alone was the optimal model.

Discussion
In this study we benchmarked 6 different tools for their
ability to detect either a physiological BP, or a variant-
induced BP alteration. From Ensembl data, Branchpointer

Fig. 4 Distribution of intronic variants in the branch point area (− 18 to − 44) experimentally tested for their impact on RNA splicing (n = 120).
Positions are relative to the nearest reference [3]’ss. In black variants that altered RNA splicing. In grey, variant without effect

Fig. 3 Expression of 3’ss according the presence or not of predicted branch point by the bioinformatics tools, from RNA-seq data (n = 51,986
3’ss). ***: p-value (Student test) <2e-16. In brackets, the average expression between the two groups
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showed the best performance with an accuracy of 99.48%.
This highlighted the interest of the machine learning ap-
proach compared to support vector machine and mixture
models used in the development of SVM-BPfinder and
BPP, respectively. The deep learning tools, LaBranchoR
and RNABS showed the maximum number of common
predicted BPs from Ensembl (28.63%) and from RNA-seq
(33.57%) data. Indeed, these two tools are both based on
the same deep learning approach (bidirectional long
short-term memory) and used the same sequence length
(70 nt) as input [20, 21]. By comparison, RNABPS
employed a dilated convolution model explaining and
showed an improvement of prediction compared to LaB-
ranchoR (73.06% against 64.77% of accuracy) using the
Ensembl data (Table 3). One would have expected that
RNABPS and LaBranchoR, using a deep learning ap-
proach, should have performed equal or above to Branch-
pointer. However, these tools reached an accuracy of
73.06% (RNABPS) and 99.48% (Branchpointer) using the
Ensembl data (Table 3). To explain the results, we propose
two hypotheses. Firstly, the three tools (Branchpointer,
LaBranchoR, and RNABPS) used the collection of
experimentally-proven collection of BPs published by
Mercer and Coll [10].. Whereas Branchpointer used a
large collection of negative BPs as control data (52,843
true BPs and 878,829 false BPs) [19]. Furthermore,

LaBranchoR, and RNABPS were only trained on the 70 nt
upstream of 3’ss with known BPs, 27,711 3’ss and 71,753
3’ss respectively. BPP also was not trained with a collec-
tion of false BPs, and SVM-BPfinder was only trained on
putative BP. Thus, on our Ensembl data, Branchpointer is
more powerful to detect the BPs among the background
noise, i. e. the unexpected BPs sequences with random
AGs (see the “Methods” section for details). Secondly,
Branchpointer takes into account the structure of tran-
scripts unlike LaBranchoR and RNABPS. Indeed, Branch-
pointer considers only the prediction of BPs occurring in
− 44 and − 18 upstream of 3’ss.
The relative expression of junctions was significantly

correlated to the bioinformatic scores. However, these
correlations remain weak, with a maximum coefficient
of determination (R2) of 0.0062 for RNABPS. Added to
this, even if Branchpointer had shown the best perform-
ance, the sensitivity of Branchpointer decreased by al-
most 60% (95.54 to 32.1%) between the Ensembl and
RNA-seq data. Alternative 3’ss, without Branchpointer
prediction, were expressed at relative low levels. Branch-
pointer was trained on the high-confident BPs and the
low confidence BPs were considered as negative [19].
This issue highlighted the limit of detection of Branch-
pointer, for the weakly used 3’ss or the less conserved
BPs. The performance of Branchpointer confirms the

Table 6 Contingency table of variant according to the variation score, n = 120 variants

HSF SVM-BPfinder BPP Branchpointer LaBranchoR RNABPS

Cutoff −0.0378 −0.136 − 0.0006 −0.0003 − 0.0194 −0.0304

TP 27 29 22 10 25 27

FP 18 13 31 13 25 20

TN 62 69 51 59 57 62

FN 12 9 16 16 13 11

AUC 0.750 0.782 0.638 0.645 0.710 0.763

Accuracy 75.4% 81.67% 60.8% 70.4% 68.3% 74.2%

Sensitivity 71.1% 76.32% 57.9% 38.5% 65.8% 71.1%

Specificity 77.5% 84.15% 62.2% 81.9% 69.5% 75.6%

TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative), AUC (Area Under the Curve)

Table 5 Classification of variants according their position in the predicted branch point (n = 120) (Motif 4-mer: TRAY)

SVM-BPfinder BPP Branchpointer LaBranchoR RNABPS

TP 24 32 32 27 30

FP 6 7 12 15 12

TN 76 75 69 67 70

FN 14 6 6 11 8

Accuracy 83.33% 89.17% 84.87% 78.33% 83.33%

Sensitivity 63.16% 84.21% 84.21% 71.05% 78.95%

Specificity 92.68% 91.46% 85.19% 81.71% 85.37%

TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative)
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importance of the BP in 3’ss definition, but does not ex-
plain the expression level of these 3’ss. This last point
highlights the complexity of splicing that does not only
depend on the 5’ss, 3’ss and the BP. To illustrate this
complexity, a recent study was published [24] demon-
strating the MMSplice tool which gathers several fea-
tures from intronic and exonic pre-mRNA sequences.
This tool was assayed on the Vex-seq data [25] which
consists of 2059 human genetic variants in and around
110 exons. For each variant the authors displayed the
percentage of exon inclusion by minigene splicing as-
says. The correlation between this percentage and the
MMSplice score reached an R2 of 0.48 (=0.692). Despite
accounting for both set of splicing motifs and the BP
motifs, more than 50% of expression variability of exon
inclusion remained unexplained by the predictions.
To investigate potential spliceogenic variants occurring

in the BP area, we gathered a large collection of 120 hu-
man variants (62 unpublished), with their corresponding
in vitro RNA data. From our analysis, the best prediction
strategy was to consider the variant as impacting the
splicing if it is located in the BP motif. With this strategy
the best score was obtained by BPP with an accuracy
equal to 89.17%. We observed that only 31.7% (38/120)
of variants altered the splicing in the BP area while
82.05% (32/39) alter splicing in the BPP-predicted BP
motif with a sensitivity of 84.21%. These results
demonstrate the potential of BPP for prioritizing variants
occurring in this region for molecular diagnostic labora-
tories. From our dataset, we first determined, that the 4-
mer TRAY in the BP motif was the most impacted by
variants. A variant occurring in this motif has a high
probability to alter splicing. In our work, this probability
was 82% with BPP tool while the proportion of variants
affecting the splicing outside this motif was 7.4%. This
bioinformatic tool takes into account several features in
and around the 4-mer motif. Variants outside the BP
motif can modify the score of BPs, although having a
weak risk splicing alteration. Thus variants can wrongly
affect the score. Indeed, 37 (45.7%) variants occurring
outside this 4-mer motif decreased the BPP score
whereas only 4 (10.8%) of these variants impacted spli-
cing. Therefore, we excluded the delta score used to pre-
dict the BP alteration by a variant. The alignment of
variants on the BPP-predicted BP revealed that the most
spliceogenic variants were localized at the nucleotide
position 0 (A) and − 2 (T) of the BPs. The highly con-
served di-nucleotides at the position 0 and − 2 [26] were
critical to the BP recognition. These observations also
suggest that BPP-detected BPs are functional. The vari-
ant collection did not take into account the capability of
BP detection among the background noise, the variants
occurring in area (− 18; − 44) with an expected branch
point. In this context, BPP reached better performance

than the other tools. On the other hand, the high specifi-
city to remove background noise penalized Branchpoin-
ter on the variant collection. For an example in the
intron 24 of BRCA2 gene the non-detection of a BP by
Branchpointer hindered the prediction of spliceogenic
variants (Additional file 3: Table S2). The first study of a
large collection of BPs identified the presence of redun-
dant BPs [10]. We also observed that variants altering
high BP scores, as predicted by BPP induced splicing al-
terations in the vast majority of cases (82%). Among the
introns (n = 86) studied in this work, the potential re-
dundancy of BPs was not sufficient to allow natural spli-
cing to be completely restored. In our analyses, we did
not focus on the quantitative effect of splicing, due to
the diversity of RNA in vitro studies. Among the data
generated in this study, eight of the variants that im-
pacted splicing were assessed using minigene assays. In
these condition, these variants produced both the nat-
ural and aberrant transcripts, i.e. they had a partial effect
(data not shown). The presence of redundant BPs could
explain this partial effect. However, this was beyond the
scope of the present benchmarking study and will need
to be explored in future studies. We observed that se-
quence alteration of BPs induced not only exon skipping
but also intron retention and the use of new distant 3’ss.
Thus, these predictions will permit the prioritization of
RNA in vitro studies rather than determine the exact ef-
fect on splicing. The combination of BPP and Branch-
pointer, slightly improved prediction of BP position.
Moreover, for introns with non-overlapping BPP and
Branchpointer-predicted BP positions, the model will
not draw a conclusion regarding the spliceogenicity of a
variant. From a practical view point, the combination of
scores makes the predictions of BPs less accessible.
The accessibility of the tools represents a technical

limit to the analysis of BP. Indeed, HSF, SVM-
BPfinder and RNABPS have a Graphical User Inter-
face web page for non-bioinformatician users. How-
ever, LaBranchoR and BPP score calculation was only
accessible by a python script. LaBranchoR also offers
a list of potential BPs predicted by the tool and
visualization via the UCSC Genome Browser [27].
Branchpointer is only accessible by an R package and
needs the installation of several other libraries. Due
to machine learning calculation, this tool also has the
longest run-time. The score calculation for the
Ensembl data set (n = 114,868,082) with a Linux ma-
chine AMD® Ryzen 7 pro 1700 eight-core processor,
8 Gb of RAM with multiprocessing way (6 at the
same time) took more than two weeks, instead of a
couple of days for SVM-BPfinder. Added to this, HSF
tool did not allow an analysis of batches of the BP
and so makes the analysis difficult of variant obtained
from next-generation sequencing.
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Conclusion
Our study spotlighted the requirement to distinguish
two issues, the capacity to detect a real BP and the cap-
acity to predict the splicing alteration at BP level.
Branchpointer exhibited the best performance to detect
a real BP from our Ensembl and RNA-seq data. For re-
search purposes, Branchpointer facilitates the study of
alternative transcripts by predicting the most likely used
alternatively spliced 3’ss. However, the BPP-predicted
BPs were more efficient to predict the impact of variants
on BP usage. Furthermore, BPP was able to predict 4-
mer BP motifs, with an accuracy of 89.17%. Using a large
collection of human variants (n = 120) with associated
RNA in vitro splicing data, we confirm the advantage of
studying the BP area ([− 44–18] intronic positions) for
application to molecular diagnostics. As the next gener-
ation sequencing era increases the number of variants
detected across exonic and intronic regions, we show
how these BP prediction tools can assist the diagnosti-
cian by prioritizing variants for in vitro RNA studies.

Methods
Sets of data
The Ensembl dataset contains the coordinates of a large
collection of transcripts [28], with more than 200,000
human transcripts (download June 28th 2018). We ex-
tracted the position of exons for each described tran-
script then we deduced the coordinates of splice sites.
As random data, we took all AG sequences found in
each transcript sequence, named hereafter random AGs.
For each 3’ss, the genomic coordinates were annotated
according to the hg19 genome assembly.
We defined as alternative splice sites all 3’ss identified

from RNA-seq data that were not described in the tran-
scripts from the RefSeq dataset [29] The alternative 3’ss
were obtained from our in-house RNA-seq analyses. The
read count mapped on these last RefSeq 3’ss served as a
reference to calculate the relative expression of the alter-
native 3’ss. Whole transcriptome RNA-Seq experiment
was performed on 72 RNA samples corresponding to
lymphoblastoid cell lines (LCLs) from four control indi-
viduals and eight patients with pathogenic variants in
TP53 or in the BRCA1/2 genes, treated and untreated
with bleomycin or doxorubicin, and performed in tripli-
cate. Ribosomal RNA was depleted using the NEBNext®
rRNA Depletion Kit (Human/Mouse/Rat) (NEB, Ips-
wich, MA, USA) and libraries were produced using the
NEBNext® Ultra™ RNA Library Prep Kit for Illumina®
(NEB). 2x75b paired-end sequencing was performed on
an Illumina NextSeq500 yielding an average of 50 mil-
lion paired reads per sample. Reads were aligned on the
Ensembl reference genome GRCh37 release 75 (ftp://ftp.
ensembl.org/pub/) using STAR v2.5.3a tool (Spliced
Transcripts Alignment to Reference) [30] and counting

was performed using FeatureCounts tool v1.5.2 [31]. To
avoid the impact of cell culture condition and the effect
of variants on the expression of alternative 3’ss, we se-
lected alternative splice sites observed in more than six
samples. Each condition and variant was analyzed in
triplicate. Then with this threshold we removed any spli-
cing junctions linked to the particular conditions or vari-
ants. The expression of alternative splice sites was
calculated as follows:

%expression ¼ read countalternative site
read countphysiological site

� 100

The read count corresponded to the number of reads
mapping on exon junctions and the physiological site
was defined as the nearest splice site, described in
RefSeq, and same type of alternative splice site. The de-
tailed model of the alternative splicing was proposed by
Davy and collaborators [32].. The percentage of expres-
sion permitted the estimation of a weighted expression
that allows for the versatility of splicing events. The tool
SpliceLauncher v2 was used to perform the calculations
and also to detect abnormal splicing junction expression
[33].
As control data for the set RNA-seq data, we took any

3’ss that had a MaxEntScan [34] score higher than 0 but
was not identified in the RNA-seq data or in the RefSeq
database. We called its control 3’ss. Among these con-
trol 3’ss, we randomly selected 3’ss so that the number
of control 3’ss was equivalent to the number of alterna-
tive 3’ss.
The last set of data was a collection of potential spliceo-

genic variants, characterized by experimental RNA studies,
occurring in the BP area (from − 18 to − 44 relative to the
3’ss) of 36 genes. Briefly, this dataset included RT-PCR data
obtained from (i) minigene-based splicing assays (by Inserm
U1078 and by Inserm U1245 teams), (ii) RNA extracted
from lymphoblastoid cell lines treated/untreated with puro-
mycin, (iii) RNA extracted from blood collected into PAX-
gene tubes (Qiagen), (iv) RNA extracted from stimulated T
lymphocytes provided by the French Splice Network of the
Unicancer Genetic Group. Controls (samples a without a
variant in the BP area) were systematically included in these
experiments [35]. During the collection, we excluded any
variant that altered splicing by creation or reinforcement of
a cryptic or de novo consensus splice site. Owing to the fact
that the data were heterogeneous in term of analyses and
submitters, we did not take into account the quantitative
information of splicing alteration. Thus, we pooled together
variants having a partial or total effect on splicing.

Assessment of bioinformatics tools
Six BP-dedicated in silico tools were tested: HSF v3.1,
SVM-BPfinder, BPP, Branchpointer v3.8, LaBranchoR
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and RNABPS (Table 1). On the other hand, we were
confronted with an inaccessible tool, the BPS predictor
[36], at the time of this work, so it was excluded from
this study. HSF v3.1 did not allow browsing of a wild-
type sequence to detect potential BPs, and gave only the
score change of a variant. For the other tools, we used
the standalone versions that were: python scripts for
SVM-BPfinder, BPP and LaBranchoR and R package for
Branchpointer. For the tools SVM-BPfinder, BPP and
Branchpointer, we narrowed the browsed sequence by
these 3 tools to include 1 to 200 nt upstream of the 3’ss.
LaBranchoR and RNABPS need a 70 nt long sequence,
and the browsed sequence was the 70 last nt of the in-
tron. The use of the different tools did not need param-
eter settings, except for SVM-BPfinder. The tool
required definition of the number of bases at the 3′ end
of the input sequences that will be scanned, and the dis-
tance in nucleotides allowed between the branch point
A and the 3’ss. We used the default values, where the
scanned sequence length was 100 nt and the distance be-
tween the branch point A and the 3’ss was 15 nt.
Receiver operating characteristic (ROC) analysis was

performed for the tools generating continuous scores
(SVM-BPfinder, BPP, LaBranchoR, RNABPS). From each
ROC curve, we determined an optimal decision thresh-
old defined as the threshold with the minimal difference
between the sensitivity and specificity. Branchpointer
displayed only BPs with high confidence level, so we
processed directly to a contingency table between the
true 3’ss and the control AG with predicted BPs (Add-
itional file 1: Figure S1).
From the RNAseq data, the relative expression of al-

ternative 3’ss was studied according the BP-predictions
of bioinformatic tools. We compared the expression be-
tween the two groups: 3’ss with predicted-BP and 3’ss
without predicted-BP. The Student test was used under
the hypothesis that the relative expression follows a log-
normal distribution. The hypothesis of the log-normal
distribution was assessed by a Shapiro-Wilk test, and
was performed on the logarithm of expression.
To study the effect of nucleotide variants on RNA spli-

cing, we considered two questions, i) Is the variant lo-
cated in a putative BP? and ii) Does the variant decrease
the score of the putative BP? Given that the first ques-
tion concerns a binary variable, we used contingency ta-
bles to compare the performance of the different tools.
We started by using five out of the six tools (exclusion
of HSF) to define a list of predicted BPs in the browsed
sequences from each intron that are affected by the vari-
ants in our dataset. Next, we took only one BP with the
highest score per intron, for each tool. To determine
whether the variant was located in the motif of the pre-
dicted BP, we assayed different motif sizes from 1 nt
(corresponding to the branch point A) up to 7-mer

around the A, i.e. the 3 nt on either side of A. The 7-
mer motifs corresponded to the length of position
weight matrices used by the majority of the tools (Fig.
1). We established the optimal motif size as having the
best compromise of sensitivity and specificity across all
tools. The second question involved the calculation of a
delta score defined as follows:

Deltascore ¼ Scorevariant site−Scorewildtype site

Scorewildtype site

This delta score did not necessarily imply that wild-
type and variant scores were from the same BP site. Dif-
ferent examples are illustrated in Additional file 1: Fig-
ure S2. On this delta score we performed ROC curve
analyses and then defined an optimal decision threshold
to classify the variants.

Evaluation of the score combination
To determine the optimal score combination, we used a
logistic regression. This model provided a probability
that the variant alters RNA splicing depending on the in-
formation given by the bioinformatic scores. We per-
formed a cross-validation, with two thirds of the data
being used as training set and the remaining data as val-
idation set. The data was allocated at random and this
step was repeated 1000 times. On the training set, we
executed a step-by-step variable selection (stepwise). On
the validation set, the performances of the probability
given by the model were evaluated by a ROC curve
analysis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6484-5.

Additional file 1: Figure S1. Workflow to compare bioinformatics tools
on Ensembl and RNA-seq data for the predictions of branch point (BP).
Figure S2. The different ways that a variant may alter the branch point
score. Figure S3. Running time of the four tools SVM-BPfinder, BPP,
Branchpointer, and LaBranchor. Figure S4. Paired comparison of the five
tools from the Ensembl data and from the RNA-seq data. Figure S5. The
overlap of natural 3′ ss (True Calls) and controls AG (False Calls) from
Ensembl data. Figure S6. Splicing junctions filtered out from RNA-seq
data. Alt 3’ss: alternative acceptor splice sites. Figure S7. The distribution
of the relative expression of alternative 3’ss. Figure S8. The overlap of al-
ternative 3′ ss (True Calls) and controls AG (False Calls) from our RNAseq
data. Figure S9. Correlation between the scores (SVM-BPfinder, BPP,
Branchpointer, LaBranchoR, RNABPS) and the expression of alternative
3’ss. Figure S10. Repartition of variants (n = 120) according their position
relative to the predicted branch point. Figure S11:. Determination of op-
timal motif (YTRAYNN) length to predict splicing alteration, n = 120 vari-
ants. ACC: Accuracy, Pos: relative position in branch point motif, Se:
Sensitivity, Sp: Specificity. Figure S12. Cross-validation (1000 times) to se-
lect the optimal model to predict branch point alteration. Figure S13.
Cross-validation (1000 times) to select the optimal model to predict
branch point alteration without the positions of predicted BP for all tools
except BPP.

Additional file 2 Table S1. Collection of alternative acceptor splice site
(3’ss) and controls 3’ss (n = 103,972), from RNA-seq data
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Additional file 3 Table S2. Collection of variants used to compare the
branch point predictions (n = 120)
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