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In Brief
The identification of biomarkers
is an important challenge in
oncology. In this study, we
developed a liquid
chromatography coupled to
multiple reaction monitoring
mass spectrometry assay that
allows measuring the expression
of target proteins in formalin-
fixed paraffin-embedded tumor
samples, the standard method
for biopsy storage in clinical
pathology. The method provided
quantitative information on 185
proteins from three groups of
breast tumors: triple-negative,
HER2-overexpressing, and
luminal A. In addition to markers
such as HER2 or hormone
receptors, we identified several
proteins which are expressed
differentially in triple-negative
breast cancer samples.
Highlights
• Tier 2 MRM assay for relative protein quantification in tissue samples.• Targeted analysis of 185 breast cancer–related proteins.• Comparative proteomic analysis of formalin-fixed paraffin-embedded tumor samples.• Analysis of luminal A, HER2-overexpressing, and triple negative breast tumors.
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RESEARCH
Relative Quantification of Proteins in
Formalin-Fixed Paraffin-Embedded Breast
Cancer Tissue Using Multiplexed Mass
Spectrometry Assays
Carine Steiner1,2,* , Pierre Lescuyer1,3 , Paul Cutler2, Jean-Christophe Tille4, and
Axel Ducret2
The identification of clinically relevant biomarkers rep- The identification of clinically relevant biomarkers repre-

resents an important challenge in oncology. This prob-
lem can be addressed with biomarker discovery and
verification studies performed directly in tumor samples
using formalin-fixed paraffin-embedded (FFPE) tissues.
However, reliably measuring proteins in FFPE samples
remains challenging. Here, we demonstrate the use of
liquid chromatography coupled to multiple reaction
monitoring mass spectrometry (LC-MRM/MS) as an
effective technique for such applications. An LC-MRM/
MS method was developed to simultaneously quantify
hundreds of peptides extracted from FFPE samples and
was applied to the targeted measurement of 200 proteins
in 48 triple-negative, 19 HER2-overexpressing, and 20
luminal A breast tumors. Quantitative information was
obtained for 185 proteins, including known markers of
breast cancer such as HER2, hormone receptors, Ki-67,
or inflammation-related proteins. LC-MRM/MS results
for these proteins matched immunohistochemistry or
chromogenic in situ hybridization data. In addition,
comparison of our results with data from the literature
showed that several proteins representing potential
biomarkers were identified as differentially expressed in
triple-negative breast cancer samples. These results
indicate that LC-MRM/MS assays can reliably measure
large sets of proteins using the analysis of surrogate
peptides extracted from FFPE samples. This approach
allows to simultaneously quantify the expression of
target proteins from various pathways in tumor samples.
LC-MRM/MS is thus a powerful tool for the relative
quantification of proteins in FFPE tissues and for
biomarker discovery.
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sents an important challenge for multifactorial diseases such
as cancer (1–4). While biomarkers are often assessed in blood
or urine to avoid invasive sample collection, cancer bio-
markers are preferably measured in tissue samples to maxi-
mize sensitivity and specificity. Confirmation of diagnosis and
molecular characterization of tumors are indeed routinely
performed on biopsies, thereby making tissues the samples of
choice for cancer biomarker discovery (5). In this context, one
of the critical factors for the discovery and validation of new
biomarkers is the access to a large number of tissue samples
representative of the disease. In clinical practice, most tissue
specimens are formalin-fixed and paraffin-embedded (FFPE)
since this process stabilizes the sample and allows storage at
room temperature for years. Consequently, FFPE tissue
samples are more readily available than fresh frozen samples.
Importantly, FFPE tissue samples are commonly associated
with reliable clinical information, such as patient de-
mographics, disease stage, and comorbidities. As of today,
analysis of proteins in FFPE tissues mainly relies on immu-
nohistochemistry (IHC). However, development of novel IHC
assays is challenging due to the requirement for highly spe-
cific antibodies. Also, IHC affords only limited possibilities for
multiplexing, which strongly restricts its use for biomarker
discovery approaches.
Proteins in FFPE tissues were long thought to be inacces-

sible to mass spectrometry (MS) analysis due to the cross-
links formed during formalin fixation. However, over the past
years, several groups have demonstrated the possibility to
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Multiplexed MRM Protein Assay in FFPE Cancer Tissue
reverse formalin cross-links and thereby to extract proteins
from FFPE tissue samples (6, 7). Studies using MS workflows
then demonstrated that proteomes retrieved from matched
FFPE and frozen tissues were highly similar (8, 9). Finally,
several studies used targeted MS assays based on multiple
reaction monitoring (MRM) to measure relative protein abun-
dance in FFPE tissues (10–14). These measurements showed
a high agreement with IHC. Moreover, one of the most
appealing aspects of a targeted MS approach is the enabling
of highly multiplexed assays for the concurrent measurement
of up to hundreds of selected proteins in a given sample.
The use of heavy-labeled peptides as internal standards for

each analyte also ensures a reliable comparison of protein
levels between multiple samples.
In this study, we investigated the potential of a targeted MS

approach for the relative quantification of preselected protein
panels in FFPE triple-negative breast cancer (TNBC) tissue
samples. TNBC represents 12 to 17% of all breast cancer
cases (15, 16). They are defined by the lack of HER2 over-
expression and by the absence of estrogen receptor (ER) and
progesterone receptor (PR) expression (17, 18). TNBC mostly
affect young women (17, 19) and represent a major clinical
challenge due to their aggressiveness and poor prognosis.
Surgery and chemotherapy are currently the main treatment
options as these tumors are unresponsive to targeted thera-
pies, such as trastuzumab or hormone receptor modulators
(20–22). In addition, TNBC represents a heterogeneous group
of diseases in terms of pathological features, mutations, and
gene expression profiles (23). TNBC is of high interest for
biomarker discovery since there is to date no generally
accepted diagnostic marker for these tumors. In this study, we
describe the development of two multiplexed MRM assays for
the simultaneous measurement of 200 proteins with potential
implication in TNBC pathobiology. The MRM assays were
applied on FFPE samples from 48 TNBC tumors and 39 non-
TNBC tumors (19 cases of HER2 overexpressing breast can-
cers and 20 cases of luminal A breast cancers). Data com-
parison between these sample groups confirmed known
molecular features, such as HER2 overexpression in the HER2
overexpressing breast cancers. Differential expression of po-
tential TNBC-associated protein markers was also highlighted,
underlying the potential of the approach for biomarker dis-
covery. Verification experiments by IHC were performed for the
following proteins: epidermal growth factor receptor (EGFR),
cytokeratin (CK) 5/6, CK14, androgen receptor (AR), CD20,
CD3, CD8, CD4, and CD68. In addition, HER2 expression was
determined by chromogenic in situ hybridization (CISH).
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

Two MRM assays were developed for 200 proteins relevant to the
TNBC phenotype. To evaluate the applicability of the developed
methods on real clinical samples, the proteins were measured in a
2 Mol Cell Proteomics (2022) 21(11) 100416
cohort of 90 breast cancer FFPE tissue samples (50 cases of TNBC,
20 cases of luminal A breast cancers, and 20 cases of HER2 over-
expressing breast cancers) obtained from the Clinical Pathology
Division of the Geneva University Hospitals. All samples were
analyzed in duplicate (adjacent FFPE tissue slices processed sepa-
rately). The samples were randomized three times throughout the
analytical process (prior to tumor dissection, prior to peptide
extraction, and again prior to LC-MRM/MS analysis). The samples
were not blinded.

FFPE Tissue Samples

The study was approved by the ethical committee for research of
the Canton of Geneva (protocol NAC 13–109) and abides by the
Declaration of Helsinki principles. FFPE samples from breast tumor
resections were selected retrospectively from the archives of the
Division of Clinical Pathology of the Geneva University Hospitals on
the period 2001 to 2011. All samples corresponded to cases of
lumpectomy or mastectomy from neo-adjuvant treatment-naïve
women with invasive breast carcinomas. Exclusion criteria were male
gender and administration of a neo-adjuvant treatment. The cohort
included 50 cases of TNBC, 20 cases of luminal A breast cancers,
and 20 cases of HER2 overexpressing breast cancers (supplemental
Table S1). ER, PR, proliferation marker protein Ki-67 (Ki-67)
expression, and HER2 amplification status were available for all
samples. TNBC cases were defined by the absence of ER and PR
expression as well as the absence of HER2 amplification determined
by a CISH ratio HER2/CEP17 below 2. Luminal A tumors were
characterized by the expression of ER, PR, and a Ki-67 proliferation
index under 20%. HER2 amplified tumors were characterized by a
CISH ratio HER2/CEP17 above 2. This group included both HER2
breast tumors (ER and PR negative) and HER2-positive luminal B
tumors (ER and/or PR positive, high levels of Ki-67). In the context of
methodology development, the number of samples is not as critical
as in biomarker discovery and validation studies. We therefore did
not use statistics for sample size calculation. We tried to obtain as
many samples as possible from the clinical pathology division of our
hospital. We thus empirically collected 90 tumor tissue samples
distributed in three groups of breast cancer subtypes. This repre-
sents to our opinion a sufficient number of samples for the proof of
concept.

From the 50 TNBC samples that were originally selected, two sam-
ples (T20 and T28) were excluded from the data analysis. The first
sample had been misclassified as triple-negative whereas it was a
luminal A sample. The second sample was removed because the tumor
area was significantly different between the first and the last control
hematoxylin and eosin (H&E) slides, and therefore the measured sur-
face did not correspond to the surface extracted for protein analysis.
Moreover, one of the HER2 samples (H5) is missing in replicate 1
because the sample was accidently lost during sample preparation.

Peptides Extraction From FFPE Tissue

Paraffin blocks containing the resected tumors were cut using a
microtome according to the following scheme: 10 4 μm thick slices,
followed by six 10 μm slices and finally one last 4 μm slice were cut
and mounted on SuperFrost glass slides (Thermo Fisher Scientific).
The first and the last 4 μm thick slices were H&E stained in order to
confirm the presence of tumor tissue throughout all collected tissue
slices. The remaining 4 μm slices were stored at −20 ◦C for further IHC
analyses. The 10 μm tissue slices were used for peptide extraction
(2 slices per replicate and two backup slices). The infiltrative tumor
area, omitting ductal or lobular in situ carcinoma, was delimited on the
first H&E slide by a trained clinical pathologist. The surface tumor area
was measured using the Pannoramic Viewer software (3DHistech) on
the H&E template slides, which were digitally scanned using the
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Pannoramic 250 Flash II scanner (3DHistech). Tumor slice surfaces
ranged from 5 mm2 to 350 mm2 (supplemental Table S1). The per-
centage of tumor cells in the tumor area was determined by a trained
pathologist (supplemental Table S1). Scalpel macrodissection of the
tumor area was performed by superimposing the 10 μm slices with the
H&E template. The dissected tumor FFPE tissue was deparaffinated
and rehydrated using a series of UltraClear (Biosystems Switzerland
AG) and graded alcohol baths, after which the rehydrated tissue was
collected with a needle and stored at −80 ◦C until peptide extraction. A
detailed protocol for the extraction of peptides from FFPE tissue slices
was published previously (13). Briefly, tissue recovered from two
10 μm tissue slices was suspended in 100 μl of 20 mM Tris-HCl buffer,
pH 8.5 containing 1 % (w/v) RapiGest SF and 25 μg 1,4-
dithioerythritol. The tube was heated at 100 ◦C for 20 min and soni-
cated. The sample was heated again at 80 ◦C for 2 h, after which it
underwent a second round of sonication and was subjected to
alkylation by adding 25 μl of a 40 mM ammonium bicarbonate solution
containing 125 μg iodoacetamide. Digestion was performed overnight
at 37 ◦C using 2 μg of sequencing grade modified trypsin (Promega).
The sample was then acidified and desalted, after which the eluate
was evaporated to dryness using a speed-vac concentrator. The
extract was kept at −20 ◦C until use. Because of the large number of
samples, tissue extracts were processed in separate batches of 20 to
30. Randomization was performed prior to tumor dissection, prior to
peptide extraction, and again prior to LC-MRM/MS analysis, using the
randomize function in Excel. All FFPE tissue samples were extracted
and analyzed in duplicate (from two independent adjacent tissue
slices).

MRM Assay Development

An MRM assay was developed for 224 proteins, which had been
described as of interest for TNBC and/or basal-like breast cancer by
gene expression and proteomics studies (24–30) (supplemental
Table S2). A detailed protocol for candidate proteins and peptide
selection was published previously (31). Briefly, the development
process included in silico analyses of the selected proteins using the
Skyline software (version 3.1, MacCoss Lab Software) combined with
a prediction tool (32) to determine peptides with the highest probability
of detection by MS. Crude analogs of the selected peptides labeled at
the C-terminal side using [U-13C6; U-15N4] Arg or [U-13C6; U-15N2]
Lys were used as internal standards (JPT Peptide Technologies) and
were used throughout the full study. These peptides were solubilized
in 2% acetonitrile, 0.1% formic acid and were analyzed on a Q
Exactive mass spectrometer (Thermo Fisher Scientific) to ensure that
the correct sequences had been synthesized and that the desired
products were among the dominant species. The data were searched
using Mascot (version 2.5.0, Matrix Science Ltd) against the human
Uniprot protein database (accessed on 13.02.2014, containing 23′592
reviewed entries), and the search results were exported in Skyline to
generate a spectral library. Using Skyline, 124 unscheduled MS
methods were generated to screen the corresponding >19,000 tran-
sitions on a TSQ Vantage triple-quadrupole mass spectrometer
(Thermo Fisher Scientific). The obtained data were reviewed in Skyline,
and the five most intense transitions were selected for each precursor.
In a third step, labeled peptides were spiked in a biological matrix
prepared by mixing tryptic digests of five basal-like breast cancer cell
lines previously fixed with formalin. This sample was used to look for
possible matrix-related analytical interferences and further refine MS
parameters. In the last screening round, sequential dilutions of the
selected peptides in the biological matrix were analyzed to check for
response linearity in the mass spectrometer. The final MRM assay
comprised 200 proteins, which were distributed among two different
acquisition methods to allow the measurement of the corresponding
480 peptides with 2880 transitions for the endogenous peptides and
the heavy-labeled internal standards (supplemental Table S3). In the
final method, we used indexed retention time peptides (33) and the
intelligent SRM feature available on the TSQ Vantage (34, 35) to
perform dynamic scheduling and to compensate for retention time
shifts. A set of 12 peptides was selected from the synthetic peptides
pool and used as reference indexed retention time peptides.

LC-MRM/MS Analysis

In a previous study (13), we determined that a 20 μm thick FFPE
tissue sample contains approximately 1 μg protein/mm2. Based on
this estimation, each sample extract was reconstituted in an appro-
priate volume of mobile phase A (2% acetonitrile, 0.1% formic acid) in
order to reach a concentration of 400 ng/μl total protein. This sample
solution was further mixed in a 1:1 ratio with the internal standard
solution containing 10 fmol/μl of each heavy-labeled internal standard
in mobile phase A. The resulting sample solution contained 200 ng/μl
of total protein as well as 5 fmol/μl of each of the heavy-labeled in-
ternal standard. A volume of 5 μl was injected into the LC-MS system
for MRM analysis. Extracts from FFPE tissue samples were analyzed
by MRM on a TSQ Vantage mass spectrometer (Thermo Fisher Sci-
entific) equipped with a Dionex Ultimate 3000 RSLCnano system
(Thermo Fisher Scientific). Peptides were separated on a 75 μm ×
50 cm EasySpray column (PepMap RSLC, C18, 2 μm, 100 Å; Thermo
Fisher Scientific) with a 100 μm × 2 cm precolumn (Acclaim PepMap
100, C18, 5 μm, 100 Å; Thermo Fisher Scientific). The analytical
separation was run using a gradient of mobile phase A (0.1 % formic
acid, 2 % acetonitrile) and mobile phase B (0.1 % formic acid in
acetonitrile) as follows: 2% to 30% B in 90 min, 30% to 60% B in
6 min, and 60% to 80% B in 2 min at a flow rate of 250 nl/min. The
spray voltage was set to 2600 V, the ion transfer capillary temperature
was set to 240 ◦C, the resolution was set to 0.7 Th for Q1 and Q3
(FWHM), and the collision gas pressure was set at 1.5 mTorr.
LC-MRM/MS runs were performed with 3 min acquisition windows.
Cycle time was set to 2.0 s with a maximum of 200 concomitant
transitions measured, thereby ensuring a minimum dwell time of 10 ms
per transition. Collision energy was set using the following linear
equation embedded in Skyline: CE = slope * (precursor m/z) + inter-
cept. This equation is instrument specific, and each charge state of
the precursor, namely 2+ and 3+, is allowed to have a different
equation (36). The equation parameters were for 2+ precursors: slope:
0.030, intercept: 2.905, and for 3+ precursors: slope: 0.038, intercept:
2.281. These values were the same for all peptides.

A QC sample prepared by mixing an equal amount of 20 FFPE
tissue extracts from the first extraction batch was analyzed and pro-
cessed together with the clinical samples. This QC sample was
injected several times in each batch of clinical samples and equally
distributed throughout the sequence.

MRM Data Processing

MRM data were imported in Skyline where peaks were integrated
automatically. In order to facilitate data review, a reference chro-
matogram library was built in Panorama (37) using MRM data from
previous analysis of heavy-labeled standard peptides in 2% acetoni-
trile, 0.1% formic acid on a TSQ Vantage. This reference library was
loaded in Skyline and used to assess peak integration in MRM anal-
ysis using the dot product (dotp) function. Each peptide was manually
reviewed throughout all samples, and if necessary, the integration was
corrected based on the elution time, the transition ratio of the heavy-
labeled internal standard, and the match with the chromatogram li-
brary (dotp). Peaks which had partly shifted outside of the acquisition
window were removed if less than 60% of the peak was visible (visual
evaluation). In addition, peptides for which the endogenous trace
could not be distinguished from the noise or for which the correct
peak could not be identified with sufficient confidence were flagged.
Mol Cell Proteomics (2022) 21(11) 100416 3
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Peak areas of the fragments monitored for a given peptide were
summed. Summed peak areas were exported to Tibco Spotfire
(version 5.5, TIBCO Software Inc.) for further processing and
normalization to the internal standard. Summed light peak areas were
corrected for variation due to the LC-MS analysis using the area of the
heavy peptides according to the following equation:

Lnorm ps =Lps * Xp

Xps

where Lnorm ps is the light area for peptide p in sample s after
normalization for internal standard, Lps is the light area for peptide
p in sample s, Xp is the median heavy peak area for a given
peptide in all samples, and Xps is the heavy peak area for peptide
p in sample s (38). MRM data were also normalized by the per-
centage of tumor content. Both data, with and without normali-
zation for tumor content, were used for further analysis. MRM and
normalization data can be found in supplemental Table S4.

IHC and In Situ Hybridization

HER2 expression was determined for all tumors by CISH using
Ventana HER2 Dual ISH DNA Probe Cocktail (Roche Diagnostics).
Moreover, several proteins were assessed by IHC: EGFR (ref. 280005,
Invitrogen - Thermo Fisher Scientific), CK 5/6 (ref. M7237, Dako Agi-
lent), CK14 (ref. 314M-16, Cell Marque), AR (ref. AB108341, Abcam),
CD20 (ref. NCL-L-CD20-L26, Novocastra, Biosystems), CD3 (ref. 790-
4460, Roche Diagnostics,), CD8 (ref M7103, Dako Agilent), CD4 (ref.
104R-16, Cell Marque), and CD68 (ref. M0876, Dako Agilent). CISH
and IHC were performed with antigen retrieval on a Ventana Bench-
mark XT automated stainer (Roche Diagnostics). The intensity of IHC
reactions was evaluated using the Remmele immunoreactive score.

Statistical Analysis

Statistical tests were performed using Graphpad Prism (version 7,
GraphPad Software). Box plots show the median as well as the 25th
and 75th percentiles. Whiskers show the 10th and 90th percentiles.
We used nonparametric statistical methods since we had relatively
small sample groups with non-Gaussian distribution. Peptide levels
between tumor groups were compared using the nonparametric
Kruskal–Wallis test, followed by Dunn's multiple comparison test
(testing each pair of groups for a given peptide; alpha = 0.05). The
adjusted p-value was reported for each test. In addition, the signifi-
cance level of 0.05 was adapted according to Bonferroni’s correction
for multiple testing. The alpha value 0.05 was divided by the number of
peptides tested (n = 71) leading to an adjusted significance level of
0.0007 (tests returning a p-value lower than 0.0007 are considered to
be significantly different). Correlations were calculated using the
Spearman rank correlation test (two-tailed, alpha = 0.05).

RESULTS

LC-MRM/MS Assay

In total, 315 peptides in replicate 1 and 404 peptides in
replicate two were considered to have a valid MS signal. As a
result, 185 proteins from the 200 in the assay (>90%) could be
quantified in either one or both replicates. CVs were calculated
for all measured peptides using the QC sample repeatedly
injected during each LC-MRM/MS sequence (supplemental
Table S5). As seen in Fig. 1A, more than half of the peptides
had a CV below 20% in both replicates. After exclusion of
4 Mol Cell Proteomics (2022) 21(11) 100416
peptides with a poor quality signal, the proportion of peptides
with a CV below 20% was 76% (238/315 peptides) in replicate
1 and 66% (265/404 peptides) in replicate 2. Not surprisingly,
there was a clear negative correlation between the MS signal
intensity and the CV value for a given peptide as shown in
Fig. 1B.

Markers Used in Clinic for Breast Tumor Classification

Data from proteins which are routinely assessed in clinical
pathology for breast tumor classification were used to eval-
uate the reliability of MRM assay measurements. MS results
obtained for peptides corresponding to HER2 (ERBB2), ER
(ESR1), and PR (PRGR) were showed to match the expected
protein expression pattern according to the breast cancer
subtype. (Figs. 2, A, B and S1). In TNBC samples, very low
levels of HER2, ESR1, and PRGR peptides were detected. In
the luminal A group, ESR1 and PRGR peptides were
expressed at high levels while HER2 peptides were measured
at low concentrations. Finally, in the group of HER2-amplified
tumors, a clear pattern of HER2 overexpression was
confirmed compared to TNBC and luminal A samples. This
group of HER2 overexpressing tumors actually comprised two
subgroups: HER2 tumors as well as HER2 positive luminal B
tumors. Luminal B tumors differ from strictly speaking HER2
tumors because they are hormone receptor-positive (i.e., they
express ESR1 and/or PRGR). This explains the range of
abundances measured for ESR1 and PRGR peptides in the
HER2-amplified tumor group (Figs. 2, A, B and S1). Further
analysis of these two subgroups confirmed that ESR1 and
PRGR peptides were measured at much higher levels in
luminal B samples compared to HER2 tumors (Figs. 3, A, B
and S2). Luminal B tumors represent a type of breast cancer
that differs from luminal A tumors by showing higher expres-
sion levels of the proliferation marker Ki-67. Ki-67 is routinely
measured for breast tumor characterization as it is an impor-
tant marker for predicting the prognosis of luminal breast
cancer (39). The MRM data generated here show that luminal
B tumors can be separated from luminal A tumors based on
the Ki-67 AQALEDLAGFK peptide level (Fig. 4A). Comparison
of MRM data for Ki-67 with protein expression measurements
by IHC showed a positive correlation (Fig. 4B). Data signifi-
cance decreased however after normalization for tumor con-
tent (Fig. 4, C and D). The correlation between IHC results and
MRM data was not determined for ER and PR since the dis-
tribution of IHC scores for these proteins was binary with
almost all values being either zero or eight and very few cases
having an intermediate score. It is noteworthy that a second
member of the estrogen receptor family, ESR2, was also
included in the MRM assay. However, the two corresponding
peptides were not detected in breast tumor extracts. This
result was coherent with data from the Human Protein Atlas
database (https://www.proteinatlas.org/ENSG00000140009-
ESR2/tissue, accessed 17.07.2020) which indicates that in

https://www.proteinatlas.org/ENSG00000140009-ESR2/tissue
https://www.proteinatlas.org/ENSG00000140009-ESR2/tissue
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contrast to ESR1, the ESR2 protein is not expressed in human
breast tissue.

Additional Breast Tumor Markers

LC-MRM/MS data were also obtained for other proteins of
interest for breast cancer characterization: EGFR, CK5, CK14,
and AR. EGFR is frequently overexpressed in TNBC and was
described as a potential therapeutic target for this disease
(40). In our MRM assay, EGFR was monitored using two
peptides but only one of the two returned a reliable signal.
Results obtained for this peptide showed significantly higher
levels in TNBC samples compared to luminal A tumors (p <
0.0001) (Fig. 5A). However, this difference was not statistically
significant anymore after normalization of MRM data by the
tumor content (Fig. 5C). EGFR levels were also elevated in
TNBC samples compared to HER2 tumors, but the difference
was not statistically significant. A positive correlation was
observed when MRM data for the EGFR peptide were plotted
against the Remmele score obtained using IHC for the EGFR
protein (Fig. 5, B and D).
CK5/6 and CK14 are markers of the basal breast cancer
subtype, which is very similar and greatly overlaps with the
triple-negative subtype (27, 29, 41). It should be noted that the
antibody used for IHC measurement of CK 5/6 does not
distinguish between the different human CKs 5, 6A, 6B, and
6C. In the MRM assay, CK5 (K2C5) was measured using three
peptides. CK6A and CK6B were not included in the assay
because the selected peptides yielded poor analytical data
during assay development. For CK14 (K1C14), two peptides
were initially selected but only one delivered reliable mea-
surements. The results for the CK5 and CK14 peptides
showed higher levels in TNBC compared to luminal A and
HER2 tumors, but the differences were not statistically sig-
nificant (supplemental Fig. S3). For both proteins, a positive
correlation was observed between MRM and IHC data. CK16
(K1C16) and CK17 (K1C17) showed a similar profile as CK5
and CK14 with very low levels measured in most HER2 and
luminal A samples while a wide range of concentrations was
found in the TNBC group (data not shown).
AR has been reported as elevated in hormone receptor-

positive tumors (42) and was also considered as a therapeutic
Mol Cell Proteomics (2022) 21(11) 100416 5
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FIG. 2. Peptide expression by MRM for the main breast cancer protein markers. Box plotsshowing the MS signal intensity without (A) and
with (B) normalization for the tumor content for the three main proteins used in the classification of breast tumors: receptor tyrosine-protein
kinase erbB-2 (ERBB2/HER2), estrogen receptor (ESR1) and progesterone receptor (PRGR) (n = 88). One peptide is shown for each protein.
Additional peptides are shown in the supplementary material. ERBB2 is increased in HER2 breast cancers whereas ESR1 and PRGR are
increased in HER2 and luminal A cancers compared to TNBC cancers. *** indicates p ≤ 0.0007, **** indicates p ≤ 0.0001. MRM, multiple reaction
monitoring; MS, mass spectrometry; TNBC, triple-negative breast cancer.

Multiplexed MRM Protein Assay in FFPE Cancer Tissue
target in breast cancer (43). AR was monitored with three pep-
tides in our assay but only one of them could be reliably
detected. No significant difference was observed for this pep-
tide between the three sample groups (supplemental Fig. S3).
We also measured several inflammation-related proteins

using the MS assay, including CD20, CD3, and CD4. These
proteins were found to be overexpressed in TNBCs and HER2
tumors compared to luminal A samples (supplemental
Fig. S4). Interestingly, CD3 and CD4 showed a significant
positive correlation with the level of tumor infiltrating lym-
phocytes (TILs) [r ranging from 0.6983 to 0.7940, p (two-tailed)
< 0.0001]. CD20 showed a positive but weak correlation with
TILs (r = 0.4311, p (two-tailed) < 0.0001). Interestingly, no
difference in expression was observed after normalization for
the tumor content. Significance of correlations was also
significantly decreased. Several other proteins related to the
inflammatory response, namely IFIT1, IFIT3, MX1, OASL,
OAS2, and OAS3, exhibited a similar pattern of expression
(supplemental Fig. S5).
6 Mol Cell Proteomics (2022) 21(11) 100416
Other Differentially Expressed Proteins

LC-MRM/MS analysis highlighted a number of other proteins
showing a clear pattern of differential expression between the
tumor groups. Among them, growth factor receptor-bound
protein 7 (GRB7), a plasma membrane protein involved in the
downstream signal transduction of several protein kinases,
including HER2, was found to be strongly overexpressed in the
group of HER2 amplified tumors (Figs. 6, A, B and S6). A
significant positive correlation was observed between HER2
and GRB7 for all peptides monitored (supplemental Table S6).
Another protein of interest was prolactin-inducible protein
(PIP), which was significantly overexpressed in luminal A tu-
mors compared to TNBC (p < 0.0001) (Figs. 6, A, B and S6).
Several proteins were identified as being frequently over-

expressed in TNBC tumors compared to the other tumor
groups. These proteins were measured at high levels in a large
proportion of the TNBC samples, while only low amounts were
detected in most, if not all, of the HER2 and luminal A tumors.
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FIG. 3. Estrogen and progesterone receptors in HER2 and luminal B tumors. Box plots showing the MS signal intensity for ESR1 and
PRGR peptides in HER2 tumors versus HER2 positive luminal B tumors without (A) and with (B) normalization for the tumor content (n = 20). ***
indicates p ≤ 0.0007, **** indicates p ≤ 0.0001. ESR1, estrogen receptor; MS, mass spectrometry; PRGR, progesterone receptor.

Multiplexed MRM Protein Assay in FFPE Cancer Tissue
A selection of proteins which showed increased expression in
samples from the TNBC group is shown in Figures 7, A, B and
S7. The list includes pentraxin-3 (PTX3), serpin B5/maspin,
tripartite motif-containing 29 (TRI29), synemin/desmuslin,
cadherin-3/P-cadherin, plakophilin-1, and phosphoserine
aminotransferase (SERC). We also report proteins with
decreased expression in TNBC compared to other tumors
including inositol polyphosphate 4-phosphatase type II
(INP4B), microtubule-associated protein tau (TAU), elastin
(ELN), mucin-1 (MUC1), arylamine N-acetyltransferase 1, and
melanophilin (Figs. 7, A, B and S8).

DISCUSSION

In this study, we developed multiplexed MRM methods for
the analysis of a large panel of tryptic peptides extracted from
FFPE breast cancer tissue samples. We obtained quantitative
data for 185 proteins selected based on their known or po-
tential association with TNBC and/or basal-like breast can-
cers. This represents, to our knowledge, the largest LC-MRM/
MS assay developed for targeted protein measurement in
FFPE tissues (12, 14, 44–47). These results are important
because they indicate that despite the technical challenge
represented by the sample preparation, tier two MRM assays
can be developed for the relative quantification of large
numbers of targeted proteins in FFPE tissue samples (48).
In this context, it was critical to show that relative changes

in protein expression could be measured precisely and
consistently across sample groups using the developed as-
says. We therefore integrated several quality checkpoints in
order to control sources of potential analytical bias and
Mol Cell Proteomics (2022) 21(11) 100416 7
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Multiplexed MRM Protein Assay in FFPE Cancer Tissue
achieve optimal analytical performance. The peptide extrac-
tion and the selection of peptides for the MRM assay were
based on established protocols (12, 31). Variation in the
amount of tumor material collected from tissue slices was
taken into account in the sample preparation protocol. The
goal was to obtain extracts with similar total peptide and
background matrix concentrations for injection into the mass
spectrometer. One of the inherent challenges with the
comparative analysis of tissue samples is indeed sample size
disparity. Our approach has the advantage of allowing direct
result comparison after normalization by the heavy-labeled
internal standards. Moreover, it also improves the reproduc-
ibility of MS analysis since ionization efficiency can be
affected by the concentration of the background matrix pro-
teins. Tumor samples were also randomized before peptide
extraction and analysis in order to have a homogeneous dis-
tribution of samples from the different groups in analytical
batches., In addition, a set of 12 reference peptides was used
8 Mol Cell Proteomics (2022) 21(11) 100416
to adjust precursor acquisition windows in the MRM assay
and to compensate for retention time shifts between chro-
matographic runs. Finally, a QC sample was used to evaluate
the imprecision of MRM signals measured for all peptides
during the analysis of the whole sample cohort. For the ma-
jority of proteins, we were able to monitor three proteotypic
peptides per protein with three transitions per peptide, which
represents a generally accepted standard for optimal analyt-
ical specificity (49, 50). However, using less than three pep-
tides as surrogate measurement for a protein is acceptable in
many cases, and adding more peptides might be needed only
for measuring different isoforms of a protein.
We also included an additional level of normalization of

MRM data based on the tumor content of the samples.
Indeed, breast tumor biopsies consist not only of neoplastic
cells but also contain multiple cell types such as fibroblasts,
leukocytes, adipocytes, and myoepithelial and endothelial
cells, which constitute the tumor microenvironment. The
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Multiplexed MRM Protein Assay in FFPE Cancer Tissue
percentage of tumor cells can thus vary largely between tumor
samples (from 20% to >90% in our study). This is therefore an
important factor to take into account. However, the breast
cancer microenvironment, including the local intratumor
environment, is known to play an important role in the
pathobiology of breast cancer (51) and it should not be
excluded from biomarker discovery studies. Accordingly, in
this work, we have considered both data with and data
without normalization for the tumor content for the evaluation
of protein markers. Necrosis, fibrosis, and calcification can
also be found in tumor biopsies of patients that have received
chemotherapy, but samples used in this work were from neo-
adjuvant treatment–naïve patients.
Results for proteins used in clinical pathology for breast

tumor classification served as another level of confirmation
that LC-MRM/MS provided reliable information. MRM data for
ESR1, PRGR, and HER2 were shown to be in agreement with
the corresponding IHC or CISH data and to match the clas-
sification of the HER2, luminal A, and triple-negative tumor
groups. In addition, in HER2 positive tumors, MRM data were
able to separate the luminal B and the HER2 tumor subgroups
based on ESR1 and PRGR peptide measurement. MRM data
also allowed us to distinguish luminal A from luminal B tumors
based on Ki-67 peptide level. Confirmation of the reliability of
LC-MRM/MS measurements also came from other proteins
such as GRB7 and PIP. For GRB7, MRM results were
consistent with the fact that this protein is coexpressed with
HER2 in breast tumors and is involved in the same pathway
(52, 53). For PIP, our findings correlated with previous
research showing that this protein is increased in hormone
receptor–positive breast cancer but usually not expressed in
normal breast tissue (54). In that case, intermediate
Mol Cell Proteomics (2022) 21(11) 100416 9
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FIG. 6. GRB7 and PIP. Box plots showing the MS signal intensity for GRB7 and PIP peptides across HER2, luminal A and TNBC breast
cancers without (A) and with (B) normalization for the tumor content (n = 88). **** indicates p ≤ 0.0001. GRB7, growth factor receptor-bound
protein 7; MS, mass spectrometry; PIP, prolactin-inducible protein; TNBC, triple-negative breast cancer.

Multiplexed MRM Protein Assay in FFPE Cancer Tissue
expression patterns observed in HER2 overexpressing tumors
for PIP can be explained by the fact that this group of samples
was composed of HER2 tumors, which are hormone-receptor
negative, and HER2 positive luminal B tumors, which are
hormone-receptor positive.
Another interesting question was the comparison of LC-

MRM/MS results with data obtained by IHC, the classical
method used in clinical pathology for the assessment of
protein markers expression in tissue. This was evaluated for
Ki-67, EGFR, CK5, and CK14. A positive correlation was found
between IHC results and MRM data for these proteins. How-
ever, the correlation was in many cases weak, which is not
unexpected for two methods with highly different analytical
10 Mol Cell Proteomics (2022) 21(11) 100416
principles. It is noteworthy that for proteins such as ER and
PR, for which IHC yielded almost binary results (Remmele
score of 0 or 8), LC-MRM/MS was able to provide a wide
range of results. These data suggest that MRM analysis was
able to distinguish fine differences in protein levels which were
not necessarily reportable by IHC. In addition, for CKs, LC-
MRM/MS allowed to specifically measure CK5 peptides
while the antibody used for IHC cannot distinguish between
human CK5 and CK6 isoforms. In contrast, we were not able
to measure CK6A and CK6B by MRM since the corresponding
peptides did not achieve the required analytical quality stan-
dards during assay development. This underlined the fact that
IHC and LC-MRM/MS data are not directly comparable and
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FIG. 7. Proteins overexpressed in TNBC tumors. Box plots showing the MS signal intensity for PTX3, SPB5, and INP4B peptides across
HER2, luminal A, and TNBC breast cancers without (A) and with (B) normalization for the tumor content (n = 88). **** indicates p ≤ 0.0001. INP4B,
inositol polyphosphate 4-phosphatase type II; MS, mass spectrometry; SPB5, serpin B5/maspin; PTX3, pentraxin-3; TNBC, triple-negative
breast cancer.

Multiplexed MRM Protein Assay in FFPE Cancer Tissue
that both techniques provides complementary information on
tissue protein expression. Another parameter used in clinical
pathology, TILs, was found to correlate with MS data. TILs
correspond to all lymphocytic cell populations that have
invaded the tumor tissue. A strong correlation with TILs was
observed for peptides from CD4 and CD8, which are surface
markers of T lymphocytes. The correlation was weaker for
CD20, a surface marker of B lymphocytes. These data are in
line with the fact that most tumor infiltrating lymphocytes in
breast cancers are T-cells (55). Interestingly, the differences
observed between tumor groups for these proteins, as well as
the correlation with TILs, were strongly decreased after
normalization by the tumor content, which was fully consistent
with the fact that immune cells belong to the tumor microen-
vironment. These results constitute a strong argument for
analyzing MRM data with and without normalization by the
tumor content, as previously discussed.
Since TNBC represents a group of tumors of particular in-

terest for biomarker discovery, we also focused our attention
on finding potential novel protein markers with differential
expression in TNBC samples. For these proteins, we
evaluated whether our results were in agreement with previous
literature in order to, again, assess the reliability of MRM
measurements. PTX3, SBP5, and TRI29 are proteins for which
we found higher peptide levels in TNBCs compared to luminal
A and HER2 tumors. PTX3 is involved in innate immunity,
inflammation, and tissue repair with a potential role in various
cancer processes (56), in particular in molecular pathways
related to metastasis and recurrence of breast cancers (57,
58). PTX3 was identified by gene expression profiling as being
differentially expressed in TNBC samples compared to luminal
A, luminal B, and HER2 tumors (59). Increased expression of
PTX3 was also detected in high-grade ductal infiltrating car-
cinomas (60) and in basal-like breast cancers where it was
shown to promote stem cell-like traits and was associated
with a poor prognosis (61). The second example, SBP5, is a
protein with a wide range of biological activities that was
described as a tumor suppressor (62, 63). However, its
different roles in cancer processes are not yet clearly under-
stood (64). Our results corroborated previous reports
describing expression of SBP5 in breast cancers with
aggressive phenotype, poor prognosis, and early relapse
Mol Cell Proteomics (2022) 21(11) 100416 11



Multiplexed MRM Protein Assay in FFPE Cancer Tissue
(65–68) and in TNBC FFPE tissue samples, where it correlated
with basal markers (69). TRI29 was also described as a po-
tential tumor suppressor (70–72). In line with our results, TRI29
expression was found to be decreased in luminal A, luminal B,
and HER2 tumors but not in basal-like tumors where its
expression was similar to normal breast tissues (73). In
contrast, peptides from INP4B, TAU, and MUC1 were found to
be decreased in TNBC samples. INP4B is involved in the same
signaling pathway as PTX3 and acts as a tumor suppressor by
inhibiting PI3K/Akt signaling (74). Suppression of INP4B
expression is a common feature in TNBC and basal-like breast
cancers (75–77). For the microtubule-associated protein TAU,
our results were in accordance with a study where 70% of
TNBC tumors were found to be TAU negative while 75% of
luminal HER2 negative and 57% of HER2 positive tumors
were TAU positive (78). In addition, high TAU protein expres-
sion was identified as a prognostic factor of good outcome in
breast cancer (79). The last example was MUC1, a well-known
oncoprotein expressed in most breast tumors. In the literature,
an association was described between ER positivity and high
levels of MUC1 expression (80, 81). Other studies showed that
the association with ER and PR positivity was depending on
the MUC1 immunoreactivity localization pattern while nega-
tivity for MUC1 expression was associated with ER and PR
negativity and the TNBC subtype (82, 83).
Proteins showing a decreased expression in the luminal A

samples compared to the HER2 and TNBC groups were also
identified, namely SERC, an enzyme involved in amino acid
metabolism. This observation corroborates findings from a
previous study where SERC was found to be upregulated in
ER-negative breast cancers (84). In addition, upregulation of
enzymes of the serine protease pathway was a feature
observed in a majority of TNBCs, and suppression of SERC
expression suggested that this protein plays a role in pro-
cesses promoting metastasis (85). ELN, a protein of the
extracellular matrix, had an opposite expression profile. ELN
production is altered in some breast tumors leading to ELN
deposition and degradation, a phenomenon called elastosis.
Elastosis was found to be correlated with ER positivity in
breast tumors (86–88). This feature is in agreement with the
peptide expression pattern measured by MS: low levels in
TNBC samples, high levels in luminal A samples, and inter-
mediate levels in the HER2 group [the HER2 group is
composed of strict HER2 breast tumors (ER and PR negative)
and luminal B tumors].
Taken together, these results indicate that LC-MRM/MS is a

powerful tool for the relative quantification of large numbers of
candidate protein markers in FFPE tissues. In particular, the
use of a targeted mass spectrometric approach to probe a
finite list of targets greatly simplifies the statistical evaluation
whether protein levels vary in relation to disease hallmarks.
Targeted MS analysis is a highly quantitative approach, which
can provide a measure for protein expression over a dynamic
range of several orders of magnitude. This wide dynamic
12 Mol Cell Proteomics (2022) 21(11) 100416
range represents a clear advantage over IHC. In this study, we
used only a crude preparation of the isotopically labeled
standards for cost reasons, which allowed to perform relative
quantification of analytes only. Inclusion of highly purified
peptides of known quantity in the MRM assay would open the
way for measuring absolute concentrations of the target
peptides. It would also permit MRM data comparison between
laboratories. That implies however to develop and validate
protocols for calibration and proper standardization when
working with FFPE tissue samples. On the other hand, the
method we used here only offers low spatial resolution. For
this study, the entire tumor area was macrodissected, which
does not provide any information on tissue and cellular dis-
tribution of the protein markers. This aspect could be
improved by performing peptide extraction on subparts of the
tumor or even using laser-capture microdissection but at the
cost of sensitivity and assay throughput.
Based on these considerations, we believe that targeted

assays based on LC-MRM/MS should be considered as a
valuable screening approach for the multiplexed quantification
of putative protein markers in FFPE tissue samples. Impor-
tantly, this technique enables a higher throughput testing of
proteins than IHC without the additional burden of developing
costly immunological reagents. The presented method pro-
vides a blueprint to select potential biomarkers, which will be
confirmed in larger studies using, e.g., antibody-based tech-
niques. Such biomarker discovery pipelines will become
increasingly essential to support the growing need for bio-
markers in the era of Personalized Health Care.
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