
����������
�������

Citation: Syed Azhar, S.N.A.; Ashari,

S.E.; Zainuddin, N.; Hassan, M.

Nanostructured Lipid

Carriers-Hydrogels System for Drug

Delivery: Nanohybrid Technology

Perspective. Molecules 2022, 27, 289.

https://doi.org/10.3390/

molecules27010289

Academic Editors: Edson

Cavalcanti da Silva Filho, Alessandra

Braga Ribeiro, Leticia M. Estevinho

and Rita Cortesi

Received: 21 November 2021

Accepted: 31 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Nanostructured Lipid Carriers-Hydrogels System for Drug
Delivery: Nanohybrid Technology Perspective
Sharifah Nurfadhlin Afifah Syed Azhar 1,2, Siti Efliza Ashari 1,3,*, Norhazlin Zainuddin 2 and Masriana Hassan 4

1 Integrated Chemical BioPhysics Research Centre (iCheBP), Faculty of Science, Universiti Putra
Malaysia (UPM), Serdang 43400, Selangor, Malaysia; snurfadhlin@gmail.com

2 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM),
Serdang 43400, Selangor, Malaysia; norhazlin@upm.edu.my

3 Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia (UPM),
Serdang 43400, Selangor, Malaysia

4 Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM),
Serdang 43400, Selangor, Malaysia; masriana@upm.edu.my

* Correspondence: ctefliza@upm.edu.my

Abstract: Advanced hybrid component development in nanotechnology provides superior function-
ality in the application of scientific knowledge for the drug delivery industry. The purpose of this
paper is to review important nanohybrid perspectives in drug delivery between nanostructured lipid
carriers (NLC) and hydrogel systems. The hybrid system may result in the enhancement of each
component’s synergistic properties in the mechanical strength of the hydrogel and concomitantly
decrease aggregation of the NLC. The significant progress in nanostructured lipid carriers–hydrogels
is reviewed here, with an emphasis on their preparation, potential applications, advantages, and
underlying issues associated with these exciting materials.
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1. Introduction

The structural combination of a polymer hydrogel network and a nanoparticle (e.g.,
metals, nonmetals, metal oxides, and polymeric moieties) possesses the capability of pro-
viding superior functionality to the composite material. It has been demonstrated that
this combination has practical applications in various fields such as catalysis, electronics,
bio-sensing, drug delivery and environmental remediation. Furthermore, the hybridiza-
tion of the two compounds may enhance the synergistic properties of each component.
For instance, the mechanical strength of the hydrogel could simultaneously decrease the
nanoparticle’s aggregation, making it more stable and more efficient. As a result of these
mutual benefits and the associated potential applications, multidisciplinary research groups
have shown a surge of interest in the last decade [1]. Because of their differences in proper-
ties when compared to bulk materials, nanoparticles are now widely being used in everyday
consumer products and appliances. This trend has sparked public debate about the safety
of nanoparticle technology, and regulatory authorities in several countries have stepped
in on this issue [2]. The advantages of a nanoscale drug delivery system are numerous
and include a targeted delivery method that allows for enhanced drug concentration at
the intended place while decreasing systemic exposure to a potentially toxic chemical. In
addition, a nanoscale drug delivery system offers a consistent rate of drug administration
and an improvement in drug stability owing to drug degradation and loss prevention [3].

Lipidic drug delivery systems have gained attention in recent decades due to their
biocompatibility as well as their ability to permeate challenging physiological barriers,
particularly the blood–brain barrier (BBB), due to their lipophilicity, even without surface
modifications. Additionally, the simplicity of preparation, cost-effectiveness, and prac-
ticality of large-scale manufacturing make these delivery methods more appealing [4].
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Lipid carriers can be categorized into various types depending on their method of prepara-
tion and physicochemical characteristics. They include liposomes, niosomes, solid lipid
nanoparticles and nanostructured lipid carriers.

Currently, a variety of nanostructured lipid carriers (NLC) formulations have been
approved because they not only demonstrated enhanced loading efficiencies but also
improved stability and prevented drug ejection during storage. Improved loading efficiency
is attained in the case of hydrophobic drugs due to the natural tendency of certain drugs to
dissolve in liquid better than solid lipids, and it has already been established that increased
drug solubility leads to higher loading efficiencies [5]. In the case of hydrophilic drugs, on
the other hand, a lipid conjugation strategy is used, in which the drug’s functional group
(e.g., amine group) is conjugated with the functional group (e.g., carboxylic acid group) of
lipids like oleic acid by carbodiimide or another sort of chemistry [6].

Most of the lipids used for the manufacture of these particles are of the Generally
Recognized as Safe (GRAS) category and have low toxicity concerns. However, the de-
velopment of NLC systems may include screening of various components such types of
solid lipids, types of liquid lipids, ratios of solid to liquid lipids and types of surfactants.
Due to the availability of a wide range of lipids, oils and surfactants, screening of these
components is a cumbersome process. Apart from development, NLC are also associated
with some serious quality issues such as polymorphic changes in lipids, gelation, presence
of supercooled melts, presence of different colloidal species and sterilization stability [7].
The challenges and concerns of applying NLC in drug delivery could be overcome by incor-
porating them into hydrogels, resulting in lower risks to human health and maximizing the
sustained release of the drug. The preparation, advantages and limitations of a nanohybrid
system between nanostructured lipid carriers and hydrogels is further discussed in this
work.

2. Nanostructured Lipid Carriers

Nanostructured lipid carriers (NLC) are lipid nanoparticles of the second generation
made up of solid lipid matrices mixed with liquid lipids (oils) [8]. NLC are typically
between 200 and 400 nm in size. The different nanosizes of NLC are determined by different
preparation techniques. Long-term flocculation and creaming have been demonstrated to
make the upper nanosize range > 700 nm less stable. Producing sizes smaller than 200 nm
necessitates higher surfactant concentrations, which are often undesirable in formulations.
However, NLC with a size of 100 nm frequently have problems because they recrystallize.
However, for some applications, NLC with a size of 100 nm are of particular interest due
to their superior ability to penetration into the skin. To address this, Baiseng et al. (2013)
developed a method for matching the lipid phase’s required hydrophilic–lipophilic balance
(HLB). NLC can strongly immobilize drugs and prevent particles from coalescing due to
their solid matrix [9,10]. Consequently, the mobility of the incorporated drug molecules is
greatly reduced in the solid phase. In addition, the liquid oil droplets in the solid matrix
increase the drug loading capacity, while the less ordered lipid matrix allows better drug
accommodation [11]. Figure 1 depicts the composition of nanostructured lipid carriers
(NLC).

2.1. Preparation of Nanostructured Lipid Carriers (NLC)

In order to prepare of NLC, various formulation approaches exist, which include
high-pressure homogenization (HPH) [12–14], solvent emulsification-evaporation [15],
phase inversion [16], high speed homogenization and/or ultrasonication [17], and solvent
injection [18]. The main advantages and limitations of these preparation techniques have
been discussed in Table 1.
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Table 1. Preparation method of NLC with its advantages and limitations.

Method Advantages Limitations References

High pressure
homogenization

(HPH)

A well-known and widely used technique.
It is a simple and low-cost technique.

Product with a more homogeneous particle
size distribution and better overall stability.
Both aqueous and non-aqueous dispersion

media are employed.

It is not possible to completely
avoid drug exposure to high

temperatures.
Incompatible with

thermolabile drugs.

[12–14,19]

Solvent
emulsification-evaporation Large-scale production is feasible. Uses organic solvent [15]

Phase inversion
It is related to the two procedure.

The inversion procedure needs three
temperature cycles (85–60–85 ◦C).

Cumbersome technique [16]

High speed homogenization
and/or

ultrasonication

Low particle size: 30–180 nm
Low shear stress

Metal shading leads to
contamination

Energy intensive process
[17]

Solvent
injection/displacement

Easy handling and fast production process
Lipids are dissolved in water

missicible solvent
Use organic solvent [18]

2.1.1. High-Pressure Homogenization (HPH)

HPH technology has proven itself as a reliable and effective method for producing
lipid nanoparticles. This approach may also be employed for large-scale manufacturing,
unlike previous ones. There were two types of homogenization methods developed: hot
and cold. In both methods, the pharmaceutical ingredient is dissolved or disseminated
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in melted lipid prior to HPH. The fluid in the homogenizer is moved by high pressure
(100–2000 bar). The average particle size is sub-micron. Homogenization offers various
advantages, including large-scale manufacturing, the lack of organic solvent, increased
product stability, and enhanced drug loading, but it is difficult to use due to high pressure
and temperature conditions [19].

2.1.2. Solvent Emulsification–Evaporation

The lipid is dissolved in a water-insoluble organic solvent in this procedure. Following
that, an emulsion in an aqueous phase with surfactant is created. Evaporation under
lower pressure is used to remove the solvent from the emulsion. Evaporation causes
nanoparticles to disperse in the aqueous phase (using lipid precipitation process in the
aqueous phase). This approach, unlike cold homogenization, will not be subjected to
thermal stress; nonetheless, the organic solvent utilized in this process is a drawback. The
particle size varies depending on the solid lipid and surfactant [15].

2.1.3. Phase Inversion

Transformation of an o/w type to a w/o type of emulsion is termed “phase inversion”.
It can be induced by changing the temperature, and the temperature at which the inversion
occurs is referred to as the PIT. This technique mainly depends on the change in the
properties of polyoxyethylated surfactants at different temperatures. The hydrophilic–
lipophilic balance (HLB) value of surfactants defined by Griffin is valid at 25 ◦C. At this
temperature, the hydrophilic parts of the surface-active compounds are hydrated to a
certain extent. Moreover, the dehydration of the ethoxy groups occurs when an increase
in temperature. Thus, the lipophilicity of the molecules of the surface-active compounds
rises with the decrease in HLB value. At a certain point, the surface-active compounds
with affinity to the aqueous and lipid phase are equal—this temperature is called the phase
inversion temperature. In this method, lipid, drug, water and surfactant are mixed together
by magnetic stirring, and three heating and cooling cycles are performed. The mix is then
diluted with cold water causing phase inversion of the emulsion and breaking, which
results in the NLC [16].

2.1.4. High Speed Homogenization and/or Ultrasonication

Lipid nanoparticle dispersions are obtained by dispersing the melted lipid in the warm
aqueous phase containing surfactants by high sheer homogenization followed by ultrasoni-
cation. This method primarily involves heating of a solid lipid to approximately 5–10 ◦C
above its melting point. The lipid melt is dispersed in an aqueous surfactant solution at the
same temperature under high-speed stirring to form an emulsion. Subsequent sonication
reduces the droplet size of the emulsion. Gradual cooling of the warm emulsion below the
crystallization temperature of the lipid yields a lipid nanoparticle dispersion. Concentrated
lipid nanoparticle dispersions can be obtained by ultracentrifugation [15,17].

2.1.5. Solvent Injection/Displacement

In the solvent injection method, lipids are dissolved in a water-miscible solvent like
acetone, isopropanol, and methanol water-miscible solvent mixture and quickly injected
into an aqueous solution of surfactants through an injection needle. The gradual solvent
diffusion out of lipid-solvent droplets into water causes reduction of droplet size and
simultaneously increases lipid concentration. In addition, the diffusion of pure solvent
from the lipid-solvent droplet causes local variations in the interfacial tension at droplet
surface, inducing reduction of particle size of NLC [18].

2.2. Advantages and Limitations of Nanostructured Lipid Carriers

In terms of drug release, stability, and dispersion in long-term storage, NLC out-
perform the first generation of lipid nanoparticles, which are solid lipid nanoparticles
(SLN) [7]. The unique preparation of NLC using a different blending of solid lipids with
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liquid lipids (oils) results in a lipid particle-matrix with a lower melting point than the
original solid lipid. Nevertheless, this matrix remains solid at body temperature [11]. The
solid lipid undergoes polymorphic changes in the SLN system, such as recrystallization
in a low melting, less stable modification and change to a more stable modification over
time. The drug can be expelled due to changes in the crystalline structure, resulting in the
precipitation of large drug crystals in the water phase.

To address this issue, adding oil to a lipid can prevent the lipid from re-crystallizing
in a less stable form, as demonstrated in a few studies [20,21]. As a result, no changes in
modification occur in NLC over time, and thus, no drug expulsion is obtained [22]. As no
sophisticated equipment is required, the preparation of NLC is significantly less expensive
and cost effective. Furthermore, NLC have a high drug loading and drug release that the
particle-matrix material could modulate. As a result, the release of the drug is controlled
and is not limited or solely determined by size. NLC have a clear benefit in terms of low
toxicity value for their market, as they could be made from orally accepted lipids and
surfactants, allowing for concept development. Lipid nanoparticles could also be useful
for intraocular delivery via injection. Previous research has shown that NLC particles are
biodegradable and have excellent tissue tolerability when injected into chickens [23].

Furthermore, autoclaving can be used to sterilize lipid nanoparticle suspensions. Dur-
ing the process, the particles melt and re-crystallize. As a result, they meet the essential
requirements for sterile, biodegradable, and tissue-tolerable intraocular formulations. How-
ever, this technique has some limitations. NLC require a strong dilution of the particle
dispersion that often yields less than 1% particles and the need to remove organic solvent
residues. The main barrier to industrial use is the possibility of obtaining very low con-
centrated particle suspensions. In addition, many final products, such as tablets, require
excessive water to be removed [24].

3. Hydrogels

Hydrogels are three-dimensional cross-linked polymer networks that absorb a large
amount of water when placed in an aqueous solution [25]. This unique feature makes them
soft and wet materials with both solids and liquids characteristics, such as a large amount
of free water and potentially soluble molecules that can diffuse in and out of the gels. These
polymers have good swelling properties in addition to non-toxicity, biocompatibility, and
biodegradability. Due to their three-dimensional cross-linked hydrophilic networks, which
can hold large amounts of water (typically in the range of 30–90%) [26]. Because of their
wide variety of biocompatible matrices and biologically active materials such as chitosan,
cellulose, starch, alginate, and neutralized polyacrylic acid (PAA), hydrogel-based wound
dressings are currently of great interest to scientists all over the world [27–29].

Hydrogels can be made from two types of polymers: synthetic polymers or natural
polymers. Synthetic polymers are generally water-soluble materials that dissolve, disperse,
or swell in water, changing the physical properties of aqueous systems by gelation, thicken-
ing, or emulsification/stabilization. These polymers are often composed of repeating units
or blocks of units containing hydrophilic groups (nonionic, anionic, cationic, or amphoteric)
as substituents or incorporated into the polymer chains [30]. PEG (poly (ethylene glycol))
is a valuable synthetic polymer with a high solubility in organic solvents. Furthermore,
PEG is appropriate for biological applications because of its aqueous solubility and low
intrinsic toxicity. When coupled with hydrophobic medicines or carriers, PEG’s strong
hydrophilic nature increases their solubility. It improves the physical and chemical stability
of pharmaceuticals and inhibits drug aggregation in vivo and during storage [31].

Moreover, polyacrylic acid (PAA) is a biodegradable, water-soluble polymer that has
a variety of commercial uses, including super adsorption and water treatment. PAA is
remarkable in that it occurs as a liquid at pH 5 and as a gel at pH 7. Cation permeation into
the gelled polymer turns it back to a liquid. It is suitable as a medication delivery vehicle for
ocular administration of ribozymes to the corneal epithelium [32]. PAA-based polymers are
mostly employed in oral and mucosal contact applications such controlled release tablets,
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oral solutions, and bio-adhesives. They are also employed in low viscosity systems for
topical treatments as thickening, suspending, and emulsion stabilizing agents [33].

The structure of polyvinyl alcohol (PVA) includes a hydroxyl group. It is produced by
polymerizing vinyl acetate to polyvinyl acetate (PVAc), which is subsequently hydrolyzed
to produce PVA [34]. PVA is soluble in water, Dimethyl Sulfoxide (DMSO), Ethylene
Glycol (EG), and N-Methyl Pyrrolidone (NMP) [32]. The most significant solvent for
PVA is water. Degree of polymerization (DP), hydrolysis, and solution temperature all
influence PVA solubility in water. Any change in these three parameters influences the
degree and nature of hydrogen bonding in aqueous solutions and hence PVA solubility.
Temperature, concentration, percent hydrolysis, and molecular weight of PVA affect its
solubility, viscosity, and surface tension [35]. Because PVA hydrogels are non-toxic, non-
carcinogenic, and bioadhesive, they have been employed in a variety of biological and
pharmacological applications [36]. PVA also has a high degree of swelling in water (or
biological fluids) as well as a rubbery and elastic quality, and thus, it closely resembles real
tissue and is easily absorbed by the body. PVA gels have been applied in contact lenses,
prosthetic heart linings, and drug delivery systems [37].

Natural polymers, on the other hand, are typically made up of protein and extracellular
matrix components, as well as natural material derivatives. Chitin and chitosan are widely
employed in a variety of sectors, including food processing, waste management, medicine,
biotechnology, and pharmaceuticals. Since it is biodegradable, biocompatible, and less
toxic, chitosan has been extensively utilized as a formulation excipient in pharmaceutical
applications. It has been utilized as a mucoadhesive, an oral absorption enhancer, and in
the delivery of protein and genes [38]. However, chitin and chitosan have the disadvantage
of being difficult to dissolve in water and at a neutral pH. As a result, many researchers
have used chemical modification to create water soluble chitosan and chitosan derivatives.
These chemical changes cause hydrophilic chitin or chitosan to develop, which has a higher
affinity for water or organic solvents [39]. Chemical modification has overcome chitosan
and chitin’s limited solubility. For example, carboxymethylation of chitosan results in the
creation of N-carboxymethylchitosan (N-CMC), which is soluble in a wide pH range. Due
to their affinity towards metal ions, chitin and chitosan derivatives are also commonly
used in the treatment of industrial wastewater. N-CMC has been widely employed in
the pharmaceutical industry to provide controlled release of pharmaceuticals, orthopedic
devices, and connective tissue [40].

Chondrus crispus, Eucheuma cottonii, and Eucheuma spinosum are the primary
sources of carrageenan. It is a natural component derived from specific species of red sea-
weed (Rhodophyceae). It is composed of repeating galactose units and 3,6-anhydrogalactose
(3,6-AG), both sulfated and non-sulfated, linked by alternating (1-)-and (1-4)-glycosidic
connections. In hard and soft gel capsules, carrageenan is thought to be a good alternative
for gelatin (an animal-based substance). The inclusion in a glycerin-water combination
hides the chalkiness of ant-acid gels. It can be utilized in both topical and suppository
formulations. Carrageenan is utilized in hand lotions and shampoos as a thickening agent,
encouraging healthy skin and hair. Carrageenan possesses distinct features such as vis-
cosity, continuous phase gel formation, and specialized interactions with abrasives [41,42].
Figure 2 shows the schematic diagram of hydrogel.



Molecules 2022, 27, 289 7 of 22

Molecules 2022, 27, x FOR PEER REVIEW 7 of 24 
 

 

nation hides the chalkiness of ant-acid gels. It can be utilized in both topical and suppos-
itory formulations. Carrageenan is utilized in hand lotions and shampoos as a thickening 
agent, encouraging healthy skin and hair. Carrageenan possesses distinct features such as 
viscosity, continuous phase gel formation, and specialized interactions with abrasives 
[41,42]. Figure 2 shows the schematic diagram of hydrogel. 

 
Figure 2. Schematic diagram of hydrogels: (a) structural composition of hydrogels; (b) examples of 
natural polymers networks (clockwise from top right) chitosan from shrimp waste, cellulose from 
oil palm biomass, and alginate from brown algae (created and modified with biorender.com (ac-
cessed on 2 October 2021) and adapted from [43–46]). 

3.1. Preparation of Hydrogel 
Hydrogels can be made from almost any water-soluble polymer, and they can have 

a wide range of chemical compositions and bulk physical properties. Furthermore, hydro-
gels can be manufactured in a variety of physical forms, such as slabs, microparticles, na-
noparticles, coatings, and films. As a result, hydrogels are commonly used in clinical prac-
tice and experimental medicine for a wide range of applications, including tissue engi-
neering and regenerative medicine [47], diagnostics [48], cellular immobilization [49], sep-
aration of biomolecules or cells [50], and barrier materials to regulate biological adhesions 
[51]. Hydrogels’ distinct physical properties have sparked particular interest in their use 
in drug delivery applications. Controlling the density of cross-links in the gel matrix and 
the affinity of the hydrogels for the aqueous environment in which they are swollen allows 
them to easily tune their highly porous structure. 

Their porosity also allows drugs to be loaded into the gel matrix and be released at a 
rate determined by the diffusion coefficient of the small molecule or macromolecule 
through the gel network. Indeed, the advantages of hydrogels for drug delivery may be 
primarily pharmacokinetic, in that a depot formulation is created from which drugs 
slowly elute, maintaining a high local concentration of drug in the surrounding tissues for 
an extended period of time, though they can also be used for systemic delivery. Hydrogels 
are also generally biocompatible, as evidenced by their effective use in the peritoneum 
and other sites in in vivo [52]. The high water content of hydrogels and their physico-
chemical similarity to the native extracellular matrix, both compositionally (particularly 

Figure 2. Schematic diagram of hydrogels: (a) structural composition of hydrogels; (b) examples of
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palm biomass, and alginate from brown algae (created and modified with biorender.com (accessed
on 2 October 2021) and adapted from [43–46]).

3.1. Preparation of Hydrogel

Hydrogels can be made from almost any water-soluble polymer, and they can have a
wide range of chemical compositions and bulk physical properties. Furthermore, hydrogels
can be manufactured in a variety of physical forms, such as slabs, microparticles, nanopar-
ticles, coatings, and films. As a result, hydrogels are commonly used in clinical practice
and experimental medicine for a wide range of applications, including tissue engineering
and regenerative medicine [47], diagnostics [48], cellular immobilization [49], separation
of biomolecules or cells [50], and barrier materials to regulate biological adhesions [51].
Hydrogels’ distinct physical properties have sparked particular interest in their use in
drug delivery applications. Controlling the density of cross-links in the gel matrix and the
affinity of the hydrogels for the aqueous environment in which they are swollen allows
them to easily tune their highly porous structure.

Their porosity also allows drugs to be loaded into the gel matrix and be released at
a rate determined by the diffusion coefficient of the small molecule or macromolecule
through the gel network. Indeed, the advantages of hydrogels for drug delivery may be
primarily pharmacokinetic, in that a depot formulation is created from which drugs slowly
elute, maintaining a high local concentration of drug in the surrounding tissues for an
extended period of time, though they can also be used for systemic delivery. Hydrogels are
also generally biocompatible, as evidenced by their effective use in the peritoneum and
other sites in in vivo [52]. The high water content of hydrogels and their physicochemical
similarity to the native extracellular matrix, both compositionally (particularly in the case
of carbohydrate-based hydrogels) and mechanically, promote biocompatibility. To design
biodegradability or dissolution into hydrogels, enzymatic, hydrolytic, or environmental
(e.g., pH, temperature, or electric field) pathways can be used. Degradation, however, is
not always desirable depending on the time scale and location of the drug delivery device.
Hydrogels are also malleable, which allows them to conform to the shape of the surface to
which they are applied [53].

The preparation of hydrogels can be divided into physical cross-linking and chemical
cross-linking. The effect of cross-linking determines the physical and chemical properties

biorender.com
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and functions of the hydrogel. Crosslinking is the most critical step in preparing hydrogel
to hold the 3D structure and improve hydrogels’ physical and mechanical properties [54].
Table 2 summarizes the preparation method of hydrogel with its advantages and limitations.

3.1.1. Physical Cross-Linking

In the preparation of hydrogel, physical crosslinking has been an interesting tech-
nique due to the type of crosslinking agents used. In drug delivery systems, the physical
crosslinking preparation was usually selected since it does not interrupt the living organism
and improves the hydrogel structures [55]. There are various techniques used in physical
cross-linking as describe below.

Ionic Interaction

Metal-ligand interaction, which is based on the dynamic interaction of oppositely
charged groups, is an efficient method of carrying out ionic interactions. Ionic interac-
tion produces hydrogels with high ionic conductivity, fatigue resistance, environmental
response, and self-healing properties. However, the poor mechanical properties and
complex preparation process of hydrogels formed by ionic interactions continue to be
the main issues preventing their further application [56]. At the moment, an increasing
number of researchers are concentrating on developing new hydrogels to address these
issues. For example, negatively charged monomer acrylic acid (AAC) and positively
charged 2-hydroxypropyl trimethylammonium chloride chitosan (HACC) interact to form
a high-density dynamic ionic bond of the PAAC/HACC hydrogel’s compact structure.
The structure gives the hydrogels good mechanical properties, ionic conductivity, and
self-healing properties.

The ionic conductivity is sufficient to transfer bioelectrical signals and electrical stim-
ulation for cell proliferation and differentiation to the human body [57]. Liu et al. 2018
used a dynamic ionic bond cross-linking to create CNF/G/Ag0.5 interpenetrating polymer
network hydrogels (IPN). The hydrogels clung to the wound’s surface, causing platelet
aggregation. Gelatine can promote erythropoiesis and increase the number of platelets and
white blood cells to prevent bleeding, and modified cross-linked hydrogels can increase
water absorption efficiency and decrease water vapour diffusion, resulting in a decrease in
water vapor transmission rate (WVTR) to maintain an appropriate balance of fluids on the
wound bed [58].

Hydrogen Bond

The utilization of hydrogen bonds is frequently required, and hydrogen bonding
can considerably increase hydrogel self-repair and self-recovery capacities [59]. However,
because hydrogen bonds are generally fragile in aquatic environments, hydrogels with
poor usage rates are common. Researchers are now working to increase the impact of
hydrogen bonding by creating double network hydrogels or IPN hydrogels [60]. On the
basis of numerous hydrogen bond interactions, Bi et al. created physically cross-linked
chitosan-polyvinyl alcohol double network hydrogels. Hydrogels can be spontaneously
recreated after being destroyed because the hydrogen bond interaction is a dynamic inter-
action. Physical cross-linking hydrogels are also biodegradable and cell compatible [61].
Zhao et al. promoted sodium alginate (SA) self-assembly in the polyacrylamide (PAM)
porous matrix via hydrogen bonding. Polyacrylamide/sodium alginate (PAM-SA) semi-
interpenetrating polymer network hydrogels exhibit strong mechanical characteristics as
well as high self-healing efficiency at room temperature due to hydrogen bond interaction.
This feature can help the hydrogels last longer in various applications, especially under
extreme conditions [62].

Freeze-Thawing

One of the most frequent techniques of physical crosslinking is the freeze–thaw pro-
cedure. The generated ice crystals arrange the polymer chains around themselves during
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the freezing phase of the cycle. The ice crystals melt to produce a microporous structure
throughout the cycle’s thawing process [63]. For varied pore sizes, mechanical strengths,
morphology, or other features, the duration, temperature, number of cycles, and amount of
polymer components can be adjusted during the freeze-thaw process. The soft, flexible, and
changeable porosity of freeze-thaw hydrogels can mimic extracellular matrix (ECM), and
stem cells put on it can sense and respond to dynamic changes in ECM stiffness and respond
and move in a directed way, which is critical for recruiting cells for wound healing [64].

Chemical Cross-Linking

Chemical cross-linking is currently used to make the majority of hydrogel polymers.
Chemically cross-linked hydrogels are frequently more stable and have better mechanical
characteristics [65]. Enzymatic reaction, free radical polymerization reaction and conjuga-
tion process the common techniques.

Enzymatic Reaction

Enzymes such as transglutaminase, tyrosinase, urease, and horseradish peroxidase
(HRP) catalyze the cross-linking of natural polymers [66]. Enzymatic reactions take place
at mild circumstances, preventing biological activity loss and quick gelation, and no toxic
compounds are formed. The application of enzymatic fast gelation to generate antibacterial
hydrogels is currently promising [67]. Scientists are increasingly interested in 3D cell culture
of hydrogels; building a hydrogel network with reversible stiffening/softening capability
is critical, and enzymatic reactions can provide substrate specificity and mild/predictable
reaction kinetics [68]. Transglutaminase can be used to induce the covalent connection of
HA and PEG macromers, and in situ hyaluronic acid hydrogels can selectively modulate
cell phenotype by altering their own mechanical and biochemical characteristics [69].

Free Radical Polymerization

Heating, UV radiation, high energy radiation, electrolysis, and plasma initiation are
all created by free radicals [70]. Thermally initiated polymerization and light-initiated
polymerization both use unsaturated functional groups or photosensitive functional groups
to undergo free radical polymerization or cross-linking under the action of heat or light to
produce covalent bonds [71]. The majority of the hydrogels produced by thermally induced
cross-linking processes are suitable for deep wound healing, and their structure is stable
and highly controlled. The precursor having the photosensitive functional group can be
directly polymerized under UV radiation in the photo-initiated polymerization process,
while the precursor containing the double bond functional group can be polymerized under
UV radiation by adding a photo initiator [72].

Conjugation Reaction

The Michael addition reaction, the Schiff’s base reaction, and the Diels–Alder addition
reaction are all conjugation reactions that may be carried out under very moderate circum-
stances [73]. In the conjugate reaction, the Schiff’s base reaction (condensation of amine and
active carbonyl group) is a simple green approach [74]. Many polysaccharide molecules,
such as alginate, starch, hyaluronic acid, and cellulose, include adjacent hydroxyl groups
that may be oxidized by periodate to create hydrogels via Schiff’s base reactions [75]. Using
oxidized hydroxyethyl starch (O-HES) and modified carboxymethyl chitosan (M-CMCS) as
raw materials, the Schiff’s base reaction was used to create an injectable in situ hydrogel
with excellent self-recovery, biocompatibility, biodegradability, and transparency that can
be injected into irregular-shaped skin defects and formed in situ to shape the contour of
various dimensions. The excellent compliance made hydrogels easy to adapt to the wound
under different conditions of skin movement, and full-thickness skin defects treated with
M-CMCS/O-HES hydrogels demonstrated this promising therapeutic strategy for wound
healing [76].
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Table 2. Preparation method of hydrogel with its advantages and limitations.

Type of Cross-Linking Method Advantages Limitations References

Physical

Ionic interaction High ionic conductivity, endurance strength and
self-healing properties.

Poor mechanical properties and
complex preparation process of

hydrogels
[56]

Hydrogen bond
Increase hydrogel self-repair and

self-recovery capacities.
Strong mechanical characteristics

Fragile in aquatic environments and
poor usage rates [59]

Freeze -thawing Soft, flexible, and changeable porosity
Opaque appearance and the limited

swelling capacity and thermal
stability.

[64]

Chemical

Enzymatic reaction High biological activity, quick gelation,
and non- toxic. Most expensive crosslinker [67]

Free radical polymerization Structure is highly stable and controlled.
Difficulty of preparing well-defined

copolymers or polymers with a
predetermined functionality.

[72]

Conjugation reaction Excellent self-recovery, biocompatibility and
biodegradability Use harsh chemicals [76]
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3.2. Advantages and Limitations of Hydrogel

According to the previously cited authors, hydrogel has been used as a technology to
deliver products suitable for medical use, particularly in wound management. Hydrogels
generate a moist environment and good fluid absorbance conducive to a successful wound
healing process [77,78]. Furthermore, hydrogel pharmaceutical preparations are preferred
over creams due to their higher water content in the form of gels, which aids in pain
reduction when applied, particularly to mucous membranes or injured or burned skin [79].
Hydrogels have advantages over ointments when used for dermatological purposes, such
as being emollient, thixotropic, and greaseless. Furthermore, researchers discovered that
polydopamine loaded with nanocellulose hydrogel has promising wound healing and
repair results. When compared to the blank and nanocellulose hydrogel samples, the
in vivo skin defects experiments revealed that the composite hydrogel had a synergistic
effect on wound healing. Notably, the wound took 10 days to heal, while the size of
the wound circle was reduced after 15 days. This phenomenon could be attributed to
the strong adhesion of composite hydrogels to wet mucosal and tissue surfaces due to
the strong adhesion ability of catechol groups of polydopamine. The catechol groups on
polydopamine could act as binding sites for adherent tissues [80].

Moreover, Nakasone and Kobayashi (2016) generated interest in developing cellulose
hydrogels by using sugarcane bagasse waste as a cellulose resource to prepare transparent
and flexible cellulose hydrogel films. According to the findings, the cellulose hydrogel
film with a trace of lignin demonstrated acceptable cytocompatibility on NIH 3T3 mouse
embryonic fibroblast cells in terms of protein adsorption, cell density, and proliferation
rate [81]. As a result, cellulose hydrogel films made from waste biomass are cytocompatible
with fibroblasts, important cells in wound healing. As for skin regeneration, it is well
known that a hydrogel scaffold can provide a moist covering for skin repairing while also
protecting the wound from infection [82].

Despite their numerous advantages, hydrogels have several drawbacks. For example,
the low tensile strength of hydrogels’ limits their use in load-bearing applications, resulting
in premature dissolution or flow away from a locally targeted site. In many common drug
delivery applications, such as subcutaneous injection, this limitation may not be significant.
The amount and homogeneity of drug loading into hydrogels may be limited, especially for
hydrophobic drugs. The high water content and large pore sizes of most hydrogels’ result
in relatively rapid drug release, which last from a few hours to a few days. The ease of
application can also be a problem; while some hydrogels are sufficiently deformable to be
injectable, many are not and must be implanted surgically. Each of these issues significantly
limits the clinical application of hydrogel-based drug delivery therapies [83].

4. Nanohybrid System: Nanostructured Lipid Carrier-Hydrogel

Typically, a semi-solid vehicle is required to disperse colloidal carrier formulations
to develop suitable formulations composed of nanostructured lipid carriers (NLC) for
topical, dermal, and transdermal administration. Recently, NLC hydrogel formulations
have been described as one of the possible semi-solid systems for drug administration via
topical, dermal, and transdermal routes [84]. The process of material hybridization is an
ancient practice, as reported by the ancient Egyptians [85]. These advanced hybrid mate-
rials combine each excipient’s structural, physicochemical, mechanical, and therapeutic
properties in a single final form in the drug delivery system field. Hybridization allows
the creation of smart formulations or pharmaceutical forms capable of interacting specifi-
cally with biological barriers such as mucosal tissues and skin [86]. Besides that, previous
studies of lipid-biopolymer hydrogels for the topical sustained release of ketoprofen [87],
ofloxacin [88] and resina draconis [89] exhibited optimized properties in comparison to
their lipid-related drug delivery system. Figure 3 shows a structural view of a nanohybrid
system.
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4.1. Conceptualization of NLC-Hydrogel

Three different supramolecular NLC-hydrogel designs can be proposed: (a) nano-
hydrogels stabilizing single or multiple NLC, (b) NLC non-covalently immobilized in a
hydrogel matrix and (c) NLC covalently immobilized in a hydrogel matrix (Figure 4).
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immobilized in hydrogel matrix (Adapted from [1]).

According to Figure 4, the most basic method for forming an NLC-hydrogel composite
is gelation of a suspension of pre-formed nanoparticles in a hydrogel-forming monomer
solution. This method was used to create optically responsive optomechanical nanoparticle-
hydrogel composites [90]. However, there are some downsides to this method, including
the leaching of nanoparticles from the hydrogel matrix if the cross-link density is low [91].
Additionally, crosslinking groups present on the nanoparticle surface are used in the devel-
opment of nanoparticle-hydrogels. The flexibility of nanoparticles as cross-linkers to form
multiple bonds within gel networks (multivalency), as opposed to the two covalent bonds
of a traditional hydrogel formation reaction, is a significant advantage. Furthermore, the
incorporation of nanoparticles into hydrogels was shown to result in increased interfacial
binding between the network and the nanoparticles, resulting in increased stiffness as
well as excellent energy dissipation capability with orders of magnitude improvement in
fracture resistance under compressive loading [92]. The novel combination of these two

biorender.com
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very different types of materials is expected to produce not only structural diversity but also
a slew of property enhancements. Recent evidence, for example, by Liu et al. (2014), found
that a silica nanoparticle-hydrogel composite made of silica nanoparticles and modified
polyethylene glycol demonstrated notable improvement in tissue adhesiveness, mechanical
stiffness, and bioactivity when compared to a hydrogel without nanoparticles [93]. In
addition, when gold nanoparticles were immobilized in Poly-N-isopropyl amide hydrogels,
significant changes in mechanical property and thermal response were also observed [94].

Tomsic et al. (2009) and Guillot et al. (2010) were the first to demonstrate the reversible
incorporation of nanostructured lipid particles in hydrogels (2009) [95]. Kulkarni et al. (2011)
extended the concept to the formation of dry films. Rehydration and re-dissolution of
gel films could result in the recovery of nanostructured lipid particles. The size and
nanostructure of lipid particles were preserved as a result of the aforementioned hys-
teresis [96]. Kulkarni et al. (2015) conducted one study that used a nanohybrid system of
nanostructured lipid particles and polysaccharide-based hydrogel for controlled thera-
peutic applications for drug delivery. The nanostructured lipid particles were made by
kinetically stabilizing self-assembled lipid nanostructures, and the hydrogel was made
by dissolving kappa-carrageenan (KC) in water. The drug was incorporated into both
native and lipid particle-loaded hydrogels, which formed thin films upon dehydration and
demonstrated improved instability, as well as the ability to release more drug in an efficient
manner [90].

4.2. Why Nanohybrids?

Scientists have spent decades studying nanohybrids between NLC and hydrogels.
Hydrogels are now used in a wide range of biomedical applications, including drug
delivery [97], wound dressing [98], and antimicrobial applications [99]. Most of these
applications necessitate the use of multifunctional hydrogels and dynamic interactions
with the cellular microenvironment [100]. However, one of their major limitations is their
low mechanical strength, which is especially important when used for tissue engineering or
other applications that require high strength, enhanced compressive and tensile properties,
good elasticity, and endurance (for example, cartilage tissue) [101]. Furthermore, they are
difficult to handle and use for specific applications because of their poor mechanical prop-
erties. Hydrogels research has recently shifted to optimize their chemical and mechanical
properties, particularly for biomedical applications [102–104].

New varieties of hydrogels, including nanocomposite hydrogels, are being developed
to improve the material properties of hydrogels and expand the range of their applications
in medical and biotechnological fields. In addition, nanoparticles are also being applied in
the consumer market. Despite their wide applications, the safety in the use of nanoparticles
remains a significant challenge [105]. This obstacle can be overcome by combining them
with hydrogels, resulting in lower environmental and human health risks. The hybrid
combination of hydrogels and nanoparticles results in structurally diverse materials and
improves their combined properties [106]. The large intermolecular spaces in the hydrogel
networks serve as homes for a large number of nanoparticles and as nanoreactors for their
synthesis [107]. Polymeric hydrogels act as a “host” that can accommodate various types
of nanoparticles as a “guest” to form nanocomposite hydrogels [108].

The invention of nanoparticles into the hydrogel network results in the development of
new materials with physical and biomedical properties that have promising applications in
the biomedical field [109]. Thus, many nanocomposite hydrogels have been engineered for
several biomedical applications, including drug delivery [110,111], biosensors [112], tissue
engineering [113], and wound healing [114]. Past research has successfully developed an
improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel
formulation. The lipid nanoparticles were uniformly dispersed in the gel base, retaining
their spherical shape and narrow distribution. All in all, these findings demonstrated that
the NLC were homogeneously incorporated into the hydrogel while maintaining the bene-
ficial properties of NLC dispersion, particularly small particle size and homogeneity [115].
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4.3. Efficacy and Safety of NLC-Hydrogel

In order to understand the efficacy and safety of NLC-hydrogel, preclinical and clinical
trials need to be carried out so that desirable results can achieve for future use.

4.3.1. In Vitro Study

In vitro drug release study carried out by Tan G. et al. (2017) suggested that the
dexamethasone (DXM)-NLC based hydrogel gave a sustained drug release with 88.65% of
total DXM within 72 h. In contrast, DXM-NLC gave a fast drug released with 93.10% within
48 h. This showed that the DXM-NLC based hydrogel could release drug sustainably
and may represent effective carriers for ocular sustained release delivery. The obtained
results indicated that with regard to DXM-NLC based hydrogel, the drug has to undergo
an additional barrier as a result of entrapment in NLC. This causes the release of DXM
from NLC based hydrogel to retard accordingly giving sustained release of DXM over a
long period of time [116]. A slow-release drug delivers consistent amounts of drug over a
long period, and there is no need for the patient to take medication frequently. In addition,
the same nanohybrid system was used for ocular drug delivery that showed the quercetin
(QN)-NLC based hydrogel not only facilitates the transcorneal penetration of QN but also
prolongs the precorneal retention time, supplying an assortment of favorable features that
are not available with the isolated drug delivery system. The release rate of the drug
from the QN-NLC based hydrogel was evidently lower than that from QN eye drops. The
cumulative amount of released QN from QN eye drops was 99.38% within 12 h, and that
QN-NLC based hydrogel was 80.55% within 72 h [117].

Furthermore, the nanohybrid system of the voriconazole (VR)-NLC based hydrogel
formulation displayed retarded drug release where NLC dispersion showed a 95% release
of VRC, whereas the NLC-gel released up to 76% of VRC within 24 h. The profile indicated
that embedding NLC into hydrogel effectively controlled the release of VRC because the
release of VRC from the NLC based hydrogel was a combination of the release of the drug
from lipid carriers and subsequent diffusion through the micro-channel structures of the
carbopol gel. In a clinical setting, this sustained release by hydrogel would provide the drug
over a prolonged period of time [115]. Interestingly, the toxicity test of clotrimazole (CTZ)-
NLC based hydrogel performed on HeLa cells showed low toxicity value after 24 h resulting
in a cell viability of 77.2% compared to CTZ-NLC with only 24% cell viability [118]. Other
studies found that the use of mucoadhesive and thermosensitive hydrogels composed
of poloxamers (i.e., pluronic® F127 and F68) and polycarbophil significantly reduced the
toxicity of CTZ. The concentrations of CTZ showing 50% of cell viability were 53 and
70 µg/mL for CTZ in PBS and in the hydrogel [119].

4.3.2. In Vivo Study

The development of tetracaine (TTC)-NLC based hydrogel displayed successful anti-
nociceptive properties suitable for topical drug delivery in dentistry. The in vivo antinoci-
ceptive assay using mice demonstrated that TTC-NLC based hydrogel demonstrated a
longer duration of analgesia (34 h) compared to TTC-hydrogel (8 h). Both the concentra-
tion of TTC and its encapsulation in NLC influenced the duration of analgesia. The lipid
composition of the NLC may have favored storage of TTC at the site of administration,
consequently prolonging the anesthetic effect on the mice. In addition, the moisture present
in the mucus-covered nasal surface favors the process of mucoadhesion of TTC-NLC based
hydrogel which supports the rapid onset action of drugs compared to the drier skin surface.
This research opens up perspectives for the excellent anesthetic performance of TTC-NLC
based hydrogel in humans, given that previous studies have observed that the flux of an
anesthetic can be used to predict the efficacy of an anesthetic in the preclinical phase [120].
In addition, research on in vivo drug retention in epidermis and dermis of mice using
5-fluorouracil (5-FU)-NLC based hydrogel showed (91.256 ± 4.56 µg/cm2) as compared
with that from the 5-FU hydrogel (12.23 ± 3.86 µg/cm2) in the rat skin.
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The in vivo skin irritation was also significantly reduced the (5-FU)-NLC based hydro-
gel compared with 5-FU hydrogel. These outcomes show that the prepared nanohybrid
system improves the penetration of 5-FU through the stratum corneum with minimal skin
irritation, which is prerequisite for topically applied formulations [121]. Formulation of
resveratrol (RES)-NLC based hydrogel was evaluated by Rajput et al. (2018) using an
in vivo pharmacodynamic study by the scopolamine-induced amnesia model in rats using
Morris Water Maze test for Alzheimer’s disease (AD). The Morris Water Maze model is
very useful for spatial memory study. It is based on cues to locate a submerged escape
platform from different starting points. Spatial learning was determined by conducting
repetitive trials, and reference memory was determined by ability to find a platform area
when the platform was absent [122].

The experiment showed that the rats in the normal control group (without treatment)
showed shorter escape latency followed by RES-NLC based hydrogel and RES hydrogel.
This implies that the developed formulation is more effective than RES hydrogel to treat
AD. Moreover, the distance traveled by rats showed no significant difference between
the normal control group and the RES-NLC based hydrogel group. The rats treated
with the RES-NLC based hydrogel had better memory and could spend more time in a
target quadrant compared to the normal control group. However, the rats treated with
RES hydrogel had spent comparatively less time. The rats of the normal control group
remembered and crossed the centrally placed platform 11 times in 90 s, which was similar to
the RES-NLC based hydrogel treated group. However, the rats of the RES hydrogel treated
group crossed the place of the platform only half of the time. Therefore, the RES-NLC
based hydrogel formulation has potential to treat AD [123].

4.3.3. Clinical Trials

Researchers can begin a human clinical trial after the design has been validated and
individuals have been recruited. Study designs vary based on the researchers’ goals and
may necessitate varying levels of participation from study participants. Participants in
observational studies may be seen and tracked but not treated in order for researchers to
discover how the condition progresses.

Tichota et al. (2014) planned a single-blinded, controlled trial for 30 days including ten
volunteers for skin hydration study. The clinical trials were performed using an argan oil
(AO)-NLC based hydrogel and an AO hydrogel (AO-HG) for topical delivery. According
to the results, the AO-NLC based hydrogel formulation produced a significant increase in
the skin hydration (p < 0.05) when compared to the AO-HG application. The significant
increase in skin hydration observed for the AO-NLC based hydrogel formulation could be
attributed to the presence of lipid nanoparticles which have displayed a skin-moisturizing
effect when incorporated in the semisolid formulations. In addition, this effect could also be
attributed to the argan oil, which has been described as a compound with skin-moisturizing
properties [124]. Moreover, a prospective double blinded randomized controlled study was
performed on 27 patients with neuropathic diabetic foot ulceration (DFU) for 8 weeks.

The study intended to investigate the wound healing of DFU using phenytoin (PHT),
PHT- NLC based hydrogel and blank hydrogel. The results claimed that the ulcer size
was significantly reduced with 95.82 ± 2.22% for PHT-NLC-hydrogel in comparison to
47.10 ± 4.23% and −34.91 ± 28.33% for PHT and blank-hydrogel, respectively. The patients
using PHT-NLC based hydrogel were less exudative when compared to the negative
control group. This may be attributed to the antibacterial activity of phenytoin when
applied topically, which may have resulted in a reduction of the bacterial load within
the wound bed. In short, PHT-NLC hydrogel is more effective in wound closure when
compared to the positive and negative controls throughout the duration of the study [125].
Another study on anti-acne activity, skin elasticity, and hydration was performed by clinical
examination after the use of a marigold extract (ME)-NLC based hydrogel. The study was
performed on human subjects, under dermatological control for 28 consecutive days based
on comedolytic and sebum regulating effects.
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At the end of the examination, there was a significant decrease in the sebum rate with
an average value of 63.95 µg/cm2 and a significant increase in the hydration level with
an average value of 10.99 units. A drastic remission of the number of non-inflammatory
retention lesions (elemental acne lesions) and inflammatory lesions (papules, pustules, and
nodules) was determined. These results support ME-NLC based hydrogel to have non-
comedogenic and non-acnegenic potential. Furthermore, the degree of the skin hydration
effect was determined to be up to 74%, and skin elasticity reached 90% [126]. The high
degree of hydration and elasticity demonstrated that topical application of the ME-NLC
based hydrogel creates a monolayer lipid film on the skin, leading to an occlusive effect,
and hence, it prevents transepidermal water loss (TEWL). This increases the skin hydration
significantly [11,16]. Additionally, the occlusive effect can promote the deposition of drugs
into the viable skin by reducing corneocytes packing and widening inter-corneocytes
gaps [127]. Similarly, the skin hydration study of the vitamin E-NLC based hydrogel
observed a significantly improved reduction in the skin TEWL (p < 0.05). This occurrence
might be related to the formation of an occlusive film on the skin surface, which prevents
the water loss by evaporation [128].

4.4. Application of Nanohybrid System: Nanostructured Lipid Carrier-Hydrogel in Drug Delivery

Overall, the advantages of the nanohybrid system containing the combination of
two different materials (NLC and hydrogels) result in innovative materials with unique
properties not found in the individual components, which are valuable in the drug delivery
system. In one study carried out by Azar et al. (2021), a formulation of an olive leaf
extract-NLC based hydrogel is a suitable carrier for olive leaf extract (OLE) to maintain its
antioxidant properties against environmental factors and also could be considered in high-
fat foods to reduce oxidation and enhance their nutritional properties. The formulation
was carried out using the hot-high shear homogenization method, and then, the OLE-NLC
was loaded in sodium caseinat–pectin hydrogel. Based on the study, the encapsulation
efficiency of the OLE-NLC based hydrogel was 80%, which indicates the partial release
of the OLE due to stirring and also its partial loss due to heat during production [46].
Another work by Ravani et al. (2013) developed a new formulation of a clotrimazole
(CTZ)-NLC based hydrogel that could be proposed as an innovative system to administer
CTZ to treat vaginal infection with C. albicans. The formulation was prepared using the
ultrasonication method and viscosized by the addition of poloxamer P407 in the NLC
dispersion (CTZ-NLC based hydrogel). These systems exhibit well-known thermogelling
properties. The formulation showed a sol–gel transition value lower than body temperature
and even after the addition of simulated vaginal fluid (SVF), the hydrogel maintained
typical thermosensitive behavior [118]. A skin depigmenting agent was formulated from
a Passiflora edulis seeds oil-(PESO)-NLC based hydrogel NLC. The formulation was
prepared by using the ultrasonication technique and glyceryl distearate as a solid lipid and
then gelled with Poly(acrylic acid) to form PESO-NLC based hydrogel. From the study,
tyrosinase inhibitory activity and skin retention of the nanoparticles was superior to that of
the non-encapsulated PESO. The developed formulations did not show cytotoxicity towards
HaCat cells and presented suitable viscosity and texture properties for skin application,
proving to be good candidates as depigmenting agent [129]. Table 3 summarizes recent
nanohybrid systems (NLC-hydrogel) and their function in drug delivery.
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Table 3. Summary of recent nanohybrid system a function in drug deliver.

Nanohybrid Drug Delivery
System

Active
Ingredient/Drug Function Particle Size References

Olive leaf extract-NLC based
hydrogel Olive leaf Antioxidant 303 nm [46]

Baicalin-NLC based hydrogel Baicalin
Anti-inflammatory in

ocular drug
delivery

99.64 nm [130]

Whey protein-NLC based hydrogel Whey protein Oral drug delivery 347 nm [131]

Clotrimazole-NLC based hydrogels Clotrimazole Anti-fungal - [118]

Tea tree oil-NLC based hydrogel Tea tree oil Wound healing - [132]

Ascorbyl palmitate-NLC based
hydrogel Ascorbyl palmitate Skin moisture 268 nm [133]

Valdecoxib-NLC based hydrogel Valdecoxib Anti-inflammatory 170 nm [134]

Dexamethasone-NLC based
hydrogel Dexamethasone Ocular delivery system - [117]

Voriconazole-NLC based hydrogel Voriconazole Antifungal 212.2 nm [115]

Passiflora edulis seeds oil-NLC
based hydrogel

Passiflora edulis seeds
oil

Skin depigmenting
agent 150 nm [129]

5. Conclusions and Outlook

Substantial progress has been achieved in improving the properties of nanohybrid
systems for drug delivery that use nanostructured-lipid-carriers-based hydrogels, as well
as expanding the range of drugs and kinetics that can be achieved using this nanohybrid-
based delivery vehicle. Even so, several questions remain to be answered to improve
the clinical applicability of this nanohybrid drug delivery system. Issues such as the
relationship between preclinical trials on animals and clinical modelling on humans and
the nano-toxicity of different materials for different treatments may arise in the future. In
the years ahead, nanostructured-lipid carriers-based hydrogel hybrid system designs will
not only contribute to advanced applications but will also be a guide through fundamental
knowledge of material interactions, allowing for computational prediction (e.g., molecular
dynamic simulation) in drug delivery.
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