
  

  

Abstract— Resting state functional magnetic resonance 
imaging (rs-fMRI) dynamic functional network connectivity 
(dFNC) analysis has illuminated brain network interactions 
across many neuropsychiatric disorders. A common analysis 
approach involves using hard clustering methods to identify 
transitory states of brain activity, and in response to this, other 
methods have been developed to quantify the importance of 
specific dFNC interactions to identified states. Some of these 
methods involve perturbing individual features and examining 
the number of samples that switch states. However, only a 
minority of samples switch states. As such, these methods 
actually identify the importance of dFNC features to the 
clustering of a subset of samples rather than the overall 
clustering. In this study, we present a novel approach that more 
capably identifies the importance of each feature to the overall 
clustering. Our approach uses fuzzy clustering to output 
probabilities of each sample belonging to states and then 
measures their Kullback-Leibler divergence after perturbation. 
We show the viability of our approach in the context of 
schizophrenia (SZ) default mode network analysis, identifying 
significant differences in state dynamics between individuals 
with SZ and healthy controls. We further compare our 
approach with an existing approach, showing that it captures 
the effects of perturbation upon most samples. We also find 
that interactions between the posterior cingulate cortex (PCC) 
and the anterior cingulate cortex and the PCC and precuneus 
are important across methods. We expect that our novel 
explainable clustering approach will enable further progress in 
rs-fMRI analysis and to other clustering applications. 

I. INTRODUCTION 

Many resting state functional magnetic resonance 
imaging (rs-fMRI) studies have sought to gain insight into a 
variety of neuropsychiatric disorders and cognitive functions 
via the extraction and subsequent clustering of static and 
dynamic functional network connectivity (sFNC and dFNC) 
[1]–[3]. Several recent studies have presented methods to 
identify the key brain network interactions most responsible 
for the identified clusters [4]–[6]. However, this line of 
research has several key shortcomings. Namely, most 
existing studies use hard clustering methods that do not 
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effectively account for within cluster variation. Second, this 
hard clustering has led to the use of explainability methods 
for FNC clustering that involve perturbation and require 
samples to completely switch clusters for a given feature to 
be considered important [4], [5] Given that only a minority of 
samples switch clusters following perturbation [4], [5], these 
methods give insight not into the features most important to 
the overall clustering but rather into the features to which a 
small minority of samples are highly sensitive. In this study, 
we present a novel FNC clustering approach for insight into 
neuropsychiatric disorders and accompanying explainability 
approach for insight into the brain network interactions 
important to the identified clusters. 

In recent years, many rs-fMRI studies have sought to 
better understand neurological [1] and neuropsychiatric [2], 
[7] disorders and cognitive functions [6], [8] through the 
extraction and clustering of FNC data. Static FNC is a 
measure of the correlation between brain regions throughout 
a recording [4], [6], and dFNC is a measure of the correlation 
between brain regions in short windows over time [2]. These 
clustering analyses typically involve k-means clustering, a 
popular hard clustering method. In sFNC, subgroups of 
individuals are identified, and in dFNC, transitory states of 
neurological activity are identified. A subsequent analysis is 
then typically performed with the goal of understanding the 
relationship between the identified subgroup or state and the 
disorder or cognitive function of interest. 

While cluster centroids are often visualized for insight 
into the features differentiating each identified subgroup or 
state [1]–[6], recent studies have sought to provide 
explainability methods capable of identifying the relative 
importance of each FNC feature to the clusters [4]–[6]. These 
methods build upon permutation feature importance [9], 
which was originally developed for supervised machine 
learning explainability, and involve perturbing a given 
feature and examining the percentage of samples that switch 
clusters. Relative to earlier efforts that used high numbers of 
statistical tests to identify differences in specific features on a 
univariate basis [10], these new explainability methods 
account for the multivariate nature of the original clustering 
when providing an importance estimate. Nevertheless, these 
methods do have a key weakness that arise from their use 
with hard clustering methods. 

The use of hard clustering methods like k-means 
clustering involves a critical assumption. Hard clustering 
methods assign samples to only one cluster, regardless of 
whether samples bear a degree of similarity to other 
centroids. As such, samples very near to one another in a data 
space might be assigned to different centroids. This has also 
led to an issue in perturbation-based explainability 
approaches. Namely, only a small number of samples are so 
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affected by perturbation that they actually switch clusters [4], 
[6]. This indicates that methods which quantify importance as 
the percent of samples that switch clusters following 
perturbation are only showing the sensitivity of a small 
minority of samples to perturbation, rather than the relative 
importance of a given feature to the overall clustering. 

In this study, we present Global Permutation-based 
Distribution Divergence (GP2D), a novel approach that can 
be used to gain greater insight into the importance of features 
to the overall FNC clustering. Specifically, we use fuzzy c-
means clustering, an approach that yields probabilities of 
each sample belonging to each cluster, and adapt existing 
explainability methods to calculate the divergence in the 
probability of samples belonging to each cluster following 
perturbation. We present our approach within the context of 
dFNC default mode network (DMN) analysis, identifying 
fuzzy states that uncover differences in activity between 
healthy controls (HCs) and individuals with schizophrenia 
(SZ). We then compare two variations of GP2D to Global 
Permutation Percent Change (G2PC) feature importance [4] 
and show that our approach captures the effects of 
perturbation across most samples, not only those that are 
sensitive enough to perturbation to switch clusters. 

II. METHODS 

In this section, we describe our study approach. (1) We 
extract dFNC from a dataset composed of individuals with 
SZ and healthy controls. (2) We cluster the samples using 
fuzzy c-means. (3) We extract features related to the 
dynamics uncovered by the clustering. (4) We analyze the 
relationship between the extracted cluster-based features and 
SZ diagnosis. (5) We use an existing clustering 
explainability approach for insight into the dFNC features 
that are most important to the clustering. (6) We propose a 
novel clustering explainability method, and (7) we compare 
our explainability approach with the existing approach. 

A. Description of Data and Preprocessing 
In this study, we used 151 rs-fMRI recordings from SZs 

and 160 from HCs that are part of the Functional Imaging 
Biomedical Informatics Research Network (FBIRN) dataset 
[11]. It has been used in a variety of neuroimaging studies 
[12], [13]. Data collection was performed at 7 sites: the 
University of Iowa, the University of New Mexico, the 
University of Minnesota, Duke University/the University of 
North Carolina at Chapel Hill, the University of California at 
San Francisco, the University of California at Irvine, and the 
University of California at Los Angeles. Institutional review 
boards at each site approved data collection procedures, and 
participants gave written informed consent. 

The first 5 mock scans were removed before 
preprocessing. We used statistical parametric mapping 
(SPM12, https://www.fil.ion.ucl.ac.uk/spm/) and corrected 
for head motion via rigid body motion correction. We 
spatially normalized the data to an echo-planar imaging 
template in the standard MNI space and resampled to 3x3x3 
mm3. We used a 6mm full width at half maximum Gaussian 
kernel to smooth the data. We then extracted independent 
components (ICs) using the Neuromark pipeline of the GIFT 
toolbox (http://trendscenter.org/software/gift). While the 

pipeline extracts 53 ICs from the gray matter of a number of 
brain networks, we only examined 7 ICs from the default 
mode network (DMN): 3 precuneus (PCN), 2 anterior 
cingulate cortex (ACC), and 2 posterior cingulate cortex 
(PCC). Upon extracting the ICs, we estimated their dFNC by 
calculating Pearson’s correlation with a sliding tapered 
window. The window was created by convolving a rectangle 
with a 40-second step size with a Gaussian that had a 
standard deviation of 3. Interactions between individual ICs 
are represented as IC 1 / IC 2 (e.g., PCN 1 / ACC 1). For 
each participant, this resulted in data with 21 dFNC features 
and 124 time steps. 

C. Description of Clustering and Dynamical Feature 
Extraction 
After extracting the dFNC for each study participant, we 

concatenated all dFNC samples and applied fuzzy c-means 
clustering. We clustered the data 50 times and selected the 
random seeds that had the highest fuzzy partitioning 
coefficient for their respective parameter combination. We 
used 5 clusters for easier comparison to previous studies that 
have uncovered 5 DMN dFNC clusters [2]. We optimized the 
fuzziness (i.e., m) parameter, considering values of 1.01 and 
1.5. We also used an error of 0.0001 and maximum number 
of iterations of 1000. After assigning all samples to fuzzy 
states, we extracted dynamical features that have been used in 
previous studies to examine the effects of neurological and 
neuropsychiatric disorders upon brain activity [1], [5], [8]. 
Namely, we extracted the occupancy rate (OCR) for each 
study participant and state and the number of state transitions 
(NST) for each participant. Extracting these features required 
assigning each sample to the fuzzy state for which it had the 
highest probability of belonging. 

D. Description of Preexisting Feature Importance Approach 
We applied an existing explainability approach for insight 

into the dFNC features most important to the clustering. We 
used Global Permutation Percent Change (G2PC) feature 
importance [4]. G2PC is an adaption of permutation feature 
importance to the domain of unsupervised clustering 
explainability and is broadly applicable to a variety of 
clustering algorithms. It has been applied for insight into 
dFNC and static FNC data in multiple studies [5], [6]. G2PC 
involves permuting (i.e., shuffling) a particular feature across 
samples for a number of repeats, reassigning the permuted 
samples to the previously identified clusters, and 
subsequently calculating the percent of samples that switch 
clusters following permutation. This process is repeated for 
each feature, and the features that result in the highest 
disruption in clustering are considered to be most important. 
We used 1000 repeats in our study. 

E. Description of Novel Explainable Clustering Approach 
In this study, we developed a novel explainable clustering 

approach. While G2PC can be applied to fuzzy c-means, it 
does not take advantage of the probabilities of each sample 
belonging to each state. Our novel approach is highly similar 
to G2PC in that it involves permuting features and 
reassigning the permuted samples to the previously identified 
clusters. However, unlike G2PC it calculates the Kullback-
Leibler divergence (KLD) between the probability 
distribution of each perturbed sample belonging to each 
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cluster and the probability distribution of the corresponding 
unperturbed samples belonging to each cluster. The 
clustering is most sensitive to the features that result in the 
highest KLD in cluster probabilities when perturbed. We 
calculated the KLD for each sample following perturbation 
and then performed two subsequent calculations. We 
calculated the total KLD and the median KL divergence 
across samples for each feature for 1000 repeats. 
Additionally, to validate our assumption that our approach is 
able to capture the effects of perturbation upon more samples 
than G2PC, we perturbed each sample 100 times and 
calculated the percent of samples that had non-zero median 
KLD values for each feature. 

F. Statistical Analysis 
We performed two sets of statistical analyses. (1) We 

wanted to quantify the similarity in feature importance 
estimates for G2PC and the total KLD and median KLD. To 
do this, we calculated the median importance for each feature 
based on each approach. We then ranked the features in order 
of median importance and performed pair-wise comparisons 
of the similarity of feature rankings for each approach with 
Kendall’s rank correlation. We obtained p-values for this 
analysis and applied FDR correction to reduce the likelihood 
of false positives. (2) We wanted to determine whether the 
states that we identified and their respective dynamical 
features were related to SZ. To that end, we performed two-
tailed, independent sample t-tests comparing the OCRs and 
NSTs for SZs and HCs. We then performed false discovery 
rate (FDR) correction on the OCR p-values. 

III. RESULTS AND DISCUSSION 

In this section, we describe and discuss our findings. We 
further discuss limitations and next steps for the study. 

A.  Identification of 5 dFNC States 
For easier comparison to previous studies [2], we 

identified 5 fuzzy states (i.e., clusters). Because we feature-
wise z-scored the data before clustering, Figure 1 shows the 
re-scaled centroids of the fuzzy clusters. State 0 is 
characterized by low levels of positive connectivity. State 1 
has high levels of positive connectivity in all domains except 
ACC/PCN, which has negative connectivity. State 2 has high 
levels of positive connectivity in all domains. State 3 is 
similar to state 1. However, it has slightly lower positive 
connectivity. Lastly, state 4 is similar to state 2 except for 
PCN3/ACC that has negative connectivity. Interestingly, the 
states that we identified seem to differ from those uncovered 
in [2], which is likely attributable to our use of z-scored 
dFNC features and fuzzy c-means. 

B. Identifying Top dFNC Features and Differences in 
Explanations 
Figure 2 shows the explainability results for each of the 

approaches used in the study. G2PC, total GP2D, and median 
GP2D all identified PCN3/PCC1 and PCC1/ACC 2 as most 
important or among the most important features. PCN 3, PCC 
1, and their interactions with other DMN nodes were also 
important to the clustering. At a high level, there was a high 
degree of overlap in importance across approaches. Based on 
Kendall’s rank correlation, there was a significant 
relationship between G2PC and total KLD (p < 0.05, τ = 
0.35) without correction but not with correction. However, 
there was not a significant relationship between median 
GP2D and G2PC (τ = 0.17) and median GP2D and total 
GP2D (τ = 0.0). This finding was to be expected. Permutation 
typically only causes a minority of samples to completely 
switch clusters. As shown for G2PC, a maximum of around 
10% of samples switched clusters completely. It also stands 
to reason that samples with a large enough change to switch 

 
Figure 1. Fuzzy State Scaled Centroids. The scaled centroids for each state are arranged from left to right in ascending order. Each panel shares the 
same color bar to the right of the panel for Fuzzy State 4. The ICs associated with each dFNC feature are arranged on the x- and y-axes and are 
grouped based upon brain region (i.e., PCN, ACC, PCN). 

 
Figure 2. Explainability Results. From left to right, the panels show the G2PC, sample-level GP2D, total GP2D, and median GP2D results. The color 
bar corresponding to each panel is positioned to its right, and the ICs associated with each dFNC feature are arranged on the x- and y-axes and are 
grouped based upon brain region (i.e., PCN, ACC, PCN). 
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clusters would also have a greater effect upon KL divergence 
that would be captured in a summation of KL divergence 
across samples (i.e., total GP2D). However, median KL 
divergence or GP2D, which was not correlated with either of 
the other approaches, is more likely to be representative of 
the permutation across samples, because as shown in the 
sample-level GP2D analysis of Figure 2, more than 70% of 
samples had non-zero KLD responses to perturbation. 

C. Identifying Disease Related Differences in Extracted 
Dynamical Features 
We extracted OCR and NST features related to the 

dynamics of the identified states. The features that we 
extracted are shown in Figure 3. There was not a statistically 
significant difference in NST between SZs and HCs. 
Additionally, with FDR correction, SZs spent significantly 
more time in state 1 than HCs (p < 0.01) and less time than 
HCs in state 3 (p < 0.001). Prior to correction, SZs spent 
significantly more time in state 2 than HCs (p < 0.05). Based 
on this, SZs spent more time in states of highly positive 
connectivity (i.e., states 1 and 2). In contrast, HCs spent more 
time in a state of moderate connectivity (i.e., state 3). 

D. Limitations and Next Steps 
While we identified SZ-related differences in the 

dynamical features that we extracted, we confined our 
analysis to features that have been extracted in previous 
studies with hard clustering methods. In the future, we will 
present novel dynamical features that take advantage of the 
fuzzy clustering probabilities. Additionally, G2PC has a 
companion method called L2PC (i.e., Local Perturbation 
Percent Change) feature importance [4]. As we demonstrated 
in our sample-level GP2D analysis, it is possible to examine 
the effect of perturbation on a local basis with our approach, 
and future studies could explore the uses of a local 
permutation-based distribution divergence approach. 

IV. CONCLUSION 

Existing explainability methods for identifying the 
importance of specific FNC features to identified clusters 
often use hard clustering and require that samples completely 
switch clusters. However, only a small portion of samples 
switch clusters, and resulting explanations are not 
representative of the overall clustering. In this study, we 
present GP2D, showing that it quantifies the effects of 
permutation upon the majority of samples and is thus able to 

more effectively quantify clustering feature importance than 
existing methods like G2PC. We demonstrate our approach 
within the context of DMN SZ analysis, uncovering 
differences in state dynamics between SZs and HCs and 
identifying specific intra-DMN interactions important to the 
clustering. We expect that our novel explainable clustering 
approach will enable further progress in rs-fMRI analysis and 
to other clustering applications. 
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Figure 3. Comparison of Dynamical Features. Each panel shows a 
separate dynamical feature, with the top left panel showing NST and 
the other panels showing OCRs. HCs and SZs are on the left and right 
of each box plot, respectively. Features with significant differences 
between SZs and HCs have an accompanying p-value. 
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