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Abstract

Any single-cell-resolved measurement generates a population distribution of phenotypes, characterized by a mean, a
variance, and a shape. Here we show that changes in the shape of a phenotypic distribution can signal perturbations to
cellular processes, providing a way to screen for underlying molecular machinery. We analyzed images of a Drosophila S2R+
cell line perturbed by RNA interference, and tracked 27 single-cell features which report on endocytic activity, and cell and
nuclear morphology. In replicate measurements feature distributions had erratic means and variances, but reproducible
shapes; RNAi down-regulation reliably induced shape deviations in at least one feature for 1072 out of 7131 genes surveyed,
as revealed by a Kolmogorov-Smirnov-like statistic. We were able to use these shape deviations to identify a spectrum of
genes that influenced cell morphology, nuclear morphology, and multiple pathways of endocytosis. By preserving single-
cell data, our method was even able to detect effects invisible to a population-averaged analysis. These results demonstrate
that cell-to-cell variability contains accessible and useful biological information, which can be exploited in existing cell-
based assays.
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Introduction

Advances in labeling and imaging have made it possible to

collect quantitative information on a variety of cellular processes at

single-cell resolution, and to generate high-quality population

distribution data. Cell-to-cell variability is evident in any such

measurement [1], [2]. This variability plays an essential role in

processes ranging from bet-hedging in unicellular organisms, to

cell differentiation, ageing, and infection in metazoa [3]–[7]. Cell-

to-cell variability can be generated by intrinsic stochastic

mechanisms and shaped by regulatory molecular circuitry:

transcriptional regulation impacts protein expression distributions

in bacteria and yeast [8]–[10]; the molecular machinery control-

ling cell shape generates morphological variability in metazoan

cells [11], [12]; DNA-damage checkpoints produce noisy oscilla-

tions in cancer cell lines [13]. A corollary of these results is that the

entire population distribution of a phenotype can be used to study

the underlying biology. Here we present an explicit demonstration

of this idea: rather than investigating how specific molecular

mechanisms generate variability, we reverse the process and use

variability itself as a general probe of those mechanisms. We first

show that genetic perturbations reliably cause changes to the

population distributions of a variety of phenotypes related to cell

morphology and activity. We then demonstrate how such changes

in phenotypic distributions can be exploited, in conjunction with a

screening approach such as genome-wide RNA interference

(RNAi), to probe cellular processes with unprecedented sensitivity.

An application of this method, to study the molecular basis of

multiple endocytic pathways in metazoan cells, is reported in a

companion paper [14].

Image-based RNAi screens have previously been used to

understand the molecular basis of diverse cellular processes,

including: pathogen entry mechanisms; intracellular traffic; cell

motility, growth, and differentiation; and cell death and aging

[15]–[18]. Though these screens often collect data at single-cell

resolution [19]–[24], they invariably focus on population-averaged

values to select hits, and rely on heuristic normalization techniques

to compensate for labeling and imaging artifacts which cause these

values to be erratic [25], [26]. Here we use a radically different

strategy, which paradoxically relies on the occurrence of cell-to-cell

variability: we focus purely on the shapes of population

distributions which, as we show, are robust against measurement

artifacts. The shapes of these distributions change under RNAi

down-regulation; we quantify these changes, and thus identify

genes which influence various cellular phenotypes. This shape-

based strategy complements existing methods for analyzing image-

based screens. It can be directly applied to any perturbation

experiment which generates single-cell data, for a variety of

phenotypes, and is able to identify subtle hits which are missed

using standard approaches.
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Results

Single-cell-resolved features from an image-based RNAi
screen

We applied these ideas in the context of an image-based RNAi

screen, with the goal of identifying molecular machinery involved in

multiple pathways of metazoan endocytosis. The results of this

endocytic screen are presented in the companion paper [14]; here

we focus on the use of cell-to-cell variability as a general cell-

biological probe. We simultaneously tracked two endocytic path-

ways [27] in Drosophila S2R+ cells using a pulse-labeling assay [28]:

the clathrin- and dynamin-independent CLIC/GEEC endocytic

pathway [29] responsible for fluid-phase uptake (probed using

FITC-conjugated dextran; green, Fig. 1A,B); and the canonical

clathrin-dependent pathway [30] responsible for receptor-mediated

endocytosis (probed by using Alexa568-conjugated Transferrin,

which is taken up by an ectopically expressed human Transferrin

receptor [28]; red, Fig. 1A,B). We used fluorescence microscopy and

automated image analysis to extract 27 features for each cell (see

Table S1 in File S1, and companion paper [14] for further details):

12 intensity-dependent features describing total uptake levels of the

two endocytic probes, and surface levels of the Transferrin receptor

as labeled by the monoclonal antibody Okt9 [28] (orange cartoon,

and I1-I12; Fig. 1C,D); and 15 geometric features quantifying the

shape, size and number of endocytic compartments, as well as

nuclear and cell morphology (purple cartoon, and G1-G15; Fig.

1C,D). The screen was performed on custom-designed glass slide

arrays of 300 wells printed with double-stranded RNA (dsRNA)

(Fig. 1E): 30 wells were negative controls (15 with no dsRNA and 15

with dsRNA targeting the gene for zeocin resistance, which is absent

in the Drosophila genome; black in Fig. 1D); 8 wells were positive

controls (dsRNA targeting Shibire [31] for the receptor-mediated

pathway, and dsRNA targeting Sec23 and Arf1 for the fluid-phase

GEEC pathway [28]; shades of blue in Fig. 1D); the remaining wells

contained dsRNA targeting individual genes to be screened. Each

slide was assayed in triplicate, with scrambled dsRNA patterns (Fig.

Figure 1. An image-based RNAi screen for endocytic and cell morphological features. (A) A single Drosophila S2R+ cell, fixed and imaged
at 20X and 0.75 NA; the scale bar is 3 mm. FITC-Dextran (green) labels the GEEC pathway responsible for fluid-phase uptake; Alexa568-Transferrin (red)
labels the clathrin-dependent receptor-mediated endocytic pathway; the Alexa647-Okt9 antibody (blue) labels steady-state cell surface levels of the
Transferrin receptor; the nucleus (not shown) was imaged with a Hoechst stain. Region 1: pure GEEC endosome; Region 2: pure Transferrin
endosome; Region 3: colocalization signature, marking a heterotypic fusion product between the two types of endosomes; Region 4: surface cluster
of Okt9. (B) Schematic representation of the cell from Figure 1A. (C) Schematic representation of intensity features (orange), which track the cell-
averaged intensity of the various fluorescent labels; and geometric features (purple), which track the sizes and shapes of the cell, of the nucleus, and
of endosomes. (D) 27 single-cell features. The two rows correspond to intensity and geometric features; each column relates to individual endocytic
pathways or cell-morphological features. See Table S1 in File S1 for detailed feature descriptions. (E) The screen was carried out on glass slides printed
with 300 wells in a 10630 format, each well containing dsRNA targeted against different genes. Colors represent negative (black) or positive (blue)
control wells, while white represents test wells. Details of the image analysis and the experimental conditions are provided in the companion paper
[14].
doi:10.1371/journal.pone.0090540.g001
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S1A in File S1). Cells were grown for four days in the presence of

dsRNA, then fixed and imaged. We tested a total of 7216 dsRNAs

targeting 7131 unique genes.

Cell-to-cell and well-to-well variability in feature
distributions

We measured phenotypic distributions of the 27 single-cell

features for each well (hollow histograms, Fig. 2A,B), with

population sizes ranging from 200 to 500 cells. All the distributions

we measured showed significant cell-to-cell variability; but we also

saw a great deal of well-to-well variability between replicate

measurements. Even among negative controls, feature distribu-

tions were erratic, though geometric features were typically more

robust than intensity features (compare hollow purple histograms

in Fig. 2B to hollow orange histograms in Fig. 2A) with the latter

showing significant slide-positional artifacts (orange heat map, Fig.

2C). To further quantify this effect we carried out 1-way ANOVA

[32] for two scale-related measures (mean and variance) and two

dimensionless shape-related measures (skewness and kurtosis) of

each distribution, using the ANOVA F-statistic to compare the

variability of these measures between and within the rows of each

slide. This analysis confirmed (Fig. 2E) that the mean and variance

of intensity features (but not of geometric features) were susceptible

to row-dependent artifacts, but shape-related measures for all

features less so. The same trends were observed for variability

between columns of a slide and between entire slides, and between

negative controls on different slides, across all intensity and

geometry features (Fig. S1B,C in File S1).

Figure 2. Well-to-well and cell-to-cell variability. (A,B) Population distributions (histograms) of features I3 (A) and G3 (B), for three negative
control wells from a single slide. Hollow bars show raw distributions; solid bars show the data when distributions are normalized to have zero mean
and unit variance. (C,D) Heat maps of population-averaged mean values for features I3 (C) and G3 (D). The positional effects in Figure 2C likely arise
from labeling and imaging artifacts. (E) ANOVA F-statistic for inter-row variance versus within-row variance of distribution means (x-axis) or
skewnesses (y-axis), for all 27 features. Each point shows the median F-statistic over 84 slides; intensity features are colored orange, geometric
features are colored purple. Data for each slide are shown in Figure S1B,C in File S1. (F) Cumulative distributions of feature I3, from a negative control
well (grey) and a positive control well (Arf1; blue). The left panel shows raw data; the right panel shows that cumulative distributions are still
distinguishable after normalization.
doi:10.1371/journal.pone.0090540.g002

Exploiting Cell-To-Cell Variability

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e90540



Based on these results, we surmised that the well-to-well

differences in the mean and variance of intensity features had

their origin in background (additive) and scale (multiplicative)

artifacts (from dye loading or illumination, for example) which

don’t influence geometric measurements. These artifacts should

neutralized by the standard procedure of subtracting the mean

and dividing by the standard-deviation, leaving a distribution that

is characterized by its shape alone. Indeed, phenotypic distribu-

tions from replicate measurements converged to nearly identical

shapes once normalized in this way, for both intensity and

geometry features (filled histograms, Fig. 2A,B). However, if the

feature axis was re-scaled non-linearly before normalization (such

as by a logarithmic or power-law transformation), geometric

distributions typically converged while intensity distributions did

not. This provided further evidence that normalization was

working to counter affine (additive and multiplicative) artifacts.

Feature distributions change shape under perturbations
Our key observation was that positive and negative control wells

could be distinguished even after normalizing out mean and

variance (Fig. 2F); the resulting distributions are characterized

entirely by their shapes. We used a Kolmogorov-Smirnov-like (KS)

statistic [32], [33] to assign a Z-score to each gene on a slide (Fig.

3; Methods: A Z-score to quantify shape changes of phenotypic

distributions). This Z-score quantifies distribution shape changes

between test and negative control wells; the higher the score, the

greater the shape deviation. Since each gene was tested in

triplicate, we calculated three Z-scores for every gene, and pooled

these data over the entire screen. We classified a gene as a hit if it

occurred two or more times above a given Z-score threshold (Fig.

3B). Figure 4A shows the number of hits selected from the screen

(green curve) compared to the number of hits selected from

randomly permuted genes (grey band) as the Z-score threshold is

varied. The deviation of the green curve from the grey band

reveals the presence of reproducible hits in the dataset. The

maximal deviation occurs near a Z-score threshold of 3 across all

features (Fig. S2A in File S1). Using this threshold we identified

1072 unique genes as hits for one or more features [14].

Shape-based scoring reveals a spectrum of weak-to-
strong genetic contributions

The response to perturbations over triplicate measurements

revealed an unexpectedly complex connection between genes and

phenotypes. For each feature, at a given Z-score threshold we can

classify genes into four bins: those occurring either zero, one, two,

or three times above threshold. Each of these bins will contain a

combination of true hits and negatives. We can infer false-positive

rates (FP: the fraction of above-threshold negatives; Fig. 4B, top

panel) and true-positive rates (TP: the fraction of above-threshold

hits; Fig 4B, bottom three panels) by fitting the observed gene

number in each bin to a statistical model (Fig. 4C; Methods:

Assessing statistical power from triplicate data). The inferred FP

rates matched well to the FP rates measured for negative controls

(Fig. 4D). However, we were not able to infer a single TP rate

consistent with the data. The behavior of the positive controls

highlights the problem: different genes appear to have different,

characteristic TP rates (Fig. 4B).

Extending this idea, we postulated that hits over the entire

screen had a distribution of TP rates. Under this assumption, it was

possible to fit all the observed data, and therefore to infer FP rates

(Fig. 4E, x-axes) and the range of TP rates (Fig. 4E, green band

along y-axes) as the Z-score threshold was varied. For most

features, a Z-score threshold of 3 corresponds to FP , 0.1 and TP

, 0.5 for single measurements; the FP rate is lower and the TP

rate higher if we use triplicate data with a 2/3 rule (Fig. 4C). In

support of our calculation, measured TP rates from different

positive controls fell within the inferred band of TP rates (Fig. 4E,

solid lines; Fig. S3 in File S1). The broad distribution of TP rates is

a property of the underlying biology, related to the varying degrees

of influence different genes can have on the phenotype of interest.

Shape-based scoring outperforms other scoring methods
There are many possible variations of the KS-based Z-score,

differing on how the phenotypic distributions are initially

modified. We compared three options: (U) Un-normalized or

raw distributions; (P) Partially normalized distributions, trans-

formed to have the average mean and variance of nearest

Figure 3. Calculating Z-scores to quantify shape changes. (A) A
heatmap of all pair-wise KS-statistics for all 300 wells on a
representative slide (columns) against negative controls (rows), for
feature I3. The genes have been sorted horizontally, starting with 20
selected negatives (black), test genes (grey), positives (blue), and 10
unused negatives (green). Lighter boxes indicate higher shape
deviations; the negatives tested against themselves show the lowest
scores (dark sections on the left and right), while the positives show the
highest scores (white vertical stripe). A potential hit (red triangle) shows
up as a white vertical line. (B) Histogram of Z-scores for the slide
depicted in (A), with test genes, positives and unused negatives plotted
separately. Potential hits are marked by red triangles. The final selection
of a hit depends on how a gene performs in triplicate.
doi:10.1371/journal.pone.0090540.g003
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Figure 4. Statistical performance of shape-based scoring. (A) The number of genes that occur two or more times above each Z-score
threshold, for three representative features. The green curve shows the number of genes selected from the screen; the grey band represents the
upper and lower limits of number of genes selected from 1000 randomly permuted datasets. We used a Z-score cutoff of 3 (red line) to select hits. (B)
For feature I3, distribution of Z-scores for negative control wells (top panel), and positive control wells (second panel: Shibire; third panel: Arf1; fourth
panel: Sec23). At a given Z-score threshold (red line), the false-positive rate (FP = a) is the fraction of negatives above threshold (solid grey bars),
while true-positive rate (TP = 1-b) is the fraction of positives above threshold (hollow blue bars). (C) For feature I3, the upper left panel shows the
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neighbors; (N) Normalized distributions, transformed to have zero

mean and unit variance. We evaluated the observed true positive

rate (assuming all positive controls are hits for all features), and the

inferred mean true positive rate (from triplicate data) at a false

positive rate FP = 0.1, and calculated the improvements in

performance between different methods: TPN – TPU and TPN –

TPP. The values for 25 features (excepting G11 and G15 for which

triplicate inference failed) are binned into histograms in Figure 5A;

the bar graphs indicate the fraction of intensity (orange) or

geometric (purple) features in each bin; left panels show observed

improvements for positive controls, right panels show inferred

improvements for all genes. We find that for intensity features,

which are plagued by measurement artifacts, normalization

actually increases the power of the screen; for geometric features,

which are less susceptible to artifacts, our method performs at least

as well using normalized distributions as using raw distributions.

Specifically: at FP = 0.1, the inferred average TP rate with

normalization (that is, using shape alone; Fig. 4E, solid green dots)

exceeds that without normalization (Fig. 4E, hollow green dots) for

all intensity features and some geometric features (Fig. 5, top

panels). We did however find that normalization typically does not

improve or harm performance when applied to positive controls

(Fig. 4, left panels) which are associated with strong perturbations.

We next compared the performance of the KS-based Z-score

with that of a Z-score where the ‘signal’ is restricted only to the

mean values of feature distributions. This ‘traditional’ Z-score is

defined as the squared difference between the signal of a given well

and the average signal of the wells on a given slide, normalized by

the variance of all the signals. As before, we can use triplicate data

with a 2/3 rule to select hits; Figure S2B in File S1 shows the

number of hits selected using the traditional Z-score (green curve)

compared to the number of hits selected from randomly permuted

genes (grey band). Unlike the KS-based Z-score (Fig. S2A in File

S1), at no threshold does the number of hits selected using the

traditional Z-score rise above that expected by chance. For further

validation, we screened a subset of predicted hits using an

independent experimental assay. This validation assay was

designed to minimize positional artifacts at the expense of lower

throughput, so the mean values of feature distributions could be

used to select hits [14]. We found that for both intensity and

geometric features, less than 10% of the traditional Z-scores of

validated genes exceeded unity in absolute value; most of these hits

would have been completely missed by the high-throughput

screen. Conversely, there was a strong overlap between genes

selected by shape-based scoring with those selected from the

mean-value analysis in the validation assay; that is, the hits which

had been selected only for their ability to modify the shapes of

phenotypic distributions had a strong tendency to perturb the

means of those distributions as well (Fig. 6A).

Biological relevance of shape-based scoring
We applied three independent criteria to test whether our

shape-based scoring strategy generates biologically meaningful

information. First, we examined whether our hit selection might

have been influenced by overall cell health and proliferation, using

cell density as a proxy. We found that the cell densities observed in

negative control wells broadly overlapped with those in test wells

and in wells corresponding to hits. This suggests that the observed

changes in the shapes of phenotypic distributions do not arise from

gross deficiencies in cell health due to RNA interference.

However, there were subtle differences in cell density between

hit subsets (Fig. 6B): the number of cells per field among fluid and

Transferrin uptake hits (medians 90 and 92, respectively) were

only slightly below those among negative control wells (median

98), but nuclear hits showed a striking correlation with high cell

number (median 139). This suggests an unexpected connection

between nuclear morphology and proliferative capacity, though

this must be further explored to rule out confounding factors.

Second, we checked whether individual genes influenced multiple

types of features in the expected manner. Of the 1072 hits, 470

influenced fluid-phase uptake, 602 influenced Transferrin uptake,

267 influenced nuclear morphology, and 26 influenced cell size

(Fig. 6C). Consistent with the expectation that different endocytic

pathways share core molecular machinery, there was a high

degree of overlap between the fluid and Transferrin uptake gene

sets (27%: 211 genes compared to 34 expected by chance). In

contrast, there was no significant overlap between endocytic hits

and those influencing nuclear morphology (5%: 56 genes

compared to 31 expected by chance). Third, we asked whether

the lists of hits were enriched for protein complexes, as defined by

the Gene Ontology [34] ‘cellular component’ classification system

(Fig. 6D). Protein complexes involved in basic cellular processes

such as transcription, mRNA processing, and proteolysis, all

emerged as strong hits; we also found components of the

cytoskeletal and traffic machinery enriched among endocytic hits.

These complexes are expected to play a pervasive role in cellular

processes; what is surprising is that they can be detected through

their influence on the shapes of phenotypic distributions alone. By

all these criteria our shape-based analysis appears to be well suited

to probe the entire spectrum of genes involved in complex cellular

processes, covering genes with both subtle and strong effects across

a variety of phenotypes.

A ‘cell state’ model for feature distribution shape
changes

We have seen that population distributions change shape when a

perturbation is applied; this suggests that different cells in the

population might be in distinct states, causing them to respond

differently to the perturbation. We can define this hidden ‘cell state’

[35] to be a feature with the following properties: (1) it is not itself

affected by a perturbation; (2) it can be used predict the response of

some other feature to that perturbation. We refer to such a cell-state

feature as a ‘‘classifier’’, and to the feature being perturbed as the

‘‘output’’. We searched for potential classifier-output pairs among

the 12 intensity features, as well as the cell-size feature (geometric

features had narrow or discrete distributions, and were therefore

poor candidates for classifiers). Cells were sorted into three classifier

percentile bins (A: 5-%–15%, B: 45%–55%, C: 85%-95%) and the

fraction of genes occurring zero, one, two, or three times above a Z-score threshold of 3; circles show actual data, bars show the inferred composition
of each bin, in terms of positives (green) and negatives (grey). The lower-left panel shows the fraction of positives in each bin; genes occurring two or
more times above threshold are strongly enriched in positives. The two right panels show the performance when hits are selected from a single
measurement rather than using triplicates. (D) The grey band shows the range of inferred FP rates for 25 features (excepting features G11 and G15 for
which the inference procedure fails to converge); the black line shows the mean of the measured FP rates for the same features. (E) Inferred TP rates.
Green bands show the range of inferred true positive rates (1–b0 6 s; see Methods: Assessing statistical power from triplicate data) as a function of
inferred false positive rates (a); blue lines show the observed TP and FP rates among positive control genes (light: Shibire; medium: Sec23; dark: Arf1).
The box to the right of each graph shows the inferred average TP rate (1–b0) at FP = 0.1; the solid dot shows the performance using normalized
distributions, the hollow dot shows the performance using un-normalized distributions.
doi:10.1371/journal.pone.0090540.g004
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mean value of the output was calculated for each bin (mA, mB, mC).

These were used to define a correlation score: y = (mA – mB)/(mB–

mC). For a given classifier-output candidate pair { i, j }, we

calculated the median value of y over all positive control wells, and

subtracted from it the median value over all negative control wells,

to get the final score Dyij. This 13613 matrix is shown as a heatmap

(Fig. S4A in File S1) separately for the positive controls Arf1, Shi,

and Sec23. A feature i will be a good candidate for a classifier if the

diagonal entry Dyii is close to zero (since it must be unaffected by the

perturbation); a corresponding feature j is a good candidate for the

output if the entry Dyij is high in magnitude, which occurs when the

three binned populations respond differentially to RNAi. One

candidate pair is shown in the Shibire heatmap (Fig. S4A in File S1):

the classifier is cell size (G11) and the output is the intensity feature

I9. To explore this classifier-output pair further, we carried out

pairwise KS-tests of Shibire-RNAi wells against negative control

wells, for both I9 and G11 (Fig. S4B in File S1). It is clear that I9 is

strongly affected by the perturbation, but G11 is not. The same

result was evident when we pooled data from group of similar wells

(Fig. S4B in File S1, red box) and examined the distributions of G11

and I9 without (Fig. S4C in File S1, grey histogram) and with (Fig.

S4C in File S1, blue histogram) the RNAi perturbation. We next

split the cells into five classifier percentile bins, and examined the

mean value of the output in each bin without (Fig. S4C in File S1,

grey curve) and with (Fig. S4C in File S1, blue curve) RNAi. We

found that the response of the output to RNAi depended strongly on

cell size. This implies that the variation in response is at least partly

due to the background variation in cell size; however, most of the

variation remains unexplained. This is not surprising, since we have

only tested a handful of features for explanatory value.

Discussion

Cell biologists, when limited by the sensitivity of their assays, are

sometimes forced to pool data from large numbers of cells. For

example, transcriptional, proteomic, or metabolic analyses require

large sample sizes in order to enhance signal-to-noise and thus

ensure reproducibility. Behind the interpretation of such measure-

ments is the tacit assumption that population averages accurately

reflect the state of individual cells. However, as single-cell-resolved

data have become more widely available, the ‘‘myth of the average

cell’’ has been found to be a poor reflection of reality [1]. Cell-to-cell

variability is ubiquitous, and population averages blur much of the

complexity of cell-biological phenomena. Several elegant studies

have begun to reveal details about the processes which give rise to

this variability. Here we have taken a complementary approach,

using cell-to-cell variability itself as the cell-biological probe. Rather

than relying on traditional population-averaged measures to detect

perturbations, this is precisely the information we ignore – we

normalize all our phenotypic distributions to have zero mean and

unit variance, and focus purely on shape. This operation neutralizes

the scale and background artifacts inherent in the dye-labeling and

imaging approaches central to many cell biological assays. But there

is a danger that normalization might cause initially distinct

distributions to collapse onto a single curve, thus throwing the

baby out with the bathwater. Our key finding is that, for a broad

range of phenotypes, normalized distributions do not collapse;

instead, perturbations cause robust changes to their shapes. By

detecting these changes, we can screen for candidate genes involved

in a variety of cellular processes.

As a practical matter, the fact that we have been able to exploit

cell-to-cell variability in this way without needing to understand its

mechanistic basis implies that our methods are broadly applicable.

However, our results also raise questions of a fundamental nature.

What we observe as the individuality of cells in their response to

perturbations might be intrinsically stochastic; but it might also

Figure 5. Comparing shape-based scoring to other scoring
methods. (A) The difference in the true-positive rate TPN–TPU

represents the increase in performance derived from normalization.
Upper panels: black histograms show the distribution of TPN–TPU values
for 25 features (excepting G11 and G15); colored bars represent the
fraction of intensity (orange) and geometric (purple) features in each
bin. The left panel shows the observed performance for positive
controls; the right panel shows the inferred performance over all genes.
Lower panels: same as upper, but now the normalization strategy (TPN)
is compared to partial normalization (TP-P), when bins are normalized to
have the average mean and variance of their eight nearest neighbors.
(B) The ‘traditional’ Z-score is defined based only on the mean values of
feature distributions. The figure shows the cumulative distributions of
traditional Z-score values for genes that have been validated as hits for
intensity features (orange) or geometric features (purple) in an
independent experimental assay. Less than 10% of these Z-scores have
an absolute value greater than unity.
doi:10.1371/journal.pone.0090540.g005
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reflect a prior heterogeneity of biochemical and biophysical cell states

in the population, arising from autonomous factors such as

transcriptional, metabolic, and cytoskeletal variations, or higher-

order effects involving cell-to-cell communication and coordination.

Disentangling these possibilities is an important problem in its own

right: the more we discover about the origins of cell-to-cell variability,

the better will we understand the secret lives of single cells.

Methods

A Z-score to quantify shape changes of phenotypic
distributions

We start with a list of values of some phenotype of interest

measured in any well. For each data point, we subtract the mean

and divide by the standard deviation, resulting in a distribution with

zero mean and unit variance. We then compare the normalized

distributions from two wells by using the Kolmogorov-Smirnov (KS)

test statistic D: the maximum vertical distribution between the

cumulative distribution functions [32], [33]. If the two sampes have

N1 and N2- data points, the effective sample size is given by 1/Ne =

1/N1 + 1/N2, and the final statistic is:

D�~
ffiffiffiffiffiffi
Ne

p
D Eq: 1

The Z-score itself is calculated by quantifying the shape deviation

from negative controls. For each negative control well, we

Figure 6. Results and biological significance. (A) We validated hits using an independent experimental assay based on the population-averaged
mean value of each phenotype [14]. We carried out this measurement both for hits as well as for a number of non-hits (genes with below-threshold
Z-scores). The y-axis shows the fraction of original hits validated (FP = 0.1); the x-axis shows the fraction of sub-threshold genes validated. Each dot
gives the result for a single feature type; hits for features G11 and G15 were not included in the secondary measurement. Horizontal and vertical
dotted lines show the FP rate. The distinction between hits and sub-threshold genes was based on shape-based scoring alone, but the former are
detected at a much higher rate than the latter using the population-average-based assay. This demonstrates a strong correlation between the ability
of a gene to influence the mean value of a phenotype and the shape of a phenotypic population distribution. (B) Relationships of hit subsets to cell
density. We show the cell number per imaging field as a vertical histogram. The median (horizontal line), mean (box), and percentiles (5%, 25%, 75%,
95%) of the cell number distribution are overlaid. Histograms are separately shown for negative control wells, all test wells, and for fluid uptake,
Transferrin uptake, and nuclear morphology hits. (C) Area-proportional Venn diagram of hits that influence fluid-phase uptake (F), Transferrin-
receptor-mediated uptake (T), or nuclear and cell morphology (N). Of the 26 genes that influence cell size, 21 which do not influence other features
have been omitted. Numbers give the sizes of non-overlapping subsets. The total number of hits is 1051 (shown) + 21 (not shown). (D) Functional
enrichment. We annotated genes according to the Gene Ontology (GO) ‘cellular component’ classification system, using only the most specific term
for each gene. We used the one-tailed Fisher’s exact test to determine an enrichment p-value for each teach GO term among the 1072 hits, given its
background occurrence among the 7216 RNAi probes. To correct p-values for multiple hypotheses, we used 1000 simulated datasets in which GO
terms had been randomly permuted. The table shows the seven GO terms with corrected p-values , 0.1, along with the observed and expected
number of genes among the seven non-overlapping gene subsets of the Venn diagram.
doi:10.1371/journal.pone.0090540.g006
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calculate its D* value against all 300 wells of a slide; this 300-length

vector is normalized to have zero mean and unit variance.

Arranging each such vector as a row of a 306300 matrix, the

average of each column represents the shape deviation of the

corresponding well. In practice we first removed the 10 worst-

scoring negatives so that we could use them to estimate false-

positive rates. This left a 206300 matrix shown as a heat map in

Figure 3A, with lighter boxes indicating higher shape deviations.

The Z-score of any well is the average value of the corresponding

column; the higher the score, the greater the shape deviation.

Assessing statistical power from triplicate data
Each gene is tested in triplicate, and therefore assigned three Z-

scores. At a given Z-score threshold, genes can be classified into

four bins: occurring zero, one, two, or three times above that

threshold. Each bin contains some to-be-determined combination

of negatives and true hits. We assume a fraction h of all tested

genes to be true hits. At a fixed threshold, we assume hits to have a

Gaussian distribution of false-negative (FN) rates with mean b0

and variance s2, while negatives have a false-positive (FP) rate a.

Under these assumptions, genes fall into triplicate bins as follows:

bin hits non{hits

f0 hSb3T (1{h)(1{a)3

f1 hS3b2(1{b)T (1{h)3a(1{a)2

f2 hS3b(1{b)2T (1{h)3a2(1{a)

f3 hS(1{b)3T (1{h)a3

Eq: 2

where the brackets S � � �T denote averages over the distribution

of b values, easily computed under the Gaussian assumption. We

next estimate the values of fa,b0,s,hg which best describe the

observed triplicate bin data. At each threshold, four normalized

bins correspond to three degrees of freedom, while we are trying to

estimate four unknown parameters. However, since h is a constant

independent of threshold, the system is ‘‘almost’’ determined, and

we are able to find a unique solution with a non-zero least-squares

error. We can thus find fa,b0,sg as a function of the threshold, as

well as a fixed value of h, for each parameter (Fig. S3 in File S1).

Supporting Information

File S1 Contains the following tables and figures: Table S1.
Feature descriptions. Figure S1. Slide layout and positional

artifacts. Figure S2. Presence of reproducible hits. Figure S3.
Performance inferred from triplicate data. Figure S4. Cell states

and cell-to-cell variability.

(PDF)
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