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Abstract

With rising sea levels at the end of the Pleistocene, land-bridge or continental islands were
formed around the world. Many of these islands have been extensively studied from a bio-
geographical perspective, particularly in terms of impacts of island creation on terrestrial
vertebrates. However, a majority of studies rely on contemporary faunal distributions rather
than fossil data. Here, we present archaeological findings from the island of Zanzibar (also
known as Unguja) off the eastern African coast, to provide a temporal perspective on island
biogeography. The site of Kuumbi Cave, excavated by multiple teams since 2005, has
revealed the longest cultural and faunal record for any eastern African island. This record
extends to the Late Pleistocene, when Zanzibar was part of the mainland, and attests to the
extirpation of large mainland mammals in the millennia after the island became separated.
We draw on modeling and sedimentary data to examine the process by which Zanzibar was
most recently separated from the mainland, providing the first systematic insights into the
nature and chronology of this process. We subsequently investigate the cultural and faunal
record from Kuumbi Cave, which provides at least five key temporal windows into human
activities and faunal presence: two at the end of the Last Glacial Maximum (LGM), one dur-
ing the period of post-LGM rapid sea level rise and island formation, and two in the late
Holocene (Middle Iron Age and Late Iron Age). This record demonstrates the presence of
large mammals during the period of island formation, and their severe reduction or disap-
pearance in the Kuumbi Cave sequence by the late Holocene. While various limitations,
including discontinuity in the sequence, problematize attempts to clearly attribute
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defaunation to anthropogenic or island biogeographic processes, Kuumbi Cave offers an
unprecedented opportunity to examine post-Pleistocene island formation and its long-term
consequences for human and animal communities.

Introduction

Rising seas at end of the Last Glacial Maximum (LGM) in the terminal Pleistocene transformed
coastlines, drowning land bridges and leaving islands in their wake. Particularly notable exam-
ples of continental or land-bridge islands are found in modern-day Indonesia, New Guinea,
Tasmania, and Britain, but numerous smaller islands were also formed along coastlines across
the globe. The isolation of nascent islands can have significant impacts on fauna [1-4], includ-
ing loss of species diversity through a process known as faunal relaxation. Most studies of fau-
nal relaxation, however, come from modern cases, often artificial “islands” formed through
damming or habitat fragmentation, for example [5-9]. Fossil records for recently formed conti-
nental islands are rare [10-12], and in many cases, studies of faunal change are complicated by
human colonization [13-15]. Long-term paleoecological and archaeological records are there-
fore critical to address the complex interaction of influences on island biota, including island
biogeography, climate change, and anthropogenic habitat modification, hunting, and species
translocations. An understanding of the long-term dynamics of faunal change is not only
essential to address these issues, but is also central to the conservation of island biodiversity
today [15], particularly in an era of intensive human-mediated defaunation [16].

In the western Indian Ocean, studies of island biogeography and the impacts of human set-
tlement on faunal biota have been largely limited to the late Holocene and have focused on
Madagascar [17-19] or oceanic islands such as the Mascarenes [20-24] and Comoros [21, 25-
28]. The continental islands of eastern Africa, including the Lamu, Mafia, and Zanzibar archi-
pelagos, lack faunal records with sufficient time-depth to permit analysis of the effects of post-
LGM island formation, with one important exception. Archaeological fieldwork at Kuumbi
Cave (S 6°21'40”, E 39°32°33”), on Zanzibar Island (also known as Unguja Island), has revealed
the deepest cultural and faunal sequence for any island in the region. This site offers a unique
temporal perspective, enabling an examination of faunal change and human impacts during
the terminal Pleistocene and Holocene.

Zanzibar is the largest island in the eponymous archipelago. Unlike the second-largest
island of Pemba, which has been isolated since at least the early Pliocene [29] (cf. [30]), Zanzi-
bar has been periodically part of the mainland during sea level lowstands associated with Qua-
ternary glaciations. Zanzibar would, however, have been an island during most Quaternary
interglacial periods and was most recently separated from the mainland when sea levels rose
following the LGM. Zanzibar is also by far the best-documented island in the region in terms
of geology, contemporary flora and fauna, and ethnography of recent hunting and animal con-
sumption practices [28, 31-35]. This is largely thanks to Zanzibar’s longstanding prominence
in global economies, illustrated by its role in, for example, the premodern spice trade and,
more recently, global tourism [36-37]. Zanzibar thus makes an excellent case study for explor-
ing the effects of island formation and human occupation on animal populations.

Despite this research history, there are major gaps in our knowledge of Zanzibar. The first is
the temporal and spatial sequence of the island’s separation from the mainland following the
LGM, and the establishment of the economically important mangroves and reefs that fringe
the island. While the separation of Zanzibar has been discussed in general terms [29, 34, 38],
no detailed study of its terminal Pleistocene-early Holocene formation has been made, even
though this is imperative to understanding the island’s history and biogeography, as well as its
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human occupations. The environmental history of the island is also underexplored, though a
recent series of studies of Holocene sea-level changes has begun to reveal their possible effects
on Zanzibar’s coastal habitats [39-42]. Finally, due to a paucity of systematic paleontological
and zooarchaeological studies, little is known of Zanzibar’s long-term faunal history, the excep-
tion being a report limited to fossil invertebrates [43] (cf. [32]). A multidisciplinary approach,
drawing on earth science, environmental science and archaeology, can address these lacunae to
begin to elucidate the interplay of natural and anthropogenic factors that have shaped Zanzi-
bar’s ecosystems.

In this paper, we present a reconstruction of the sea level changes that created Zanzibar
Island after the LGM, informed by field and modeling studies. We examine these in relation to
the findings of a zooarchaeological analysis of faunal remains from the 2012 excavations at
Kuumbi Cave [44-46]. This is the earliest published archaeological site anywhere on the east-
ern African coast south of the Horn, and provides at least five key temporal windows into
human activities and faunal presence: two during the Late Pleistocene, when Zanzibar was part
of the mainland; one during the period of post-LGM rapid sea level rise and island formation;
and two in the late Holocene, when the arrival of farmers and herders from the mainland
brought new changes to the island. Kuumbi Cave was previously explored through several
campaigns [47-49], but the 2012 excavations revised and redated the stratigraphic sequence,
and placed emphasis on the recovery of bioarchaeological material, especially plant and animal
remains [44]. In these most recent excavations, Kuumbi Cave was dated using high-precision
radiocarbon and luminescence methods applied to 20 samples and interpreted in light of sedi-
ment deposition processes.

Our investigation faces some important limitations, in particular due to discontinuity across
the Kuumbi Cave sequence, resulting in discrete temporal windows rather than a continual,
long-term cultural and faunal record. The faunal assemblage also represents a limited sample
from only one site, whereas a broader sample across multiple sites would be ideal to draw con-
clusions about island-wide processes. On the other hand, uninterrupted cave sequences are
exceedingly rare, and Kuumbi Cave’s long sequence has not so far been replicated at other
island sites in the region. In addition, the site’s faunal assemblage is unprecedented for this
region, both in terms of its antiquity and the chronometric and zooarchaeological analyses to
which it has been subjected. Bearing in mind the above caveats, this assemblage offers an
invaluable resource for looking at island biogeography from a deeper temporal perspective,
and exploring the interplay between past processes of island formation, human activity, and
defaunation.

The Research Setting

Zanzibar currently covers c. 1600 km? and lies c. 40 km off the coast of Tanzania (Fig 1). It is
separated from the mainland by a shallow channel (generally c. 30-60 m deep), which hosts a
highly developed reef system [50-51]. Limestone reef terraces dominate the island, particularly
in the southeastern area that is the focus of this study. This landscape includes typical karst fea-
tures such as sinkholes and caves. The climate is characterized by wet/dry seasonality, with
long rains from March to May and short rains from October to December. Vegetation belongs
to the Northern Zanzibar-Inhambane coastal forest mosaic, which includes a mix of dry and
moist forests, shrubland and grassland [52]. Today the Zanzibar vegetation is strongly shaped
by agricultural activities, which have led to widespread clearing and the creation of protected
forest and conservation “islands” such as the Muyuni and Jozani Reserves in the south and the
Kiwengwa-Pongwe Reserve in the north. On the western side of the island are the deeper, fer-
tile kichanga soils that have supported past and present farming communities, while the
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Fig 1. Location of sites discussed in text. A: eastern African coast, showing locations of Pemba and Zanzibar (Unguja) Islands. B: Zanzibar Island, with
locations of coring and archaeological sites discussed in the text.

doi:10.1371/journal.pone.0149565.g001

eastern area is dominated by thin and comparatively poor kinongo soils that overlie the coral
rag; these soils support mainly low, scrubby bush. In the area immediately surrounding
Kuumbi Cave, a taboo on tree-cutting due to the cave’s spiritual importance has preserved a
small patch of tropical evergreen forest [48]. The island’s terrestrial mammals, described by
Moreau and Pakenham [31-32], include three small bovids, monkeys, hyrax, giant pouched rat
and small carnivores such as mongoose; the largest carnivore, the Zanzibar leopard (Panthera
pardus adersi), was last documented in the late 20™ century but is now widely believed by zool-
ogists to be extinct [53-54]. Many of the island’s most economically important wild species live
offshore, in the rich reefs and backreef lagoons that have supported fishing communities dur-
ing the past two millennia [55].

Kuumbi Cave is located in Jambiani District, c. 2.5 km from the shoreline, and was never
more than c. 7-8 km from the coast in the past 20,000 years, due to the steep continental shelf
off the eastern coast of the island. It is a large solutional cave (Fig 2), one of several in a series of
Pleistocene-era marine terraces on limestone [46]. The cave was excavated over multiple sea-
sons [47-49], most recently through the 2012 Sealinks Project excavations described by Ship-
ton and colleagues [44]. This campaign led to the identification of five phases in the main
Trench 10 (3m?, 2.4 m depth), supported by a suite of 20 radiocarbon and optically stimulated
luminescence (OSL) dates, as follows (Fig 3, S1 Appendix): Phase 1a (contexts 1001-1002) con-
tains large limestone lithics and Swahili ceramics, and dates to the Later Iron Age (LIA, c. 1-0.5
ka). Phase 1b (contexts 1003-1013) contains the same lithics and earlier Tana Tradition/Trian-
gular Incised Ware (TT/TIW) ceramics, dating to the Middle Iron Age (MIA, c. 1.35-1 ka).
Phase 2 (contexts 1015-1017), by contrast, does not contain any ceramics but includes Later
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Fig 2. View of Kuumbi Cave. View of cave looking out from the largest cave chamber. Trench 10 of the 2012 excavation is located just behind the standing
figures.

doi:10.1371/journal.pone.0149565.9002

Stone Age (LSA) bone projectile points and other bone tools [45] and a quartz microlithic
industry; this phase dates to the Pleistocene-Holocene transition at c. 13-11 ka. Phase 3 (con-
texts 1018-1024) contains similar LSA quartz and bone technologies and dates to the Late
Pleistocene at c. 19-17 ka. Finally, Phase 4 (contexts 1025-1026) contains charcoal dated to c.
20 ka, and does not bear any unambiguous evidence of human occupation, but it does contain
faunal remains, a few of which are burned.

Dating the Trench 10 sequence, discussed in detail by Shipton and colleagues [44], was com-
plicated by two factors: animal burrowing and associated bioturbation, particularly in Phases 1
and 2, and a complex depositional sequence, particularly in Phase 2, that included colluvial
inputs from upslope near the cave entrance, as well as from an opening in the ceiling. These
factors likely explain the clear discrepancies between charcoal dates and those obtained directly
on ceramics, shell or human bone (S1 Appendix). The latter set of dates showed a logical chro-
nological progression, whereas many of the charcoal dates fell in the mid-Holocene and did
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Fig 3. Kuumbi Cave Trench 10 stratigraphy. South section drawing based on [44], showing the occupational phases and calibrated dates before present
(BP) that are linked to cultural events. See S1 Appendix for details of dating methods and materials, and other dates associated with sedimentary deposition.

doi:10.1371/journal.pone.0149565.9003

not fit with associated archaeology. This is particularly true for Phases 2 and 1b, where mid-
Holocene dates on charcoal were not replicated by any other dated samples. Based on geoarch-
aeological and chronometric findings, it was concluded that the dated charcoal from these
phases derived from colluvial sediments containing mid-Holocene charcoal. By contrast, in the
less disturbed Phases 3 and 4, charcoal dates were as expected, based on their stratigraphic rela-
tionship with dated land snail and marine shells.

This interpretation of the chronological and sedimentary evidence suggests that Kuumbi
Cave was unoccupied throughout the Holocene until the MIA, challenging earlier interpreta-
tions of a food-producing “Neolithic” occupation of the cave as early as 6 ka [48]. Two other
Zanzibar cave sites, Mwanampambe (undated) and Machaga (dated to c. 5 ka), have also been
interpreted as having LSA and “Neolithic” occupations, respectively [48, 56]. However, stratig-
raphy and dating for Machaga are contested [57-58], and our new excavations at Kuumbi
Cave demonstrate the problems with charcoal dates in complex cave sequences [44]. In light of
the revised stratigraphy, it seems plausible to suggest that Zanzibar may have lost its human
population during the Holocene after it became an island, in which case the new occupation in
Phase 1b at Kuumbi Cave might be related to the emergence of the MIA open-air sites of
Unguja Ukuu and Fukuchani [59-60] elsewhere on Zanzibar. These sites were settled by people
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with TT/TIW ceramics—demonstrating connections to the mainland and other offshore
islands-and their occupants combined fishing and inshore foraging with crop cultivation, live-
stock-keeping, and hunting, as is common amongst contemporary Swahili-speaking islanders.
However, without better-dated sequences from additional pre-Iron Age sites, it is impossible to
rule out the possibility that Zanzibar-a large and archaeologically underexplored island-
remained occupied by indigenous foragers until the arrival of mainland food producers.

Separation of Zanzibar from the Mainland

Despite recent research activity in the region [40-42; 61], many questions remain about Holo-
cene sea level change along the eastern African coast, and indeed across the entire southwestern
Indian Ocean. Most studies in the southwestern Indian Ocean record an early Holocene sea
level rise, but diverge on estimates of the amplitude and timing of the mid-Holocene highstand
[62-63]. For example, studies of coral reef cores and terrace elevations in the Comoros, Mauri-
tius and Réunion Islands do not indicate a mid-Holocene highstand [63-65], but suggest
instead that after a rapid increase from 10-7.5 ka, sea level rise slowed until stabilizing at the
present mean sea level (PMSL) around 3 ka. These findings broadly agree with those based on
archaeological data from coastal eastern Africa, including Unguja Ukuu on Zanzibar [66],
showing that locally the mid-Holocene highstand may have been followed by multiple drops to
0.5-1 m below PMSL during the last millennium, followed by a more recent rise. However, dis-
tinct patterns in the number, timing, and amplitude of highstands have been reported from
other locations in Mozambique and South Africa [67-71]. Some of this regional complexity is
almost certainly due to the complex pattern of interaction of glacio-isostatic processes follow-
ing the last deglaciation, and possibly from tectonic movements of the Earth’s crust as well as
changes in oceanographic conditions. Different proxies, error margins and scales of analysis
can also render studies difficult to compare [72].

Given this regional variability, and the need for chronological resolution to link the tempo
of island formation to local archaeological sites, we developed a reconstruction of the forma-
tion of Zanzibar and the neighboring coast that is based on both modeling and local observa-
tional data. We predicted the evolution of relative sea level (RSL; relative to PMSL) using a
model described elsewhere [73-74]. This observationally-constrained model calculates the
Earth and ocean deformation response to the build-up and retreat of ice sheets during glacial
cycles, taking into account changes in gravity, the migration of shorelines, and changes in sea-
floor bathymetry. The model has been calibrated for the past 20 ka from a global database that
includes the western Indian Ocean [75]. Our results (Figs 4 and 5) illustrate the shaping of the
northern Tanzanian coastline over the past 20 ka, and demonstrate the speed with which Zan-
zibar became isolated c. 12-9 ka.

These predictions are compared to recent field data from Zanzibar and the Tanzanian coast.
Paleoenvironmental and paleoecological data (stratigraphy, pollen, charcoal and loss on igni-
tion) were obtained from seven sediment cores from mangrove areas in the northwest (Makoba
Bay) and southwest (Unguja Ukuu settlement) of Zanzibar and from three cores in the north-
ern Rufiji Delta [40-42; 61]. These mangrove observational data largely agree with the modeled
RSL predictions (Fig 6). Discrepancies, particularly around 8 ka, might be due to a local effect,
or to underestimation of the model and observational margins of error (see Methods). The two
observational points from Makoba Bay at 8 ka that mark the beginning of mangrove formation
date to the end of the rapid phase of deglaciation, when sea level rose at c. 12m/ka [75]. In the
absence of earlier sedimentary records we can only say that these points are consistent with the
RSL prediction of rapid submergence of the Zanzibar channel beginning between 12-11 ka,
and the eventual isolation of Zanzibar by 9-8 ka.
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Fig 4. Reconstruction of northern Tanzanian coast 20-6 ka. Reconstruction at 20 ka, 12 ka, 9 ka, and 6 ka of the topography of the northern Tanzanian
coast in meters above Mean Sea Level (MSL) at the time under consideration, with the outline of the present-day coastline. The three largest islands are,
from north to south, Pemba, Zanzibar (Unguja), and Mafia. Circles mark coring locations: red, Makoba Bay; green, Unguja Ukuu; blue, Rufiji Delta. The white
diamond marks Kuumbi Cave.

doi:10.1371/journal.pone.0149565.9004

Pollen records recovered from sediment cores at Makoba Bay, the Unguja Ukuu settlement,
and the Rufiji Delta indicate changing mangrove compositions, suggesting a local signal of
lower RSL around 4 ka. This is coincident with-though not necessarily causally linked to-a
regional drought phase that has been documented across eastern Africa [76-77]. This mid-
Holocene drought has been recorded in the opening up of savannas [78] and lowering of lake
levels; isotopic data at Lake Malawi show an increase in Cy;,o vegetation around 4 ka [79].
Although not of the same magnitude, paleoenvironmental proxies on the mainland record a
variable environment during the late part of the Holocene [78], while mangrove records indi-
cate a period of relative stability in sea level [40-42]. The next major recorded change from the
Unguja Ukuu sediments occurs at around 500 BP, when there is a massive increase in charcoal
input thought to relate to Portuguese arrival on the island and an Islamic reoccupation of
Unguja Ukuu, events that led to substantial human impact on mangrove ecosystems. Although
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doi:10.1371/journal.pone.0149565.g006

a recent sea-level reconstruction based on mangrove composition at Unguja Ukuu is compli-
cated by these anthropogenic impacts, at Makoba Bay (located some 20 km to the north) there
is no discernable human impact and there is a record of recent minor RSL rise [80].

Diachronic Changes in Faunal Diversity at Kuumbi Cave

This modeled reconstruction of island formation provides a useful framework in which to
interpret the faunal assemblage at Kuumbi Cave. Analysis of the fauna from the Trench 10
excavations resulted in the identification of 117 fish specimens (Number of Identified Speci-
mens, NISP), a minimum of 3,556 individuals (Minimum Number of Individuals, MNI) of ter-
restrial and marine molluscs, and 6,667 tetrapod NISP. Descriptions of the fish and mollusc
assemblages are reported elsewhere [44]. A detailed taphonomic analysis of 5,118 tetrapod
NISP from selected contexts, including numerous limb bone shafts, shows that many biogenic
and anthropogenic processes affected the assemblage (Fig 7, S2 Appendix). Sedimentary abra-
sion affected 1% of specimens, sometimes co-occurring with cut marks, which if shallow can be
difficult to distinguish from the former. A conservative approach was taken, with definitive cut
marks identified on just 1% of the bone assemblage, rising to 2% when excluding specimens
with poor cortical visibility, and to 4% when focusing on larger-bodied fauna that would have
required more butchery. Despite this low human signal, the dominance of green fractures (71%
of observed limb shafts) indicates that bones were mainly broken while fresh. The dearth of
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Fig 7. Bone surface modifications in Kuumbi Cave Trench 10. Examples of bone surface modifications in the Trench 10 assemblage: a, biochemical
pitting from soil or root bacteria; b, shallow, parallel oblique lines indicating sedimentary abrasion; ¢, micro-notches along the breakage plane, likely produced
by a carnivore; d, overlapping cut marks and abrasion on limb bone of duiker; e-f, cut marks on limb bones of reedbuck and bushbuck, respectively.

doi:10.1371/journal.pone.0149565.g007

carnivore tooth pits (<1% of bone specimens) or notches with typical carnivore morphology
(<1% of limb shafts), and the relatively high frequency of burnt bone (14% overall, rising to
24% in Phase 2), imply that humans were the primary bone-breaking agent, and are mainly
responsible for the accumulated fauna, particularly in the case of larger prey taxa.

Since most of the macrofaunal assemblage appears to be anthropogenic, we can interpret
the faunal spectrum in terms of available prey and of human choices during the Late Pleisto-
cene, terminal Pleistocene, and late Holocene, enabling an analysis of diachronic change (S1
Table). Smaller prey taxa remain remarkably consistent throughout the Trench 10 sequence,
with the three dwarf bovids of modern-day Zanzibar being the dominant taxa during all
phases: blue duiker (Cephalophus monticola), Ader’s duiker (Cephalophus adersi) and suni
(Neotragus moschatus). Also present in all phases are bushpig (Potamochoerus larvatus), tree
hyrax (Dendrohyrax validus), giant pouched rat (Cricetomys gambianus), and colobus (Colobus
sp.) and cercopithecine monkeys (Cercopithecus or Chlorocebus spp.). While hyraxes and mon-
keys are common in the cave and surrounding forest today, at least some of them entered the
assemblage as food remains, as inferred from cut marks. Other taxa also tend to inhabit or fre-
quent caves, and are suspected to be unrelated to human occupation at Kuumbi Cave; these
include leopard (Panthera pardus), mongooses (Herpestidae), civets or genets (Viverridae),
murid rodents (Muridae), elephant shrews (Macroscelididae), snakes (Serpentes), and fruit
bats (Pteropodidae). However, none of these can be entirely ruled out as potential food species,
as demonstrated by Walsh’s [28] description of bat-eating on Pemba.

While the above fauna are present on Zanzibar today, the Trench 10 sequence attests to the
disappearance of numerous other taxa after island formation. In the Late and terminal Pleisto-
cene (Phases 4-2), large fauna were present, particularly zebra (Equus cf. quagga), which, based
on their size, were likely plains zebra. Also present were buffalo (Syncerus caffer), waterbuck
(Kobus defassa), reedbuck (Redunca redunca) and bushbuck (Tragelaphus scriptus). Breakage
patterns and cut marks in Phases 3-2 indicate that these fauna were brought to the cave by
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humans, not carnivores, despite the minor presence of leopard in the site. Some of the fauna—
especially zebra and possible Thomson’s gazelle (Gazella thomsoni)-are indicators of a rela-
tively open environment, while other bovids present thrive in mixed and closed habitats. None
of these fauna are present on Zanzibar today, nor are some of the smaller bovids identified,
such as steenbok (Raphicerus campestris) and bush duiker (Sylvicapra grimmia) [28, 32]. Some
small fauna found in low numbers in the terminal Pleistocene phase, such as porcupine
(Hystrix cristata) and hare (Lepus sp.), are also not documented on Zanzibar today. Figs 8 and
9 illustrate clear diachronic trends in which presently extirpated fauna, which make up approx-
imately 10-30% of the Phases 2-4 assemblages, become less common through the sequence as
the assemblage becomes increasingly dominated by duiker-sized bovids. Even among these
smaller bovids, however, some taxa disappear by the final Phase 1a, including bush duiker,
common in Phases 1b-3, and steenbok, found in Phases 2 and 3. By Phase 1a, only locally
extant fauna are identified, though a small number of specimens from medium and large
bovids (Sizes 2-3) were not sufficiently diagnostic to enable distinction between domestic and

100%
90%
80%
70% “Introduced?

60%

¥ Extirpated

50%

40% ¥ Extant

30%

20%

10%

0%

Fig 8. Extirpated, extant and introduced fauna in Kuumbi Cave Trench 10. Relative frequency of nonhuman mammalian fauna that are extant or
extirpated on Zanzibar today. “Introduced?” are remains of possible domestic cattle; we stress the tentative nature of this identification, given the paucity of
diagnostic elements and the possible persistence of similarly-sized extirpated bovids. Extirpated fauna include: zebra, steenbok, bush duiker, bushbuck,
reedbuck, waterbuck, buffalo, white-tailed mongoose, hare, porcupine, and a possible Thomson'’s gazelle. Microfauna and remains only identifiable to size
class (e.g., “Mammal Size 2”) were excluded from this analysis. NISP, number of identified specimens; MNI, minimum number of individuals.

doi:10.1371/journal.pone.0149565.9008
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Fig 9. Extirpated bovids and equids in Kuumbi Cave Trench 10. Diachronic trends for extirpated bovids
and equids only, with frequencies for these taxa expressed as a percentage of total NISP (number of
identified specimens) for all fauna in each phase. For simplicity, tentative identifications to taxon were treated
as if they were positive; for example, Cf. T. scriptus and T. scriptus are both listed here as bushbuck. For
detailed data, see S1 Table.

doi:10.1371/journal.pone.0149565.g009

extirpated bovids. These exceptions aside, there are clear trends in the decreasing abundance of
large and medium-sized taxa after the terminal Pleistocene, and in the persistence of select
smaller-bodied taxa over time (Fig 10), with the assemblage decreasing in richness over the
course of the Holocene (S1 Fig). This is perhaps clearest in the example of the zebra, which is
found in abundance in Phase 3 but in decreasing numbers in Phases 2 and 1b, and disappears
entirely by Phase 1a (S1 Table).

Our findings are distinct from those reported for previous excavations. The extirpated
fauna reported by the earlier campaign [48] include elephant, giraffe, equid, buffalo, reedbuck,
steenbok, dik-dik, baboon, and jackal, as well as crocodile, which is reported as an occasional
“vagrant” on Zanzibar today but is normally absent [33]. Only equid, buffalo, reedbuck and
steenbok are reported by both analyses. The contrast between these reports can be interpreted
in two ways. First, the previously excavated [48] faunal assemblage (tetrapod NISP = 3,728
from six trenches, excluding human remains) comes from a much greater sediment volume
(>40 m®) than our own (7.2 m®), and therefore it can be expected that a wider range of taxa
might be present. Indeed, the faunal spectrum of Zanzibar prior to its isolation must have
included other mammals, in addition to birds, reptiles and microfauna not identified at
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Fig 10. Decline in large mammals in Kuumbi Cave Trench 10. Diachronic trends in nonhuman mammalian carcass sizes (see Methods), excluding
mammals smaller than Size 1 (e.g., rodents, bats, hyrax, mongoose, galago). Some of the medium and large animals in Phase 1 are cattle- and caprine-
sized bovids but could not be identified to taxon, and might be either domestic or extirpated taxa. NISP, number of identified specimens; MNI, minimum

number of individuals.

doi:10.1371/journal.pone.0149565.9g010

Kuumbi Cave. This underscores the need for additional research from other sites on Zanzibar
with substantial time-depth. A second issue is that some fauna from the prior excavations may
have been misidentified. A notable example is that 13% of tetrapod, nonhuman NISP in the six
trenches reported by the earlier campaign [48] are domesticates, including cattle (Bos taurus),
caprines (goat, Capra hircus or sheep, Ovis aries), dog (Canis familiaris), chicken (Gallus gal-
lus), and either wild or domestic cat (Felis sp.). By contrast, in Trench 10, <1% of NISP identi-
fied to taxon are possible cattle, all recovered from Phase 1, and no other domesticates are
identified. This absence of domesticates is consistent with evidence from other cave deposits,
for example in the Mafia archipelago [81] and the southern Kenyan coastal hinterland [82],
where, despite the presence of Iron Age material culture, wild fauna remain the focus of
subsistence.

Discussion

The Kuumbi Cave faunal data suggest that the extirpation of numerous mainland taxa on Zan-
zibar Island took place between the terminal Pleistocene and late Holocene. This site bears the
only record of wild mammals larger than duiker on the eastern African islands (aside from
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Madagascar), and is the only witness to their disappearance from Zanzibar. Five securely-dated
phases at Kuumbi Cave predate, span, and postdate the period of Zanzibar’s most recent isola-
tion from the mainland, as modeled here from sea level data for the first time. Faunal data
from these windows indicate that defaunation occurred after island formation, and suggest
that most of the now-extirpated fauna were sharply reduced or perhaps eliminated prior to the
MIA. However, the Kuumbi Cave sequence also provides clear indication that some large ani-
mals, most notably zebra, were not extirpated until after the arrival of food producers from the
mainland, as demonstrated by their persistence in Phase 1b. This persistence is notable, given
the zebra’s typically large home range and grassland requirements. It is also remarkable that
the island’s apex predator, the leopard, present in Phases 4 to 1b, survived into the twentieth
century, though it may have been less vulnerable to prey loss if it began to feed on domestic
livestock. These findings call for more detailed exploration of the island’s trophic dynamics
from additional datasets.

These findings make Zanzibar unique among African continental islands. The only other
African islands with archaeological records possibly predating island formation, Bioko and
Elobey in Equatorial Guinea [83-84], have neither firm dates nor published faunal data. Com-
parisons to oceanic islands such as Mauritius and Seychelles, or to the island-continent of Mad-
agascar, are less appropriate as these hosted unique endemic fauna whose disappearance, in
many cases, has been unambiguously linked to human occupation [18, 22, 85-86]. Therefore,
comparative case studies must be sought outside African contexts, for example in the post-
LGM breakup of Santarosae Island into some of the present-day Californian Channel Islands.
Decades of research on these islands have illuminated the relative contributions of geographic
isolation and human occupation to defaunation, e.g., [87-88; 15]. These studies demonstrate
that in some cases—such as that of mammoths-humans apparently played no role in local
extinctions, while in other instances, humans had major impacts through their foraging activi-
ties and translocations of nonnative plant and animal species. Similarly, a study of faunal
reductions on Tobago [14] demonstrates the difficulty in teasing apart human and biogeo-
graphic influences; while these are not mutually exclusive, the authors show that detailed faunal
records can indicate which taxa disappear and when, a key starting point in the study of island
defaunation. We can expect that with further research, a more sophisticated picture may
emerge of Zanzibar’s biotic and human history. On present evidence, we can suggest different
scenarios as to what may have happened as sea levels rose rapidly following the LGM, hypothe-
ses that can be tested with additional well-dated archaeological and faunal assemblages from
Zanzibar.

One possibility is that as the process of isolation began c. 12 ka, with crossings perhaps pos-
sible only through a shallow strait by c. 9 ka, faunal relaxation did occur, at least partially.
Relaxation initially affects fauna that require a larger home range [89], in this case zebra, buf-
falo and waterbuck. As these highly-ranked prey declined in number, humans likely continued
to exploit smaller animals, but could also have expanded their diet to include lower-ranked
prey and more marine resources, possibly moving away from sites like Kuumbi Cave and
toward the mangroves and the expanding shoreline on the western side of the nascent island.
The narrow land-bridge that extended between Zanzibar and the mainland until c. 9 ka accord-
ing to our modeled reconstruction would have provided access to extensive shallows rich in
marine resources, and may have attracted foragers to move from the island to the faunally
richer mainland. It may be that Zanzibar was abandoned at this time, or that a small remaining
population of foragers persisted, or depopulated and repopulated the island multiple times in
subsequent periods, without leaving any trace in Kuumbi Cave’s discontinuous sequence. If
occupation did shift away from the forest and toward the coast, many of the resulting sites
would have later been lost to the sea as it continued to rise until c. 6 ka, and these sites would
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now only be discoverable through underwater exploration. Indeed, this may be the reason that
there are few coastal sites in eastern Africa for the Late Pleistocene-Holocene that might offer
useful comparative data with which to evaluate the hypothesis of intensified coastal resource
use [90].

The known sequence at Kuumbi Cave suggests that Zanzibar was abandoned or depopulated
in the early Holocene and only reoccupied in numbers during the late Holocene Iron Age, with
the expansion of Bantu-speaking mixed farmers onto the eastern African islands and the occupa-
tion of coastal settlements such as Unguja Ukuu and Fukuchani [60]. However the faunal assem-
blage in Phase 1 has high taxonomic diversity including many non-ungulates; this phase also
contains the bulk of Trench 10’s fish remains (mainly reef fish) and shows an increased emphasis
on shellfish collection [44]. This diversity suggests that Kuumbi Cave may have been occupied by
full-time foragers during the late Holocene, based on contrasts with ethnographic data concern-
ing food producers’ hunting preferences [91]. These foragers could either have been descendants
of indigenous island populations, or new seafaring arrivals from the mainland (possibly respond-
ing to the changes wrought by food production). In either case, these foragers’ contact with food
producers on the coast might explain the uptick in marine resources, the ceramic assemblages,
and the few remains of possible cattle in Phase 1. As noted earlier, evidence from Mwanampambe
and Machaga Caves, along with previous interpretations of the Kuumbi Cave stratigraphy, have
led to claims of LSA foraging and “Neolithic” food producing occupations on Zanzibar in the
middle Holocene, c. 5-2 ka [48, 56]. Our recent excavations at Kuumbi Cave, supported by a
large radiocarbon dataset, did not corroborate this scenario [44]. However, given the island’s
large size and the lack of secure dates from other sites, the possibility of a pre-Iron Age foraging
occupation, or even multiple reoccupations-though not observed at Kuumbi Cave-cannot be
ruled out. If the island were continually occupied by foragers, even greater weight could be given
to human agency in Holocene-era defaunation.

Regardless of this unresolved issue, it is clear that some fauna present during the MIA at
Kuumbi Cave-such as zebra and bush duiker-are absent today. This implies that while popula-
tions of now-extirpated fauna may have been reduced over the course of the Holocene to the
point where they could no longer replenish themselves, human activities within the past two
millennia may have dealt the final blow. Faunal relaxation and human agency might well have
worked in tandem to produce the drop in species richness observed in the Trench 10 assem-
blage: populations of large fauna might have been reduced by environmental isolation during
the Holocene to the point where they could not withstand new pressures associated with the
arrival of farmers in the MIA. These pressures would have included the clearance of natural
vegetation for settlement and agriculture, and the translocation of domestic and commensal
species such as goat and black rat (Rattus rattus), as recorded at MIA sites like Unguja Ukuu
[59]. These introduced taxa have been shown in other island settings to have had major
impacts on indigenous flora and fauna [92-95]. It can be presumed that this may also have
happened on Zanzibar, though the details remain to be discovered through study of additional
sedimentary, paleobotanical and faunal records. MIA populations on Zanzibar also hunted, as
documented at the sites of Unguja Ukuu and Fukuchani [59-60]. While they focused mainly
on extant small bovids, presumably for food, they may also have killed animals for products
such as skins, or in order to protect their homes and crops. These activities would have had a
significant effect on island biota.

Conclusions

Kuumbi Cave is the earliest published archaeological site for the eastern African coast and
islands, and has produced an unparalleled faunal record, supported by detailed
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geoarchaeological and chronometric analyses. Combining this record with the first systematic
analysis of Zanzibar’s formation, with rising terminal Pleistocene to early Holocene sea levels,
has enabled us to examine patterns of defaunation on the island in relation to both isolation
and human activity. While human impacts to some fauna appear highly likely, the power of
this analysis has been to provide a set of hypotheses about defaunation that can be tested
against further archaeological and paleoecological datasets.

Our data show that faunal diversity at Kuumbi Cave declined over the course of the Holo-
cene, and we present alternative scenarios concerning whether or not the island was occupied
at this time. The question of occupational continuity, which cannot be established without fur-
ther systematic archaeological work at a broader range of Zanzibar sites, has important impli-
cations for assessing the relative impacts of island biogeography and human agency on
processes of defaunation. What our data do clearly show is that when mainland food producers
arrived on Zanzibar, faunal diversity on the island was greater than at present, suggesting the
plausibility of an anthropogenic contribution to the final extirpation of zebra and some bovids.
Based on currently available data, Zanzibar appears to be unique among African continental
islands in that it hosted such populations of large mammals, adapted to a wide range of both
open (e.g., zebra, buffalo) and closed (e.g., waterbuck, reedbuck) environments, for several mil-
lennia before their extirpation. On present evidence, these fauna appear not to have evolved
(for example, by becoming smaller) in response to the island environment; however, island
conditions did produce several endemic species that are distinct from mainland populations,
such as the Zanzibar leopard and red colobus monkey. These endemics survived hunting and
habitat destruction for several millennia, again making Zanzibar distinct from other continen-
tal islands of Africa. These findings contribute to a growing body of research on the Anthropo-
cene, and its potential pre-industrial beginnings [96], by helping to date and document human
impacts on rapidly changing environments, for example [97-99].

Establishing a high-resolution, long-term faunal record for the island of Zanzibar is critical
to current conservation efforts in the heavily human-impacted Zanzibar archipelago [100-102;
35]. Resource managers and community-based conservation projects often draw on historical
ecological data to model “ideal” biotic compositions (see discussion in [15]), and deep archaeo-
faunal and archaeobotanical records are key to such efforts. The work presented here lays the
foundation for a more robust reconstruction of transformations to Zanzibar’s faunal and floral
biota, and the relative contributions of human agency versus other factors in bringing them
about. However, Kuumbi Cave is only a small entrée into the potentially widespread and com-
plex processes of prehistoric and historic defaunation across Zanzibar, and a number of issues
remain unresolved. Amongst these are the possible impacts of middle Holocene climate
change, which have not been considered here, given the absence of paleoecological and archae-
ological data for this period on Zanzibar. This era was, however, more broadly characterized by
pervasive and rapid pulses of change across the region, such as the strong aridity shift at 4 ka
noted above. This aridity likely affected Zanzibar’s ecosystem composition and distribution,
and may have impacted plant and animal communities. Future research should strive to deter-
mine the nature and chronology of both human and natural impacts to Zanzibar’s flora and
fauna, as well as explore in greater depth the intersection of island biogeography and human
occupation during the nine millennia not represented in the Kuumbi Cave stratigraphy. Such
an interdisciplinary approach should draw on currently lacking high-resolution microfaunal,
paleobotanical, sedimentary, and isotopic records.
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Methods
Model of relative sea level

The model used here considers only the sea level change associated with the growth and decay
of ice sheets and includes the effects of changing ocean volume and the associated changes in
gravity, the migration of shorelines, and changes in seafloor bathymetry. This model has been
tested and calibrated against a global dataset from areas that are understood to be free of tec-
tonic or other geological uplift or subsidence processes using the criteria of the last interglacial
being near present sea levels, absence of seismicity, and avoidance of sites near active plate mar-
gins [75]. The confidence envelope for the model includes the contributions from the predicted
spatial variability between the sites (the three coring sites and Kuumbi Cave), from the uncer-
tainty in earth-model parameters (elastic lithosphere thickness from 50 to 80 km, upper mantle
viscosity from 1.10°° to 2.10*° Pa s, and lower mantle viscosities from 1.10** to 20.10°* Pas, as
explained in [75]) and ice-model uncertainties. Late Quaternary (perhaps to c. 250 ka) land
uplift, at an estimated rate of ca. 0.10-0.20 mm/yr, has been inferred for the area around
Kuumbi Cave [46] and has been adopted as the range of error due to vertical tectonic move-
ments, and is added to the observation errors linked to instrumental uncertainties and compac-
tion [42].

Mangrove sedimentary records

Holocene mangrove dynamics were reconstructed using pollen analysis [40-42; 61]. These
studies also revealed through charcoal analysis how past fire, climate and anthropogenic activi-
ties impacted mangrove ecosystems. Holocene RSL reconstruction was produced through a
combination of an indicative meaning of lower and upper limit of mangroves and an assess-
ment of modern pollen-vegetation and vegetation to altitudinal relationships [42].

Faunal recovery and zooarchaeological analysis

Fieldwork at Kuumbi Cave was carried out under a permit issued by the Office of Chief Gov-
ernment Statistician, Zanzibar Research Committee, and an excavation license issued by the
Department of Museums and Antiquities (DAMA). Field methods are described in detail else-
where [44]. All deposits from Trench 10 were dry-sieved on site using 3 mm mesh, except for
sub-samples of between 7-60L per context; these were bagged separately and processed by flo-
tation to recover archaeobotanical remains and subsequently wet-sieved through 1mm mesh.
The wet- and dry-sieved faunal samples (excluding land and marine molluscs and fish) are
included in the present analysis, for a total of 17.6 kg of tetrapod faunal remains. Faunal
remains are in a temporary storage facility at the British Institute in Eastern Africa, Nairobi,
where they are marked with Sealinks Project catalog numbers in the range 3750-14011. This
assemblage will ultimately be accessioned and accessible at the Museum of History and Culture
of Zanzibar and the Swahili Coast in Stone Town, Zanzibar.

All “maximally identifiable” bones (teeth, epiphyses, other highly diagnostic specimens)
were recorded, and in 11 out of 23 contexts, all “minimally identifiable” bones (limb shafts and
axial fragments >2 cm) were also recorded. Variables recorded included taxon, skeletal ele-
ment, portion, side, and where possible, estimated age; in the subset of 11 contexts, a range of
taphonomic variables were also recorded (S2 Appendix). Taxonomic identifications (S1 Table)
were made using the reference collections of the National Museums of Kenya, Nairobi, as well
as, to a lesser extent, standard guides such as [103]. Mammal size classes were adapted from
[104], where Size 1 includes suni and duikers; Size 2 includes domestic caprines, bushpig, bush-
buck and reedbuck; Size 3 includes domestic cattle, waterbuck and zebra; and Size 4 includes
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buffalo. Estimates of the Minimum Number of Individuals (MNI) took into account laterality,
size, and where relevant, age estimates. It should be stressed that limb shafts were not studied
in all contexts and therefore could not be used to calculate the Minimum Number of Elements
(MNE) and resulting MNI values, as is standard practice in contexts where density-mediated
attrition has taken place [105]. Therefore, MNI estimates may be too low in some cases.

Supporting Information

S1 Appendix. Radiometric dating for Trench 10, Kuumbi Cave.
(DOCX)

S$2 Appendix. Taphonomic variables recorded in the Kuumbi Cave Trench 10 assemblage.
(DOCX)

S1 Fig. Diversity indices at Kuumbi Cave. Diversity indices (Shannon’s E, Simpson’s Domi-
nance; left axis), and richness (NTAXA; right axis), calculated by phase using both NISP and
MNIL
(TTF)

S1 Table. Taxonomic representation at Kuumbi Cave Trench 10.
(XLSX)

Acknowledgments

We thank the Office of Chief Government Statistician, Zanzibar Research Committee, and the
Department of Archives, Museums and Antiquities (DAMA), for permission to excavate. We
are particularly indebted to Amina Issa and Abdallah Ali from DAMA for supporting our
research on Zanzibar. We are grateful for the involvement of Ruth Tibesasa on the excavations
and for the permission and collaboration of the cave’s local custodians, particularly: Bandari
Ame Haji, Asha Ali Makame, Meja Haji Nyonje, Nyonje Pandu Nyonje and Hassan Ali. MEP
thanks Dr. Ogeto Mwebi and staff of the Osteology Unit, National Museums of Kenya, as well
as Mr. Humphrey Mathenge and the staff of the British Institute in Eastern Africa. Finally, we
thank Dr. Jon Erlandson and two anonymous reviewers for constructive comments on an ear-
lier version of this manuscript.

Author Contributions

Conceived and designed the experiments: MEP NLB AC RM KL. Performed the experiments:
MEP HR PP CS. Analyzed the data: MEP HR PP CS. Contributed reagents/materials/analysis
tools: HR PP KL RM. Wrote the paper: MEP HR PP RM AC NK CS MW KL NLB.

References
1. MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: Princeton University
Press; 1967.

2. Diamond JM. Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest Pacific
islands. Proc Natl Acad Sci USA. 1972; 69: 3199-3202. PMID: 16592024

3. Lomolino MV. A call for a new paradigm of island biogeography. Global Ecol Biogeogr. 2000; 9: 1-6.

4. Losos JB, Ricklefs RE. Adaptation and diversification on islands. Nature. 2009; 457: 830—-836. doi:
10.1038/nature07893 PMID: 19212401

5. Brown JH. Mammals on mountaintops: non-equilibrium insular biogeography. Am Nat. 1971; 105:
467-478.

6. Diamond JM. The island dilemma: lessons of modern biogeographic studies for the design of natural
reserves. Biol Conserv. 1975; 7(2): 129-146.

PLOS ONE | DOI:10.1371/journal.pone.0149565 February 22, 2016 19/283


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149565.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149565.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149565.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149565.s004
http://www.ncbi.nlm.nih.gov/pubmed/16592024
http://dx.doi.org/10.1038/nature07893
http://www.ncbi.nlm.nih.gov/pubmed/19212401

@’PLOS ‘ ONE

Island Formation and Defaunation on Zanzibar

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

Patterson BD. Mammalian extinction and biogeography in the southern Rocky Mountains. In: Nitecki
MH, editor. Extinctions. Chicago: University of Chicago Press; 1984. pp. 247—293.

Lawlor T. Comparative biogeography of mammals on islands. Biol J Linnean Soc. 1986; 28(1-2): 99—
125.

Terborgh J, Lopez L, Tello SJ, Yu D, Bruni AR. Transitory states in relaxing ecosystems of land-bridge
islands. In: Laurence WF, Bierregaard RO Jr, editors. Tropical forest remnants: Ecology, manage-
ment, and conservation of fragmented communities. Chicago: University of Chicago Press;

1997. pp. 256-274.

Hope JH. Mammals of the Bass Straits Islands. Proc Royal Soc Victoria. 1973; 85: 163-195.

Terborgh J. Preservation of natural diversity: the problem of extinction prone species. BioScience.
1974; 24: 715-722.

Vigne JD. Les mammiféres post-glaciares de Corse. Etude archéozoologique. Paris: CRNS; 1988.

Alcover JA, Segui B, Bover P. Extinctions and local disappearances of vertebrates in the western
Mediterranean islands. In: MacPhee RDE, Sues H- D, editors. Extinctions in near time: Causes, con-
texts and consequences. New York: Springer; 1999. pp. 165-188.

Steadman DW, Stokes AV. Changing exploitation of terrestrial vertebrates during the past 3000 years
on Tobago, West Indies. Hum Ecol. 2002; 30: 339-367.

Rick TC, Sillett TS, Ghalambor CK, Hofman CA, Ralls K, Anderson RS et al. Ecological change on
California’s Channel Islands from the Pleistocene to the Anthropocene. BioScience. 2014; doi: 10.
1093/biosci/biu094

Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene.
Science. 2014; 345(6195): 401-406. doi: 10.1126/science.1251817 PMID: 25061202

Burney DA, Robinson GS, Burney LP. Sporormiella and the late Holocene extinctions in Madagascar.
Proc Natl Acad Sci USA. 2003; 100(19): 10800-10805. PMID: 12960385

Dewar RE. Extinctions in Madagascar: the loss of the subfossil fauna. In Martin P, Klein R, editors.
Quaternary extinctions. Tucson: University of Arizona Press; 1984. pp. 574-593.

Dewar RE, Wright HT. The culture history of Madagascar. J World Prehist. 1993; 7: 417—-466.

Cheke AS. An ecological history of the Mascarene Islands, with particular reference to extinctions and
introductions of land vertebrates. In Diamond AW, editor. Studies of Mascarene Island birds. Cam-
bridge: Cambridge University Press; 1987. pp. 5-89.

Cheke AS. The timing of arrival of humans and their commensal animals on Western Indian Ocean
oceanic islands. Phelsuma 2010; 18: 38—69.

Cheke AS, Hume JP. Lost land of the Dodo: The ecological history of the Mascarene Islands. London:
T & AD Poyser; 2008.

Greenway JC. Extinct and vanishing birds of the world. New York: American Committee for Interna-
tional Wildlife Protection; 1958.

Rijsdijk KF, Zinke J, de Louw PGB, Hume JP, van der Plicht H, Hooghiemstra H et al. Mid-Holocene
(4200 kyr BP) mass mortalities in Mauritius (Mascarenes): insular vertebrates resilient to climatic
extremes but vulnerable to human impact. Holocene. 2011; 21: 1179-1194.

Louette M. Les oiseaux des Comores. Tervuren: Musée Royal de I'‘Afrique Centrale; 1988.

Louette M, editor. La faune terrestre de Mayotte. Tervuren: Musée Royal de I‘Afrique Centrale; 1999.
Louette M, Meirte D, Jocqué R, editors. La faune terrestre de 'archipel des Comores. Tervuren:
Musée Royal de I‘Afrique Centrale; 2004.

Walsh MT. Island subsistence: hunting, trapping and the translocation of wildlife in the western Indian
Ocean. Azania. 2007; 42: 83—113.

Kent P.E., Hunt M.A, Johnstone D.W. The geology and geophysics of coastal Tanzania. London:
HMSO; 1971.

Rowson B, Warren BH, Ngereza CF. Terrestrial molluscs of Pemba Island, Zanzibar, Tanzania, and
its status as an “oceanic” island. ZooKeys 2010; 70: 1-39. doi: 10.3897/zookeys.70.762 PMID:
21594041

Moreau RE, Pakenham RHW Faunistics and ages of the East African islands. Nature. 1940; 146:
462.

Moreau RE, Pakenham RHW. The land vertebrates of Pemba, Zanzibar, and Mafia: a zoogeographi-
cal study. Proc Zoo Soc Lond. 1941; 110 (Series A): 97-128.

Pakenham RHW. The reptiles and amphibians of Zanzibar and Pemba islands (with a note on the
freshwater fishes), J E Afr Nat Hist Soc. 1983; 177: 1-40.

PLOS ONE | DOI:10.1371/journal.pone.0149565 February 22, 2016 20/23


http://dx.doi.org/10.1093/biosci/biu094
http://dx.doi.org/10.1093/biosci/biu094
http://dx.doi.org/10.1126/science.1251817
http://www.ncbi.nlm.nih.gov/pubmed/25061202
http://www.ncbi.nlm.nih.gov/pubmed/12960385
http://dx.doi.org/10.3897/zookeys.70.762
http://www.ncbi.nlm.nih.gov/pubmed/21594041

@’PLOS ‘ ONE

Island Formation and Defaunation on Zanzibar

34.

35.

36.

37.
38.

39.

40.

41.

42,

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Stockley GM. The geology of the Zanzibar Protectorate and its relation to the East African mainland.
Geol Mag. 1942; 79(4): 233-240.

Williams A, Mwinyi AA, Ali SJ. A population survey of the mini-antelope—Ader’s duiker (Cephalophus
adersi), Zanzibar blue duiker (Cephalophus monticola sundevalli), Suni (Neotragus moschatus
moschatus)—of Unguja, Zanzibar. Zanzibar: Commission for Natural Resources; 1996.

Sheriff A. Slaves, spices and ivory in Zanzibar. London: James Currey; 1987.
Sheriff A. History and conservation of Zanzibar Stone Town. Athens: Ohio University Press; 1995.

Stockley GM. Report on the geology of the Zanzibar Protectorate. Zanzibar: Government of Zanzi-
bar; 1928.

Muzuka AN, Nyandwi N, Shaghude YW. 2004. Preliminary investigation on the Pleistocene-Holocene
sea level changes along the coastline of Tanzania, with reference to Unguja and Pemba islands. Bull
Dir Geol, Mozamb. 2004; 43: 8-13.

Punwong P, Marchant R, Selby K. Holocene mangrove dynamics and sea level changes in Makoba
Bay, Zanzibar. Palaeogeogr Palaeoclimatol Palaeoecol. 2013; 379-380: 54—67.

Punwong P, Marchant R, Selby K. Holocene mangrove dynamics from Unguja Ukuu, Zanzibar. Quat
Int. 2013; 298: 4-19.

Punwong P. Holocene mangrove dynamics and sea level changes: records from the Tanzanian
coast. PhD thesis, University of York. 2013.

Davies AM, Cox LR, Stockley GM, Stubblefield CJ, White El. Report on the Palaeontology of the Zan-
zibar Protectorate, based mainly on the collection made by G.M. Stockley, Government Geologist,
1925-1926. Zanzibar Government Report; 1927.

Shipton C, Crowther A, Prendergast ME, Kourampas N, Horton M, Douka K et al. Reinvestigation of
Kuumbi Cave, Zanzibar, reveals Later Stone Age coastal habitation, early Holocene abandonment,
and Iron Age reoccupation. Azania; in press.

Langley MC, Prendergast ME, Quintana Morales EM, Shipton CBK, Crowther A, Boivin NL. Poison
Arrows and Bone Utensils in Late Pleistocene eastern Africa: evidence from Kuumbi Cave (Zanzibar).
Azania; in press.

Kourampas N, Shipton CBK, Mills W, Tibesasa R, Horton H, Horton MC et al. Late Quaternary speleo-
genesis and landscape evolution in a tropical carbonate island: Panga la Kuumbi (Kuumbi Cave),
Zanzibar. Int J Speleol. 2015; 44(3): 293-314.

Chami FA. The unity of African ancient history: 3000 BC to AD 500. Dar es Salaam: E&D Ltd; 2006.

Chami FA, editor. Zanzibar and the Swabhili coast from ¢.30,000 years ago. Dar es Salaam: E&D
Vision Publishing; 2009.

Sinclair P, Juma A, Chami FA. Excavations at Kuumbi Cave on Zanzibar in 2005. In Kinahan J, Kina-
han J, editors. The African archaeology network: Research in progress. Dar es Salaam: University of
Dar es Salaam; 2006, pp. 95-106.

Arthurton R. The fringing reef coasts of eastern Africa—present processes in their long-term context.
West Indian Ocean J Mar Sci. 2003; 2(1): 1-13.

Arthurton RS, Brampton AH, Kaaya CZ, Mohamed SK. Late Quaternary coastal stratigraphy on a plat-
form-fringed tropical coast: a case study from Zanzibar, Tanzania. J Coast Res. 1999; 15(3): 635—
644.

Burgess ND, Clarke GP, editors. Coastal forests of eastern Africa. Gland, Switzerland: IUCN Forest
Conservation Programme; 2000.

Goldman HV, Walsh MT. Is the Zanzibar leopard (Panthera pardus adersi) extinct? J East Afr Nat
Hist. 2002; 91(1/2): 15-25.

Goldman HV, Walsh MT. Erratum: Is the Zanzibar leopard (Panthera pardus adersi) extinct? J East
Afr Nat Hist. 2003; 92(1/2): 4.

Quintana Morales EM. Reconstructing Swabhili foodways: The archaeology of fishing and fish con-
sumption in coastal East Africa, AD 500—-1500. PhD thesis, University of Bristol. 2013.

Chami FA. Chicken bones from a Neolithic limestone cave site, Zanzibar: contact between East Africa
and Asia. In: Chami FA, Pwiti C, Radimilahy C, editors. People, contacts, and the environment in the
African past. Dar es Salaam: Univ. Dar es Salaam; 2001. pp. 84-97

Robertshaw P. African archaeology in world perspective. In Falconer SE, Redman CL, editors. Poli-
tics and power: Archaeological perspectives on the landscapes of early states. Tucson: University of
Arizona Press; 2009. pp. 208—220.

Sutton JEG. Research and interpretation in eastern African archaeology: a review of ‘People, contact
(s) and the environment in the African past’. J Afr Hist. 2002; 43: 503-540.

PLOS ONE | DOI:10.1371/journal.pone.0149565 February 22, 2016 21/23



@’PLOS ‘ ONE

Island Formation and Defaunation on Zanzibar

59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.
84.

Juma A. Unguja Ukuu on Zanzibar: An archaeological study of early urbanism, PhD Thesis, Uppsala
University. 2004.

Horton MC. Zanzibar and Pemba: The archaeology of an Indian Ocean archipelago. London: Ash-
gate; in press.

Punwong P, Marchant R, Selby K. Holocene mangrove dynamics and environmental change in the
Rufiji Delta, Tanzania. Veget Hist Archaeobot. 2013; 22: 381-296.

Pirazzoli PA. World atlas of Holocene sea-level changes. Amsterdam: Elsevier; 1991.

Camoin LR, Montaggioni LF, Braithwaite CJR. Late glacial to post glacial sea levels in the western
Indian Ocean. Mar Geol. 2004; 206: 119—-146.

Camoin GF, Colona M, Montaggioni LF, Casanova J, Faure G, Thomassin BA. Holocene sea level
changes and reef development in the southwestern Indian Ocean. Coral Reefs. 1997; 16: 247—259.

Zinke J, Reijmer JUG, Thomassin BA, Dullo WC, Grootes PM, Erlenkeuser H. Postglacial flooding his-
tory of Mayotte Lagoon (Comoro Archipelago, southwest Indian Ocean). Mar Geol. 2003; 194: 181—
196.

Mérner N. Ocean circulation, sea level changes and East African coastal settlements. In Sinclair PJJ,
and Juma A, editors. Urban origins in eastern Africa: Proceedings of the 1991 workshop in Zanzibar.
Stockholm: Swedish Central Board of National Antiquities; 1992. pp. 256—266.

Compton JS. Holocene sea level fluctuations inferred from the evolution of depositional environments
of the southern Langebaan Lagoon salt marsh, South Africa. Holocene. 2001; 11: 395-405.

Jaritz W, Ruder J, Schlenker B. Das Quartar im Kustengebiet von Mocambique und seine Schwermi-
neralfuhrung. Geologisches Jahrbuch. 1977; 26: 3-93.

Norstrém E, Risberg J, Grondahl H et al. Coastal paleo-environment and sea-level change at
Macassa Bay, southern Mozambique, since ¢ 6600 cal BP. Quat Int. 2012; 260: 153—-163.

Ramsay PJ. 9000 years of sea level change along the southern African coastline. Quat Int. 1995; 31:
71-75.

Ramsay PJ, Cooper JAG. Late Quaternary sea level change in South Africa. Quat Res. 2002; 57: 82—
90.

Woodroffe SA, Horton BP. Holocene sea-level changes in the Indo-Pacific. J Asian Earth Sci. 2005;
25:29-43.

Nakada M, Lambeck K. Glacial rebound and relative sea-level variations: a new appraisal. Geophys J
R Astron Soc. 1987; 90: 171-224.

Lambeck K, Purcell A, Johnston P, Nakada M, Yokoyama Y. Water-load definition in the glacio-hydro-
isostatic sea-level equation. Quat Sci Rev. 2003; 22: 309-318.

Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. Sea level and global ice volumes from the Last
Glacial Maximum to the Holocene. Proc Natl Acad Sci USA. 2014; 111(43): 15296—15303. doi: 10.
1073/pnas.1411762111 PMID: 25313072

Marchant R, Hooghiemstra H. Rapid environmental change in African and South American tropics
around 4000 years before present: a review. Earth-Sci Rev. 2004; 66: 217-260.

Kiage LM, Liu K. Late Quaternary paleoenvironmental changes in East Africa: a review of multiproxy
evidence from palynology, lake sediments, and associated records. Prog Phys Geogr. 2006; 30: 633—
658.

Rucina SM, Muiruri VM, Downton L, Marchant R. Late-Holocene savanna dynamics in the Amboseli
Basin, Kenya. Holocene 2010; 20: 667-677.

Castarfieda IS, Werne JP, Johnson TC, Filley TR. Late Quaternary vegetation history of southeast
Africa: the molecular isotopic record from Lake Malawi. Palaeogeogr Palaeoclimatol Palaeoecol.
2009; 275: 100-112.

Woodroffe SA, Long AJ, Punwong P, Selby K, Bryant C, Marchant R. Radiocarbon dating of man-
grove sediments to constrain Holocene relative sea-level change on Zanzibar in the southwest Indian
Ocean. Holocene. 2015; 25(5): 820-831.

Crowther A, Horton M, Kotarba-Morley A, Prendergast M, Quintana Morales E, Wood M et al. Iron
Age agriculture, fishing and trade in the Mafia Archipelago, Tanzania: new evidence from Ukunju
Cave. Azania. 2014; 49(1): 21-44.

Helm RM. Recent archaeological research on the iron-working, farming communities of coastal
Kenya. Azania. 2000; 35(1): 183—189.

Martin del Molino A. Prehistoria de Guinea Ecuatorial. Africa 2000. 1989; 4(2): 4-21.

Marti R, Mercader J, Fernandez N. El origen de la ocupacién humana en la isla de Bioko. Arqueolo-
gia, historia y etnografia. Revista de Arqueologia. 2012; 21(232): 14-23.

PLOS ONE | DOI:10.1371/journal.pone.0149565 February 22, 2016 22/23


http://dx.doi.org/10.1073/pnas.1411762111
http://dx.doi.org/10.1073/pnas.1411762111
http://www.ncbi.nlm.nih.gov/pubmed/25313072

@’PLOS ‘ ONE

Island Formation and Defaunation on Zanzibar

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.
96.
97.

98.

99.

100.

101.

102.

103.

104.

105.

Grove R.H. Green imperialism: Colonial expansion, tropical island Edens and the origins of environ-
mentalism, 1600-1860. Cambridge: Cambridge University Press; 1995.

Goodman SM, Patterson BD, editors. Natural change and human impact in Madagascar. Washing-
ton: Smithsonian Institution Press; 1997.

Agenbroad LD. Giants and pygmies: mammoths of Santa Rosa Island, California (USA). Quat Int.
2012; 255:2-8.

Erlandson JM, Torben CR, Braje TJ, Casperson M, Culleton B, Fulfrost B, et al. Paleoindian seafaring,
maritime technologies, and coastal foraging on California’s Channel Islands. Science. 2011; 331
(6021): 1811-1185.

Hilty J, Lidicker W, Merenlender A. Corridor ecology: The science and practice of linking landscapes
for biodiversity conservation. Washington: Island Press; 2006.

Groucutt HW, Petraglia MD, Bailey G, Scerri EML, Parton A, Clark-Balzan L et al. Rethinking the dis-
persal of Homo sapiens out of Africa. Evol Anthropol. 2015; 24(4): 149—164. doi: 10.1002/evan.21455
PMID: 26267436

Prendergast ME, Mutundu KK. Late Holocene archaeological faunas in East Africa: ethnographic
analogues and interpretive challenges. Doc Archaeobiol. 2009; 7: 203-232.

Athens JS, Tuggle HD, Ward JV, Welch DJ. Avifaunal extinctions, vegetation change, and Polynesian
impacts in prehistoric Hawai'i. Archaeol Ocean. 2002; 37: 57-78.

Chynoweth MW, Litton CM, Lepczyk CA, Hess SC, Cordell S. Biology and impacts of Pacific Island
invasive species. 9. Capra hircus, the feral goat (Mammalia: Bovidae). Pac Sci. 2013; 67(2): 141-156.

Coblentz BE. The effects of feral goats (Capra hircus) on island ecosystems. Biol Conserv. 1978; 13:
279-286.

Hunt TJ. Rethinking Easter Island's ecological catastrophe. J Archaeol Sci. 2007; 34: 485-502.
Smith BC, Zeder MA. The onset of the Anthropocene. Anthropocene. 2013; 4:8-13.

Ellis EC, Fuller DQ, Kaplan JO, Lutters WG. Dating the Anthropocene: towards an empirical global
history of human transformation of the terrestrial biosphere. Elem Sci Anth. 2013; 1: 000018.

Erlandson JM, Rick T. Archaeology meets marine ecology: the antiquity of maritime cultures and
human impacts on marine fisheries and ecosystems. Ann Rev Mar Sci. 2010; 2: 231-251. PMID:
21141664

Erlandson JM, Braje TJ, editors. When humans dominated the Earth: Archeological perspectives on
the Anthropocene. Anthropocene. 2013; 4: 1-122.

Masoud TS, Wild RG. Sustainable use and conservation management of mangroves in Zanzibar,
Tanzania. In Vannucci M, editor. Mangrove management and conservation: Present and future.
Tokyo: UNU Press; 2004. pp. 280-293.

Saunders F. It's like herding monkeys into a conservation enclosure: The formation and establishment
of the Jozani-Chwaka Bay National Park, Zanzibar, Tanzania. Conservation and Society. 2011; 9(4):
961-973.

Salum LA. Ecotourism and biodiversity conservation in Jozani-Chwaka Bay National Park, Zanzibar.
AfrJ Ecol. 2009; 47: 166—170.

Walker R. A guide to post-cranial bones of East African animals. Norwich, England: Hylochoerus
Press; 1985.

Brain CK. The hunters or the hunted? An introduction to African cave taphonomy. Chicago: Univer-
sity of Chicago Press; 1981.

Marean C, Dominguez-Rodrigo M, Pickering TR. Skeletal element equifinality in Zooarchaeology
begins with method: the evolution and status of the "shaft critique". J Taphonomy. 2004; 2: 69-98.

PLOS ONE | DOI:10.1371/journal.pone.0149565 February 22, 2016 23/23


http://dx.doi.org/10.1002/evan.21455
http://www.ncbi.nlm.nih.gov/pubmed/26267436
http://www.ncbi.nlm.nih.gov/pubmed/21141664

