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Curvature induction and membrane remodeling
by FAM134B reticulon homology domain assist
selective ER-phagy
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FAM134B/RETREGT is a selective ER-phagy receptor that regulates the size and shape of the
endoplasmic reticulum. The structure of its reticulon-homology domain (RHD), an element
shared with other ER-shaping proteins, and the mechanism of membrane shaping remain
poorly understood. Using molecular modeling and molecular dynamics (MD) simulations, we
assemble a structural model for the RHD of FAM134B. Through MD simulations of FAM134B
in flat and curved membranes, we relate the dynamic RHD structure with its two wedge-
shaped transmembrane helical hairpins and two amphipathic helices to FAM134B functions in
membrane-curvature induction and curvature-mediated protein sorting. FAM134B clustering,
as expected to occur in autophagic puncta, amplifies the membrane-shaping effects. Electron
microscopy of in vitro liposome remodeling experiments support the membrane remodeling
functions of the different RHD structural elements. Disruption of the RHD structure affects
selective autophagy flux and leads to disease states.
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he endoplasmic reticulum (ER) forms a large inter-

connected membrane system that occupies a substantial

fraction of the cell volume. The ER is the major site of
protein production, plays a central role in Ca?t homeostasis, and
is involved in lipid synthesis. It acts as the central communication
and transport hub for several intersecting cellular pathways!. The
reticulated structure of the ER, composed of flat sheet-like and
highly branched tubular networks and matrices, is organized into
spatial sub-domains serving its wide variety of functions®3. As a
consequence, the ER size, shape, and structure are under constant
spatial and temporal regulation.

The ER structure is dynamic and extensively remodeled in
response to cellular stress conditions by ER-stress-activated
autophagy or by selective ER-phagy®°. Both pathways can also
be triggered by unfolded protein response and act to restore
metabolic homeostasis®. The more selective ER-phagy leads to ER
turnover by recruiting the autophagy machinery to specific
locations of the ER®. As a consequence, major ER components are
recycled through autophagy, including lipids and misfolded
proteins.

Five ER-resident proteins have been shown to function as
receptors for selective ER-phagy: FAM134B7, SEC628, RTN3?,
CCPG119, and ATL3!L. These integral membrane proteins appear
to partition into different sub-domains of the ER. All of them
harbor a sequential peptide motif within the cytoplasmic region,
enabling binding to LC3/GABARAP proteins associated with
phagophore membrane. This specific interaction is mediated by
the receptor containing LC3-interacting region (LIR) and recruits
the autophagy machinery to structurally diverse ER regions!2.

FAM134B, the first ER-phagy receptor to be identified, con-
tains a reticulon-homology domain (RHD). FAM134B targets ER
sheets for degradation by specific binding to MAP1LC3B, which
is associated with the phagophore membrane via its C-terminal
LIR. FAM134B is presumed to induce high-membrane curvature
in cells, thereby coalescing ER membrane locally into small
vesicles, which are engulfed by the growing phagophore and
subsequently degraded in the autolysosomes. Cells without
FAM134B display massive expansion of the ER sheets’.

The biological functions of FAM134B in both normal and
disease states, are attributed primarily to its housekeeping func-
tion, i.e., ER maintenance via selective autophagy. Loss of func-
tion of FAMI34B is associated with several diseases and
disorders. Defective membrane shaping proteins, especially pro-
teins with RHDs, are often associated with aberrant axonal
development and neurodegenerative disorders!3. In humans,
genetic variants resulting in loss of FAM134B function cause
severe sensory neuropathy (HSANII)!4. FAM134B is also impli-
cated in the suppression of viral replication during Ebola, Den-
gue, Zika, and West Nile viral infections!>16. Non-structural viral
proteases such as NS283 specifically cleave FAM134B, thereby
subverting ER-phagy!. Specific mutations in FAM134B and
expression profiles are strongly correlated with colorectal can-
cers!”. Increased expression of FAM134B is also implicated with
susceptibility to vascular dementia and allergic rhinitis!”>18.

Discerning the functions associated with the RHDs in mem-
branes is severely restricted by the lack of 3D structure. Limited
characterization so far reveals that the structural elements of
the RHD and its membrane topology are common to membrane-
shaping proteins (canonical RTNs, REEPS, and DP1/YOP-like)!9-22
and selective ER-phagy receptors (FAM134B, ATG40, RTN3)>.
FAM134B offers a unique system to study the role of RHDs. At
the molecular level, the presence of both a RHD and a LIR motif
within the same protein couples local curvature induction and
sensing functions to organelle remodeling and maintenance
associated with ER-phagy. However, the mechanistic basis of
FAM134B-mediated ER-phagy remains unresolved.

Here, we use computer modeling to build a structural model of
the RHD of FAM134B and to characterize its ability to sense and
induce membrane curvature. With electron microscopy imaging
of the membrane remodeling activities of different deletion
constructs, and with in cell immunofluorescence (IF) studies of
ER-phagy, we test the functional predictions of the model. We
identify the mechanism of curvature induction by FAM134B and
shed light on its role in selective ER-phagy. The unique domain
structure of the RHD emerges as the central factor in the
induction of highly curved vesicles by FAM134B in vitro. Our
model also provides a molecular explanation for the loss of
function associated with genetic variants and proteolytic cleavage
products of FAM134B.

Results

Structural model for FAM134B-RHD. The FAM134B sequence
contains a RHD (residues 83-235; Fig. 1). The RHD resembles
canonical reticulon proteins and displays a similar hydro-
phobicity profile indicating a likely evolutionary relationship
(PF02453, bit score =40.54; E-value = 0.00049; Supplementary
Fig. 1; Supplementary Note 1). Using a wide range of sequence-
based analysis and assignment procedures, we concluded that
the RHD forms a membrane embedded, structured region of
FAM134B (Supplementary Fig. 2). The RHD of FAM134B is
characterized by two large transmembrane (TM) segments
separated by a 60-residue long linker segment. C-terminal to the
second TM segment is a conserved amphipathic helix (Fig. 1).
The RHD is flanked by a variable N-terminal disordered fragment
(1-80) and a C-terminal (260-497) disordered fragment con-
taining the conserved functional LIR (Fig. 1; Supplementary
Fig. 2).

We built a molecular model of FAM134B-RHD by integrating
fragment-based modeling with extensive molecular dynamic
(MD) simulations (see the section “Methods”; Fig. 2). Rough
initial models of the two TM helical hairpins and the two
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Fig. 1 Sequence and topology of FAM134B. a Schematic of the full length
FAM134B sequence. The RHD consists of two transmembrane segments
(green, TM12 and TM34) separated by a 60-residue linker, and two
additional terminal segments. The C-terminal fragment of the RHD and the
linker-helix (yellow) form conserved amphipathic helices. b Topology of
FAM134B-RHD (80-260). Charged residues (K/R blue and D/E red), TM
segments (green) and amphipathic helices (yellow) are highlighted.
Genetic variant Q145X and proteolytic cleavage product R142X result in
truncated proteins (red dotted line) disrupting the RHD. The N-terminal
and C-terminal disordered regions (not modeled, gray) flank the RHD on
the cytosolic face of the ER membrane
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Fig. 2 3D structural model of FAM134B-RHD from MD simulations. a, b Transmembrane fragments fold into helical hairpins (red and blue helices in (a)
TM12 and (b) TM34. Flanking charged and polar residues and luminal loop residues anchor the two hairpins within the ER membrane (labeled side chains).
¢, d Linker and C-terminal fragments form amphipathic helices (¢) AH, and (d) AH¢ (yellow cartoon). Polar (colored labels) and apolar residues (yellow
labels) on opposite sides position the helices at the water-bilayer interface. e Overlapping, individually refined fragment structures were used to assemble
the FAM134B-RHD (80-260) structural model. The model was first equilibrated using coarse-grained simulations and then refined with all-atom MD

simulations. f Time-averaged local membrane profile (gray mesh; top, side, and 3D views) around FAM134B-RHD (colored) computed from all-atom MD

simulations displays perturbations of the bilayer structure

amphipathic helices were constructed from solved structures with
similar sequence and matching secondary structure (Supplemen-
tary Table 1). These initial fragment models were then subjected
to extensive conformational sampling, first, using coarse-grained
(CG) simulations and then by all-atom MD simulations
(Supplementary Figs. 3-7; Supplementary Table 2; Supplemen-
tary Notes 2-4). Finally, the refined fragment structures with
appropriate membrane positions and orientations were assembled
into a structural model of FAMI134B-RHD (Supplementary
Table 3; Supplementary Note 5).

TM segments TM12 and TM34 of the RHD fold into TM
hairpins (Fig. 2a, b; Supplementary Note 2). The short TM helices
connected by a Gly/Pro-rich polar loop (3-4 residues) display
conformational characteristics of helical hairpins (Supplementary
Figs. 3-5). Specific pair-wise interactions across the two helices
stabilize their helical hairpin structure (Supplementary Figs. 4 and
5). Charged and polar residues within their luminal loops and
ends anchor the hairpins firmly into both leaflets of the ER
membrane. The short hydrophobic helices (5-6 turns each), their
helix-helix crossing angle (=50-60°) and a slight tilt (=10-15°) of
the individual hairpins establish hydrophobic mismatch in PC-
rich bilayers (Fig. 2a, b).

In addition to the two TM helical hairpins, the FAM134B-
RHD contains two cytoplasmic amphipathic helices (AH; and
AH¢; Fig. 2¢, d) with predicted large hydrophobic moments
(Supplementary Figs. 6 and 7; Supplementary Notes 3, 4). In CG
simulations of the helical fragments AH; and AHc, we observed
membrane docking and embedding events in the presence of lipid
bilayers, illustrating their amphipathic nature (Supplementary
Figs. 6 and 7). The docked orientation of these fragments was
consistent with the predicted hydrophobic ~moments

((yH)AHL = 0.35and (uH) = 0.48). In all-atom MD simu-

lations of the membrane-docked fragments of AH; and AHg, the
amphipathic segments remained in helical conformations (Fig. 2c,
d). By contrast, in all-atom simulations of the fragments in
aqueous solution, disordered and unfolded conformations
accumulated, indicating the importance of membrane-
interactions for the folding of amphipathic helices (Supplemen-
tary Figs. 6 and 7).

The RHD of FAMI134B is thus assembled from four major
fragments (Fig. 2e; Supplementary Note 5). Two TM hairpin
structures firmly anchor the protein into both leaflets of the ER
membrane. A flexible cytoplasmic linker bridges the two TM
hairpins. The two amphipathic helices interact strongly with the
cytoplasmic leaflet and flank the TM34 segment on both sides.
Structural features of these fragments, including their membrane
interactions, are well preserved in both CG and all-atom MD
simulations (Supplementary Table 3).

FAM134B-RHD induces membrane curvature. FAM134B-RHD
perturbs the local bilayer structure and breaks the bilayer sym-
metry. We quantified its effect on local membrane shape and
structure by mapping the average membrane thickness profile
around the RHD from all-atom MD simulations (Fig. 2f). The
RHD formed a large asymmetric membrane inclusion in the ER
membrane. Near the amphipathic helices, the area per lipid
increased by stretching the cytoplasmic leaflet. We also observed
a reduced bilayer thickness in the vicinity of the TM hairpins. The
hydrophobic mismatch of the TM hairpins locally compresses the
membrane (Supplementary Fig. 8).
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We reasoned that local bilayer asymmetric stretching and
compression by FAM134B-RHD could deform the natural bilayer
shape and result in curved membrane structures. However, the
inherent restriction to MD simulations under periodic boundary
conditions prohibits the development of long wavelength shape
fluctuations in the bilayer. To overcome this limitation and study
possible large-scale membrane shape changes induced by
FAM134B-RHD, we designed an in silico curvature assay using
open bilayer patches (PC 34:1 or ER lipids). In MD simulations
of free bilayer patches with FAM134B-RHD, we observed patch-
closure and vesicle formation (Supplementary Figs. 9 and 10;
Supplementary Note 6). The observed bilayer-to-vesicle transi-
tions are a consequence of two effects: (i) the induction of
membrane curvature by the protein and (ii) the unstable edge
of the discontinuous bilayer disc (Supplementary movie 1). To
decouple these two effects, we employed a bicelle system (DMPC
-+ DHPC) with minimal edge tension (see the section “Methods”)
to study curvature induction.

In the bicelle, short-chain DHPC lipids (C7) localize to the rim
of the predominantly flat DMPC bilayer (C14) and stabilize the
open edge (Supplementary Fig. 1la, b). Empty bicelles thus
remain relatively flat (|H| <0.03nm~!) and stable on the MD
time-scale (up to 2 us; Supplementary Fig. 11a; Supplementary
movie 2). Control bicelle systems with KALP;5 also remain more
or less flat (Fig. 3a). KALP;5 and empty bicelles seldom vesiculate
(5/96 and 2/95, respectively) spontaneously and without clear
directionality (Fig. 3c; Supplementary Fig. 1lc). By contrast,
FAM134B-RHD induces curvature of edge-stabilized bicelles
(Fig. 3b). Bicelles with the RHD undergo complete vesiculation
with highly curved intermediates (Fig. 3b; Supplementary
movie 3). In nearly all simulations, we observed bicelle-to-
vesicle transitions within the simulation time (92/95 runs). All
transitions involved positive curvature (4-H), i.e., curving away
from the cytoplasmic leaflet (1, = 92; Fig. 3d).

We express the driving force for protein-induced curvature
induction by measuring rates of vesicle formation (Supplemen-
tary Table 5). We estimate that FAMI34B-RHD accelerated

a b

FAM134B-RHD

478 ns

vesicle formation by factors of 2 for open bilayer discs and 160 for
bicelles (Supplementary Table 5). By comparison, the KALP5
peptide showed only a small acceleration in vesicle formation
(1.35 for bilayer discs and 5 for bicelles). Accelerated vesicle
formation in the presence of FAMI134B-RHD is a result of
directed curvature induction. High occupancy of FAM134B-RHD
at the cusp (apex) of deformed bilayer discs and bicelles indicates
a direct role of the RHD in curvature induction (Fig. 3b;
Supplementary Figs. 9 and 10). Thus, the in silico curvature
assays demonstrate the curvature induction capacity of FAM134B
(Fig. 3).

To identify the structural elements of the RHD responsible for
directional curvature induction, we examined vesiculation rates of
bilayer discs and bicelles in the presence of various FAM134B-
RHD fragments (Supplementary Figs. 12-14; Supplementary
Note 7). By monitoring both the sign of membrane curvature (H
(#)) and rates of vesicle formation from a large number of
simulations (Supplementary Table 4), we determined the ability
of individual fragments to induce specific and directional
curvature effects (Supplementary Table 5). We found that
individual TM hairpin fragments (TM12 or TM34) do not
efficiently induce directional curvature in bilayers or bicelles,
whereas fragments containing AH; or AH¢ induce specific and
directional curvature resulting in enhanced vesiculation rates.

FAM134B-RHD senses membrane curvature. We determined
the intrinsic curvature preference of FAM134B-RHD by simu-
lating a buckled bilayer under lateral compression with periodic
boundary conditions (see Supplementary Methods; Supplemen-
tary Table 6). The membrane adopts a sinusoidal folded-carpet
structure with a range of local mean curvatures (H(x, y) = —0.05
to 0.05nm™~!). Lateral protein diffusion within this buckled
membrane permits curvature sampling and quantification of local
curvature preference (Fig. 4). Accordingly, we tracked protein
center-of-mass positions and orientations, and computed the
associated local curvature of the buckled membrane profiles (see
Supplementary Methods; Supplementary Figs. 15-18).
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Fig. 3 Bicelle-to-vesicle transitions. a, b Snapshots showing curvature of bicelles containing DMPC (gray) and short chain DHPC lipids (red) (a) with

KALP;5 peptide (blue) and (b) FAM134B-RHD (green). ¢ KALP;s-containing bicelles remain flat with low curvature (|H| = £0.005 nm~), rarely displaying
vesiculation events (5/96) within 96 simulations of 1000 ns each. d FAM134B-RHD actively curves the bicelle to form vesicles in repeated runs (92/95).
FAM134B-RHD induces strong positive curvature along the cytoplasmic leaflet resulting in positively curved vesicles (H=+0.16 nm~"). ¢, d Curvature
time-traces (blue/green, smoothed running averages over 11 ns widows) from individual replicates quantify the bicelle shape transformation process during
simulations. **Denote and n.s. denote the one-tailed probability in binomial tests for bias in number of vesiculation events with positive and negative bicelle

curvatures
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Fig. 4 Curvature sensing by FAM134B-RHD. a Cut through the simulation
box along the xz plane (inset top view) showing the buckled lipid bilayer
(orange phosphate beads), with excess area (17 nm2) under edge
compression. Diffusion of curvature-inducing proteins such as FAM134B-
RHD (green) in the buckled membrane enables curvature sampling and
estimation of intrinsic curvature preferences (see the section “Methods").
We tracked the position of proteins (x, y) along the buckle, and quantified
the curvature preference (principal, mean and Gaussian; see
Supplementary Fig. 15). b Histograms of mean curvature, H(x, y), sampled
by FAM134B-RHD (green) in coarse-grained simulations (1ns intervals for
20 ps) indicate a preference for highly curved regions of the buckle. By
contrast, the KALP;5 peptide (blue) samples regions with lower curvature
along the buckle. The local mean curvature field of the empty buckled
membrane (red) is obtained by random sampling of points in the xy plane
(see Supplementary Fig. 16)

We found that FAM134B-RHD strongly prefers regions of
high local curvature (Fig. 4a; Supplementary movie 4).
FAM134B-RHD was initially placed in a region of low mean
curvature and oriented such that its internal orientation (long
axes of AH; and AHc) was parallel to the direction of the
membrane buckle (x-axis). We found that FAMI134B-RHD
further enhances the curvature of the buckle, and occupies
regions of high local mean curvature (H(x, y)~0.026 nm~1);
Fig. 4b, green histograms). In control simulations with the
KALP; 5 peptide, we observed a preference for surfaces with small
mean curvature (H(x, y)=0.0011nm™~!); Fig. 4b, blue histo-
grams). Detailed 2D histograms of preferred principal curvatures
(k; and k;) revealed that FAM134B-RHD associates with regions
of positive principal curvatures, resembling local bulges of the
buckle (Gaussian curvature Kg >0 corresponding to ellipsoidal
vesicle shapes; Supplementary Fig. 16). Control simulations with
KALP;5 showed that the peptide associates with regions of both
positive and negative principal curvatures, indicating preference
for local gentle saddle-like regions of the buckle (Kg<0;
Supplementary Fig. 16; Supplementary movie 5).

In long simulations of the intact RHD (20 ps) in flat bilayers
(POPC or ER-lipids; Supplementary Table 2), we observed the
formation of a wedge-shaped structure (Fig. 5a). The two short TM
hairpins (TM12 and TM34) were pulled together, likely to minimize
the overall membrane perturbation. This arrangement was
dynamic, bridged by a flexible linker fragment (RMSD ~ 0.6-0.8
nm) between the two hairpins (Supplementary Fig.19a). The
two TM hairpins interacted via their hydrophilic luminal loops,
which formed a narrow tip at the luminal leaflet (drnio-TMm3s
= 1.51 £ 0.67 nm; Supplementary Fig. 19b). On the cytosolic face,
the AH; kept the two hairpins apart (dry2—1vsa = 2.83 £ 0.45
nm; Supplementary Fig. 19b). The organization of individual
hairpins and dynamic tertiary contacts between them are also
consistent with predicted interacting residue pairs from sequence
covariance data (Supplementary Note 5; Supplementary Fig. 20).
The resulting structure has a narrow luminal contact and a more
extended cytosolic footprint resembling a wedge. The asymmetry
of the wedge curves the bilayer strongly away from the cytosolic
leaflet. Similar wedge-like intermediate structures were also
observed in the bicelle and membrane-patch vesiculation
simulations. Overall these data confirm the ability of
FAM134B-RHD to sense positively curved membrane regions
and to induce curved structures.

FAM134B-RHD clusters amplify membrane deformation. Even
though single FAM134B-RHD can actively induce curvature of
isolated bilayer/bicelle patches and display local curvature-
sensing functions, the formation of autophagic puncta suggests
that RHD clusters are responsible for global remodeling of
membranes during ER-phagy’. In our membrane patch simula-
tions (Fig. 3), we started from a metastable system, which made it
possible to observe spontaneous vesiculation. However, vesicu-
lation from a flat membrane or tubule likely requires the action of
multiple proteins.

To understand membrane remodeling by FAM134B-RHD
clusters, we simulated cluster formation on flat and curved
membranes (see Supplementary Methods; Supplementary
Table 6). In a simulation of a large flat membrane (ER-lipids,
62 x62nm? Fig. 5b) with 9 FAMI134B-RHD molecules
embedded, despite the attenuation of bilayer undulations by the
boundary conditions, the bilayer was locally curved. The
membrane displayed several local deformations, especially close
to embedded RHD molecules and transiently formed RHD
clusters. Over the course of 10 ps, we observed the formation and
dissociation of several RHD clusters associated with local
membrane bulging. The formation of RHD clusters in flat
membranes is dynamic, with ~2-3 RHD molecules coming
close together for short periods of time (~0.5—1pus) with no
specific geometry and orientation (Supplementary Fig. 21). We
reasoned that the curvature-sensing function of RHDs could
stabilize transiently formed RHD clusters in highly curved regions
of the bilayer.

We directly tested the role of RHD topology in curvature-
mediated protein sorting and clustering in simulations of buckled
bilayers with two RHD molecules. We embedded two RHD
molecules in correct and inverted topology, respectively (Supple-
mentary Fig. 22). In simulations with correctly inserted RHDs, the
two protein molecules diffused to the region of high local curvature
and formed a loosely organized cluster on top of the buckle
(Supplementary Fig. 22a). By contrast, when the second RHD was
on the other membrane side, the two proteins stayed apart from
each other (Supplementary Fig. 22b), localized on opposite peaks of
the sinusoidal buckle. This indicated that the correct membrane
topology is crucial for protein sorting and clustering in curved
membranes, and essential for FAM134B function.
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RHD clusters

Fig. 5 RHD unique topology drives curvature and clustering in membranes. a Snapshot from coarse-grained simulation. The FAM134B-RHD forms a
wedge-shaped protein inclusion (gray shade) in the membrane (orange PO4 beads). Local bilayer thinning by short hairpins (TM12 and TM34; green)
promotes inter-hairpin interactions (blue) at the luminal leaflet (see Supplementary Fig. 19). AH, (orange/yellow sticks) separates the two hairpins on the
cytosolic leaflet and, along with AHc (yellow sticks) enhances curvature. b Simulation snapshots showing local clustering of multiple FAM134B-RHD
molecules (red) on model ER membrane under periodic boundary conditions (see Supplementary Fig. 21). ¢ Cross section of a closed tubular structure
(ky~ 0.16 nm~"; k, & 0 nm~"; gray with orange PO4 beads) containing 10 FAM134B-RHD molecules simulated in explicit solvent (~3.6 x 106 water beads;
blue). Deformed tubule structure (below) after ~7 ps showing organization of RHDs into three local clusters. d Zoom-in on the boxed cluster containing
three RHDs (see Supplementary Fig. 23 for other clusters). Side views (left) of the RHD cluster shaped as an inverted pyramid display locally curved tubule
surface along principal axes, k, and k;. Top view (right) showing the organization of AHs at the base of the pyramid. Two RHDs (blue and gray) align their
AHs perpendicular to the tube axis, while the AHs of the third RHD (yellow) are parallel to the tube axis

Simulations of 10 FAM134B-RHD molecules embedded in a
closed tubular structure gave us further insight into the role of
protein clustering and associated membrane remodeling (Fig. 5c¢,
top). In the cylindrical section of the tubule, the principal
curvatures were k; = +0.08 nm~—! and k, ~ 0 nm~1, respectively.
The 10 RHD molecules were initially placed away from each
other in an orientation such that their principal axes were parallel
or perpendicular to the tubule’s central axis (see Supplementary
movie 6; Supplementary Fig. 23a). During 10 ps of simulation, we
observed the formation of several FAM134B clusters. The tubule
structure was severely deformed with three distinct RHD clusters
and a single RHD molecule (Fig. 5¢, bottom). The clusters along
the tubule axis, induced strong local deformations in both
principal directions (i.e., both k; >0 and k,>0; Fig. 5d and
Supplementary Fig. 23d). The third cluster and a lone FAM134B-
RHD molecule occupied the highly curved caps of the tubule
(Fig. 5¢, bottom-left; Fig. 5d and Supplementary Fig. 23c).

The RHD clusters adopted unique inverted-pyramid-like
structures in curved bilayers (Fig. 5d and Supplementary Fig. 23c,
d). Three individual wedge-shaped proteins clustered and
organized into a larger inverted-pyramidal structure. The six
TM hairpins (from three RHDs) clustered closely with interac-
tions mediated by their hydrophilic luminal loops forming the
conical tip of the inverted pyramid on the luminal face (Fig. 5c,

side views), while their amphipathic helices organized into a
shallow membrane-embedded base of the inverted pyramid on
the cytosolic face. This arrangement was preserved in all three
RHD clusters observed and resulted in enhanced local bending of
the tubular bilayer in both principal directions. Clustering
therefore enhances the bi-directional curvature preference
observed for individual FAM134B-RHDs.

FAM134B-RHD remodels liposomes and fragments ER. To
elucidate the role of the RHD in direct membrane binding and
remodeling, we cloned, expressed, and purified wild-type
FAM134B-RHD along with a set of rationally designed deletion
constructs (ATM12, ATM34, ATM12 + TM34, AAH; + AHg,
and RHD, 43 569). We first investigated the in vitro membrane-
binding ability of the purified proteins using liposome flotation
assays (Fig. 6a). We were able to detect the intact RHD in the
liposome fraction (top fractions, 1-4), indicating proper mem-
brane binding and insertion. Proteins with only a single TM
hairpin segment (either ATM12 or ATM34) were detected in all
the fractions (top and bottom, 1-8), indicating reduced mem-
brane binding and insertion into liposomes. Removal of the entire
TM region (ATMI12 + 34), abolished membrane binding and
insertion, similar to GST (Fig. 6a, bottom fractions 5-8). By
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Fig. 6 RHD structure determines in vitro membrane binding and liposome remodeling activity. a Liposome co-flotation assay to evaluate membrane-

binding properties of FAM134B-RHD and various deletion mutants (see the section “Methods”). Purified protein samples were incubated with liposomes
for 2 h at 37 °C and subjected to flotation on a sucrose cushion (top to bottom, 1-8) followed by SDS-PAGE and western blotting with anti-GST antibody.
b-i Representative nsTEM micrographs of remodeled proteoliposomes (scale bars, 200 nm). Empty liposomes (b) were remodeled by incubation after
addition of purified (€) GST, (d) wild-type RHD, (e) AAH, + AHc, (F) ATM12, (g) ATM34, (h) ATM12 4+ TM34, and (i) RHD143-260 for 18 h at 22 °C. Insets
(red squares); magnified micrographs showing examples of representative proteoliposomes with diameters measured (dotted lines) using Imagel. j Violin
plots show the measured proteoliposome size-distributions (n = 300 each) from nsTEM images. Violins shows a central boxplot (median with interquartile

range, black lines) along with mirrored histograms on either sides (colored)

contrast, deletion of the amphipathic helices (AAH; + AH¢) did
not affect membrane binding significantly (top fractions, 1-5).
These experiments indicate that at least a single TM hairpin
fragment is required for stable membrane binding and anchoring
into liposomes.

Next, to test the curvature induction and membrane shaping
by the RHD, we performed in vitro liposome remodeling
experiments (see the section “Methods”). We reconstituted empty
liposomes (~200 nm diameter) with purified protein and imaged
them by negative-stain transmission electron microscopy
(nsTEM; Fig. 6b-i). We quantified the protein-induced mem-
brane shaping by measuring the sizes of the reconstituted
proteoliposomes (Fig. 6j). We found that the wild-type protein
with an intact RHD drastically remodeled larger liposomes into
smaller vesicles (Fig. 6d). The resulting proteoliposomes were
highly curved and more homogeneous with a narrow distribution
(green, Fig. 6j). This behavior is dose-dependent and increased
with increasing protein concentration (Supplementary Fig. 24).
By contrast the addition of either purified GST (Fig. 6¢) or

ATM12 + TM34 (Fig. 6h) to empty liposomes (Fig. 6b) showed
no remodeling behavior (red, blue and light green in Fig. 6j),
consistent with the expected membrane-binding ability of GST
and ATM12 + TM34 (Fig. 6a, Supplementary Fig. 24a, c).
Deletion of the first TM hairpin (ATM12; Fig. 6f) led to smaller
proteoliposomes with a narrow distribution (light blue in Fig. 6j).
These proteoliposomes were slightly larger in comparison to the
wild-type (green), indicating a minor loss of membrane-
remodeling activity. Deletion of the second TM hairpin segment
(ATM34; Fig. 6g) resulted in substantially larger proteoliposo-
somes with a wider distribution (sea green in Fig. 6j), indicating a
significant loss of the membrane remodeling activity. Interest-
ingly, the deletion of both AH; and AHc (AAH; + AHg; Fig. 6e)
also resulted in larger proteoliposomes with wide distribution
(orange in Fig. 6j), indicating that AH fragments are also required
for efficient membrane shaping. The TM34 segment is flanked by
amphipathic helices on both ends. The contribution of the AH; -
TM34-AH¢ motif to membrane shaping was further assessed by
generating a truncated version, RHD1 43 560. This variant retained
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the ability to remodel liposomes (RHD) 43_,40; Fig. 6i; dark cyan in
Fig. 6j), though less than the intact RHD. These results indicate
that the presence of both the hairpins along with amphipathic
helices is essential for maximal membrane shaping and remodel-
ing activity.

We related the different FAM134B-RHD structural elements to
selective ER-phagy on the basis of in-cell experiments (Fig. 7). We
over-expressed wild-type and deletion constructs of FAM134B in
U20S cells and evaluated the status of the ER fragmentation 24 h
after transfection. The full-length protein (WT) and the mutant
LIR (LIR mut) served as positive and negative controls,
respectively’. A confocal microscopy-based assay confirmed the
formation of characteristic autophagic puncta and the induction
of relevant ER fragmentation in cells expressing the wild-type
protein (WT, Fig. 7a, b). In cells expressing the LIR mutant, we
observed that puncta formation and ER-fragmentation was
completely abolished (LIR mut, Fig. 7a, b). Deletion of single
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TM hairpin segments from the RHD significantly reduced the
extent of ER fragmentation (either ATM12 or ATM34, Fig. 7a, b).
However, truncated FAM134B, was still localized in the ER as
shown by the overlap with calnexin signal (Fig. 7a, ¢; red). Upon
removal of both TM hairpin fragments, we found that the protein
could no longer localize to the ER and consequently lost its ability
to fragment the ER (ATM12 4 TM34, Fig. 7b). Single deletions
of AH segments (AAH; or AAH() and double deletion (AAH; +
AHc) did not affect the extent of ER fragmentation (Supple-
mentary Fig. 25).

Fragmented RHD structures affect in vitro liposome remodel-
ing (Fig. 6e-i) and slow down in silico membrane curvature
induction (Supplementary Figs. 12-14). We found that,
FAMI134B-Q145X, a naturally occurring genetic truncation
responsible for severe sensory neuropathy, delayed in silico
curvature induction (acceleration factor 1.41 for bilayer patch;
Supplementary Fig. 26; Supplementary Table 5). This truncation

FAM134B
ATM34

FAM134B
ATM12 + TM34

Calnexin

Fig. 7 TM hairpins of FAM134B are required for ER fragmentation. a Immunofluorescence of HA and endogenous calnexin in U20S cells transiently
overexpressing HA-tagged FAM134B (left to right): wild-type (WT), LIR mutant (LIR mut), single hairpin deletions (ATM12 and ATM34), and the double
hairpin deletion (ATM12 4+ TM34). Scale bars 10 pm. b Quantification of U20S cells with fragmented ER (>5 ER fragments per cell) after transient over-
expression of wild-type and mutant forms of FAM134B. Error bars indicate s.d. from triplicates (red filled circles) and *Denotes p < 0.05 in two-sample
Student's t-tests. ¢ Immunofluorescence of endogenous calnexin in un-transfected U20S cells. Scale bar 10 pm
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variant is similar to the N-terminal cleavage product of FAM134B
(R142X) during Zika viral infection. Both the FAM134B-Q145X
variant and the TMI12 fragment display comparable in silico
vesiculation behavior (acceleration factors 1.41 and 1.36;
Supplementary Figs. 26, 12b, 13a) and are also inefficient in
remodeling large liposomes (ATM34 and RHD43_»¢0; Fig. 6g, i).
By contrast, intact FAM134B-RHD is required and essential for
in vitro liposome remodeling and cellular ER-fragmentation.

Discussion

The integration of molecular modeling and extensive MD simu-
lations allowed us to build a structural model of the RHD of
FAM134B. Our assembly of the RHD followed principles of
membrane protein organization?3, consistent with experimentally
verified topologies of closely related reticulon proteins?1:?2. This
relation to reticulons and the relatively simple structure of the
components (i.e., helices and helical hairpins) enabled structure
modeling by fragment assembly followed by MD simulations.
Our simulations show a dynamic organization of the RHD TM
region. Inter-hairpin interactions are only transient, mediated by
luminal loops, with TM12 and TM34 separated on the cytosolic
side by the AH spacer.

FAM134B actively remodels membranes. Previous liposome
flotation assays and freeze fracture EM studies demonstrated that
FAM134B binds to liposomes via its RHD and induces smaller
vesicles (=100 nm; H~0.02nm™1)7. With in silico curvature
assays, we simulated the active protein-mediated curvature
induction process. Bilayer patch-closure simulations have been
used previously to study elastic properties of the membrane?42>.
Here, we used the bicelle system to probe the active curvature
induction capacity of an embedded protein inclusion. Using our
RHD model, we were able to demonstrate active curvature
induction in model membranes.

The RHD topology is crucial for curvature induction. The TM
hairpins and the amphipathic helices have previously been
implicated in membrane curvature sensing and induction!®2°, In
case of isolated RHDs, our data indicate that membrane curvature
is predominantly induced by the synergistic action of the two TM
hairpins and amphipathic helices. They produce an overall
wedge-shaped membrane inclusion, inducing strong preferential
curvature away from the cytoplasmic leaflet. Amphipathic helices
are employed by several proteins to induce and sense membrane
curvature?’. They act as shallow inclusions, enhancing asym-
metric bilayer stretching and scaffolding to induce curvature28-31.
The importance of the C-terminal AH in RHDs was first observed
in a C-terminal deletion of YOP1 (R137X)2!. Complete deletion
of AH segments in yeast YOP1 and Arabidopsis RTN13 affects
in vitro and in cell tubule-shaping function!®20. In the case of
isolated FAMI134B-RHDs, the amphipathic helices dominate
membrane shaping based on both our bicelle-vesiculation simu-
lations and our liposome-remodeling assay.

A study of in vitro curvature induction by the yeast RTN1-M91
mutant has also implicated the TM regions?!. Other TM muta-
tions in RHDs showed that the topology and short length of the
helical hairpins are important for tubule shaping in cells26. In
support of TM contributions to membrane shaping, we observed
TM12 and TM34 of FAM134B monomers to form distinct
wedges that became even more pronounced for FAM134B oli-
gomers. In liposome-remodeling experiments, both hairpins
(TM12 + TM34) are required for maximal curvature induction.

The RHD does not only actively induce positive curvature on
ER membranes, but also senses high local mean curvature. From
the simulations of FAM134B-RHD on sinusoidal membrane
surfaces, we could deduce its curvature preference. The high local
curvature  preference of FAMI34B-RHD has explicit

consequences for ER-phagy. Several studies report on long-range
attractive forces between embedded proteins mediated by mem-
brane deformations causing local protein clustering and self-
organization3?-37. Curvature-mediated protein sorting may be an
intrinsic mechanism to concentrate curvature inducing and sen-
sing proteins in the ER. Mutations in TM regions of RHDs
implicate a role in protein localization and oligomerization?6-38.
Indeed, the bright intense fluorescence of ER puncta containing
intact FAM134B-RHD indicates protein clustering. This may be
a consequence of the curvature-sensing functions of FAM134B
in ER membranes (with clustering favored energetically to
minimize membrane deformations overall) or curvature induc-
tion (sequestered by LIR-LC3 interactions), or both. Using
simulations of multiple RHDs, we showed the formation of RHD
clusters in a curvature-dependent fashion. These RHD clusters
organize into inverted-pyramid-shaped structures that strongly
deform the closed tubular membrane.

Curvature induction and sensing by the RHD assist ER
remodeling. Over-expression of FAMI134B WT induces ER-
fragmentation, whereas FAM134B with disrupted RHDs (ATM:s)
display reduced ER-fragmentation, implicating a direct role for
the RHD in membrane deformation and protein clustering’.
Intact RHDs are also important for the interaction between
FAM134B and calnexin during selective elimination of unfolded
procollagen from the ER. In the disease-causing genetic trun-
cation variant FAM134B-Q145X, the two amphipathic helices,
the hairpin TM34, and the C-terminal LIR are lost!4. We showed
that a single TM hairpin is sufficient to anchor mutant FAM134B
into the ER-membrane. The non-structural viral protease NS2B
disrupts the RHD structure by proteolytic cleavage after R142,
compromising clearance of viral proteins through selective ER-
phagy during Zika and Ebola viral infections!®. The loss of the
structural integrity of FAMI134B-RHD thus has drastic con-
sequences, leading to genetic diseases and exploitation by
viruses!®.

Recent high-resolution imaging techniques revealed a dense
and dynamic network of membrane structures in the highly
curved peripheral ER3. Our simulation results support a model in
which FAM134B mediates non-specific curvature-induced pro-
tein clustering and accumulation in the ER, primarily through its
curvature-sensing function. As a result, highly curved regions of
the ER, more specifically edges of sheets, would be loaded with
FAM134B. The RHD induces active membrane curvature along
both principal directions enabling the formation of spherical or
ellipsoidal membrane buds from the ER membrane (Fig. 8).

External forces mediated by interactions between autophago-
somes and FAM134B could provide pulling forces on the highly
curved ER membrane and amplify the effect of the RHD (Fig. 8).
We reason that LIR-mediated pulling by the C-terminal dis-
ordered tail provides additional forces, aided by the strong
membrane deformations induced by FAM134B-RHD, to enable
vesicle budding and subsequent pinch-off from ER-membranes.
Thus, localized regions of the ER enriched with FAM134B
become hot-spots for selective ER-phagy. This is consistent with
findings that mutation of LIRs in FAM134B and RTN3 block ER-
phagy-mediated sequestration and fragmentation of the ER”¥.

FAM134B effectively combines two functions to maximize the
autophagic response: active curvature induction and sensing by
the RHD, and direct physical binding to phagophore via the LIR.
Direct linking of curvature inducing and sensing domains with
LIRs elevates membrane curvature by providing forces to bend
membranes. This combination of features is common with the
selective ER-phagy receptors human RTN3 and yeast ATG40%40.
Viral proteins like influenza M2 exploit this combination of
features by employing curvature-inducing amphipathic helices
tethered to LIRs to subvert autophagy*!.
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Fig. 8 Role of FAM134B-induced membrane curvature in ER-phagy.
FAM134B induces high curvature in the ER membrane (yellow/orange).
The high intrinsic curvature preference of the FAM134B-RHD (dark blue
helices) enables its partitioning and clustering specifically to perinuclear ER.
The presence of N-terminal and C-terminal disordered fragments (black
lines) enhances local curvature (yellow gradient) by providing additional
steric forces to bend the ER membrane. Using the C-terminal LIR (pink
box), FAM134B also forms a physical bridge between the ER membrane
(orange) and phagophore membrane (gray)-associated LC3-PE (yellow/
green). This interaction provides additional forces required for scission and
fragmentation of ER membranes. High local membrane curvature induced
by FAM134B-RHD thus lowers the barrier for membrane budding and
subsequent pinch-off in FAM134B-enriched ER

In conclusion, we developed a structural model for the RHD of
FAM134B that provides mechanistic insights into curvature
induction and sensing in the ER and explains in vitro liposome
binding and remodeling. Simulation and analysis methods
developed here make it possible to model more complex and
large-scale membrane remodeling processes. We hope that our
structural model can serve as a basis for detailed experimental
characterizations of the structure and function of FAMI134B-
RHD and its oligomeric assemblies in vitro and in cells.

Methods

Sequence analysis and annotation. Domain annotation for FAM134B (renamed
RETRI1, UniProt code: QOH6L5) was performed by BLAST search of its full-length
sequence against all HMM profiles in the Pfam database*? and PSSM profiles in the
Conserved Domain Database?>. Homologs of FAM134B were identified from the
UniProt database*? using five iterations of PSI-BLAST#%. Hits were filtered (using
an E-value cut-off of 104, sequence identity range 30-90%, and query coverage
>70%) and clustered to remove redundancy using CD-HIT#>. Multiple sequence
alignments (MSA) of FAM134B homologs were generated using MAFFT4°, and
used to compute residue-wise conservation scores (Supplementary Fig. 27)%7.
Profile-based alignments between the FAM134 family and the canonical RTN
family were performed using ALignME*8. TM, cytoplasmic, and luminal regions
of the protein were identified from consensus membrane topology predictions
using TOPCONS#. Secondary structure assignments were obtained using PSI-pred
and JNetpred®. Discontinuities and bends within the predicted TM-regions were
identified using TMKink>!. Amphipathic helices were recognized by screening
extra-membrane, helical regions with large hydrophobic moment using Heli-
quest>2. Hydrophobicity and hydrophobic moments were computed for predicted
helical regions from homologs of FAM134B and RTN family using in-house
scripts.

Structural modeling of FAM134B-RHD. Due to unavailability of a homolog of the
RHD with known structure in the PDB, we used a fragment-based approach. Based
on sequence annotation, residue conservation, predicted secondary structure, and
predicted membrane topology, the structured region of FAM134B (80-260) was

sub-divided into five overlapping segments: N-terminal overhang, TM12, linker,

TM34, and C-terminal segment (Supplementary Table 1). We used RaptorX>? to
identify template fragments of similar sequence with preserved secondary structure

profiles (helix or helical hairpins) and known structure. The highest-scoring
fragment alignments were used to build rough 3D fragment models using RaptorX,
covering the region from position 80 to 260. These initial fragment structures were
first subjected to conformational sampling and refinement using extensive CG
and all-atom MD simulations in the presence of lipid bilayers (see Supplementary
Table 2 and immediately following text). Long-lived refined fragment structures
were then assembled into a single FAM134B-RHD model by remodeling over-
lapping segments. The loop modeling protocol of Modeller>* was used to stitch
the fragment junctions together to obtain a structure of FAM134B-RHD
(Supplementary Note 5).

MD simulations. All-atom MD simulations were performed for refinement of
fragment models and the assembled FAM134B-RHD. CG MD simulations of
FAM134B-RHD(s) were performed to study its structure and flexibility, its
membrane curvature induction and sensing function, and curvature-dependent
sorting and cluster formation (see Supplementary Methods).

For all-atom MD simulations, the position and orientation of FAM134B-
fragment models and assembled FAM134B-RHD with respect to the bilayer were
obtained using the OPM database and PPM web server>>. The resulting structures
were inserted into pre-equilibrated POPC (16:0-18:1 PC) bilayers, solvated with
TIP3P water and 150 mM NaCl using CHARMM-GUI: membrane builder>®-7.
After initial energy minimization, six rounds of short equilibration runs with
position restraints on protein atoms were performed. Following equilibration, the
systems were simulated with a 2 fs time step for =3 ps using the CHARMM36m
force field®®. The system temperature and pressure were maintained at 310 K and
1 atm using the Nosé-Hoover thermostat>-6! and the semi-isotropic
Parrinello-Rahman barostat, respectively®2.

CG MD simulations were performed using the MARTINI model (version 2.2)0364,
We first constructed initial CG structures of the FAM134B-fragments and
FAM134B-RHD. DSSP% and PSI-pred® assignments were used to generate back-
bone restraints that preserve local secondary structure for FAM134B-RHD and
FAM134B-fragment models, respectively. CG models were embedded into POPC
(16:0-18:1 PC) bilayers or model ER membranes spanning the periodic simulation
box in the xy plane. Initial configurations for each system were assembled, and then
solvated with CG-water containing 150 mM NaCl using the insane.py script®.
Each system was first energy minimized and equilibrated using the Berendsen
thermostat and barostat®’ along with position restraints on protein backbone beads
followed by production runs with a 20-fs time step. System temperature and
pressure during the production phase were maintained at 310 K and 1 atm with the
velocity rescaling thermostat®® and the semi-isotropic Parrinello-Rahman
barostat®?, respectively. All simulations were performed using gromacs (version
4.6.5)%° (Supplementary Tables 2 and 3).

Plasmids, antibodies, and cell culture. For bacterial expression and purification,
WT pGEX6P1-FAM134B-RHD (RHD) construct was obtained by subcloning a
codon-optimized FAM134B gene (residues 1-260) into the pGEX6P1 expression
vector using BamHI and Sall cloning sites. The codon-optimized synthetic gene of
FAM134B was produced by Genscript. The deletion constructs of FAM134B-RHD,
lacking either one or two TM hairpins (ATM12, A92-134; ATM34, A194-236; and
ATMI12 + TM34, A92-134, 194-236) or both amphipathic helices (AAH; + AHc,
A165-188, 238-260) were generated by site directed-mutagenesis (see Supple-
mentary Methods for list of primers used) using the QuickChange method (Agilent
Technologies). Site-directed mutagenesis was also used to generate the the N-
terminal truncated variant by removing the first 142 residues (RHD43-260). Wild-
type and deletion mutants of FAM134B were cloned as glutathione-S-transferase
(GST) fusion proteins containing the endogenous N-terminal fragment (1-80) to
achieve maximal protein expression.

FAM134B plasmids for mammalian expression were obtained by subcloning
FAM134B Orf, fused with the HA tag at the C-terminus, into the pcDNA3.1(+)
vector (Invitrogen) from pOTB7-FAM134B (MHS1011-9199640) using HindIII
and Xhol cloning sites. FAM134B LIR mut and deletion constructs ATM12,
ATM34, ATMI12 + TM34, AAH;, AAHc, and AAH; + AHc were generated by site
direct mutagenesis using pcDNA3.1(4)-FAM134B-HA as a template
(Supplementary Fig. 25a; Supplementary Methods). U20S cells (ATCC, HTB-96)
were cultivated in standard DMEM media (Gibco) further supplemented with 10%
fetal calf serum (Gibco) and containing 100 ug/ml penicillin and streptomycin
(Thermo Fisher Scientific). Cells were maintained at 37 °C with 5% CO, and were
regularly tested for the presence of mycoplasma using LookOut Mycoplasma
qPCR Detection Kit (SIGMA). U20S cells are mycoplasma negative. Cells were
regularly tested for the presence of mycoplasma using LookOut Mycoplasma qPCR
Detection Kit (SIGMA).

Protein expression and purification. The E. coli C41(DE3) strain (SigmaAldrich,
#CMC0021) was used for heterologous protein expression and purification of
FAM134B-RHD variants. Bacterial cells were transformed with the different
plasmids and grown in 121 of lysogenybroth (LB) medium with 100 pg/ml
ampicillin on shakers (220 rpm), at 37 °C until the cell density reached an OD
between 0.6 and 0.7 (600 nm). Then, protein expression was induced with

0.25 mM isopropyl B-p-1-thiogalactopyranoside (IPTG) for 16 h at 18 °C. Cells
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were then harvested by centrifugation and following re-suspension of cell-pellets
in 120 ml of ice-cold PBS buffer (pH 7.4) with protease inhibitor cocktail (Roche).
Cells were lysed by sonication and centrifuged at 10,000 x g for 15 min. The
resulting supernatant was further centrifuged at 80,000 x g for 2 h. The cell pellet
containing the membrane fraction was then solubilized in 75 ml ice-cold PBS
(pH 7.4) with 0.05% (w/v) n-Dodecyl B-p-maltoside (DDM) for 2 h at 4 °C. For
protein purification of the different membrane-bound FAM134-RHD variants, the
spin-cleared membrane fraction was subsequently loaded onto a Glutathione
SepharoseTM 4 Fast Flow resin (GE Healthcare), pre-equilibrated in PBS with
0.05% (w/v) DDM. Proteins were eluted in PBS (3x column volumes, pH 7.4)
containing 0.025% (w/v) DDM and 15 mM reduced glutathione (Carl Roth).
Control GST and the double deletion ATM12 + TM34 were purified from the
soluble fraction after a second centrifugation step by using a similar purification
protocol. The purified protein samples were concentrated to ~mg/ml using a
centrifugal filter (Amicon Ultra-15 Centricon filter device, 10 kDa, Millipore)
along with buffer-exchange to 50 mM HEPES buffer, pH 7.5 with 150 mM NaCl
and 0.0075% (w/v) DDM.

Liposome preparation and co-floatation assay. Liposomes were prepared by the
thin film hydration method followed by extrusion using filters. 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC, Avanti Polar Lipids Inc.) and 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine (DOPE, Avanti Polar Lipids Inc.) were dissolved
in a mixture of chloroform and methanol (4:1) and mixed in a round-bottom flask
to obtain the desired molar ratio of 0.8:0.2 (DOPC:DOPE). The organic solvent was
then removed by rotary evaporation to obtain a dry lipid film which was then
hydrated for 2 h at room temperature with liposome buffer (50 mM HEPES,

150 mM NaCl buffer at pH 7.4) to obtain a final 10 mM lipid solution. Liposomes
were formed by constant vortexing followed by sonication in an ultrasound bath.
The hydrated liposomes were extruded using a lipid extruder (Avanti Polar Lipids
Inc.) and 200 nm polycarbonate membranes (Avanti Polar Lipids). Liposome
preparations were used for co-flotation and remodeling experiments.

Liposomes and the purified protein samples were mixed at a 3:1 lipid-to-protein
ratio (LPR) and incubated for 2h at 37°C in 120 pl of liposome buffer. After
incubation, the samples were then mixed with 145 pl of a 60% sucrose solution
prepared in liposome buffer to yield a 30% sucrose concentration. The mixture was
overlaid with 400 pl of 28% sucrose and 135 pl of liposome buffer. The samples
were then centrifuged at 115,000 x g for 2 h at 20 °C. After centrifugation, eight
fractions (100 ul each) were collected from top to bottom, without disturbing the
layers, and analyzed by SDS-PAGE and western blot using an anti-GST rabbit
antibody (Cell Signaling Technology, 91G1; #262; dilution 1:2000, see Source Data
for original blots).

Liposome-remodeling assay. Liposomes were mixed with different purified
proteins (control GST, FAM134B-RHD, and FAM134B-RHD deletion mutants) at
an LPR of 5:1. The liposome-protein mixtures were incubated for 18 h at 22°C
with constant agitation (600 rpm), before imaging by negative-stain electron
microscopy (nsEM). The dose-dependence of protein-mediated liposome remo-
deling behavior was studied by incubating liposomes with increasing protein
concentrations (LPR of 40:1, 15:1, and 5:1 for GST, RHD, AAH; + AH¢ and
RHD) 43_260). All the samples were examined by negative-stain transmission elec-
tron microscopy (nsTEM). For imaging, samples were first diluted with liposome
buffer to obtain a final lipid concentration of 1 mg/ml. Carbon-coated copper grids
(SPI Supplies) were glow-discharged for 20 s at 15 mA and 0.38 mbar vacuum
before sample deposition. 5 pl of each diluted sample was added to the grids. After
1 min incubation, the grids were washed twice with buffer and subsequently stained
with 1% uranyl formate for 10 s at room temperature. Excess staining solution was
removed by blotting with filter paper. 5-10 micrographs were recorded for each
sample using a 120 kV Tecnai Spirit Biotwin electron microscope (FEI) equipped
with a 4k x 4k CCD detector (US4000-1, Gatan). Two different nominal magnifi-
cations (x18,500 and x49,000) with an estimated defocus of ~2-3 pm were used for
sample inspection and data acquisition. Image analysis was performed by mea-
suring sizes of proteoliposomes (diameters) formed by various protein-liposome
mixtures using Image] software. Care was taken to make measurements on round/
circular particles (n =300 each) from sampled micrographs collected for each
sample (see Source Data).

Immunofluorescence microscopy. For IF analysis, cells were first grown on glass
cover slips for 24 h at 37 °C. After incubation, the cells were transfected with the
different plasmids using the Turbofect reagent (Thermo Fisher Scientific). 24 h
after transfection, the cells were fixed with 4% (mg/ml) paraformaldehyde for

5 min. Cells were then permeabilized with 0.1% saponin solution in PBS for 5 min
and blocked in PBS containing 10% fetal bovine serum (FBS) for 1h at room
temperature. Cells were incubated over night at 4 °C with primary antibody, anti-
HA (Roche: #11867423001; RRID: AB_10094468; dilution 1:5000) and anti-
calnexin (AbCam: #Ab22595; RRID: AB_2069006; dilution 1:2000), diluted in PBS
containing 5% FBS and 0.1% saponin. Secondary antibodies, anti-rabbit Alexa 555
(Life Technologies A31572, Ober-Olm, Germany; dilution 1:500) and anti-rat
Alexa 488 (Life Technologies A21208, Ober-Olm, Germany; dilution 1:500) were
incubated for 1 h at room temperature. IF images were acquired with the Leica SP8

laser-scanning microscope (Leica). Representative images were obtained from IF
experiments carried out at least three times. Selective ER-phagy was quantified by
measuring the number of cells with >5 ER fragments per cell under each of the
conditions (n > 100 cells). Data are presented as sample p *s.d. (see Source Data).
Comparisons of ER-fragmentation in cells expressing wild-type and deletion
mutants were performed using parametric two-sampled Student’s t-test.

Data availability

Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file. The source data underlying Figs. 6a, 6j, 7b, and
Supplementary Figs. 20, 24, 25¢ are provided as a Source Data file.

Code availability
Custom software used in this work is available from https://github.com/bio-phys/
MemCurv.
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