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Abstract: Recent studies demonstrated that pyroptosis plays a crucial role in shaping the tumor-
immune microenvironment. However, the influence of pyroptosis on lower-grade glioma regarding
immunotherapy and targeted therapy is still unknown. This study analyzed the variations of
33 pyroptosis-related genes in lower-grade glioma and normal tissues. Our study found considerable
genetic and expression alterations in heterogeneity among lower-grade gliomas and normal brain
tissues. There are two pyroptosis phenotypes in lower-grade glioma, and they exhibited differences
in cell infiltration characteristics and clinical characters. Then, a PyroScore model using the lasso-
cox method was constructed to measure the level of pyroptosis in each patient. PyroScore can
refine the lower-grade glioma patients with a stratified prognosis and a distinct tumor immune
microenvironment. Pyscore may also be an effective factor in predicting potential therapeutic benefits.
In silico analysis showed that patients with a lower PyroScore are expected to be more sensitive to
targeted therapy and immunotherapy. These findings may enhance our understanding of pyroptosis
in lower-grade glioma and might help optimize risk stratification for the survival and personalized
management of lower-grade glioma patients.

Keywords: lower-grade glioma; pyroptosis; immunotherapy; targeted therapy

1. Introduction

Glioma is the most prevalent primary malignant intracranial tumor and can be divided
into glioblastoma (WHO grade IV) and lower-grade glioma (WHO grade II/III) based
on the WHO grading system [1]. Compared with glioblastoma (GBM), patients with
lower-grade glioma (LGG) have a relatively favorable prognosis. Nevertheless, LGG is
still a heterogeneous subgroup with a wide range of survival times (From 1 to 15 years).
Thus, a more precise stratification system is needed. Despite the enormous progress in
the molecular pathology of glioma, treatment options are limited. Temozolomide (TMZ)
is the only FDA-approved chemotherapeutic for newly diagnosed GBM [2]. In recent
decades, Stupp protocols (maximal safe surgical resection, radiation, and temozolomide
chemotherapy) remained the gold standard for GBM treatments [3]. However, TMZ can
induce hypermutation in LGG associated with malignant progression to GBM. Therefore,
it is better to find new therapeutic strategies for LGG.
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Pyroptosis is a relatively new form of programmed cell death associated with various
therapies, including radiation [4], chemotherapy [5], targeted therapy [6], and immunother-
apy [7]. Increasing studies have demonstrated that pyroptosis plays an essential role in
tumor development, but its impact on specific cancer types remains a mystery. For example,
the acute inflammation induced by pyroptosis can play an anti-tumor effect by enhancing
immune response, while chronic tumor necrosis under the central hypoxia region triggered
by pyroptosis promotes tumor progression [8]. More specifically, the expression of GSDMD
(an executor of pyroptosis) is significantly reduced in gastric cancer and promotes tumor
proliferation [9], while in non-small cell lung cancer, GSDMD is highly expressed with a
poorer prognosis. However, this correlation was not found in squamous cell lung cancer
patients [10]. These findings indicate pyroptosis’ complex role in tumor development.

Notably, pyroptosis is a multistep process involving different pathways (canonical,
non-canonical inflammasome, and alternative pathways). The overlap and potential cross-
talk of the different pathways, characterizing the overall effects of pyroptosis-related genes
(PRGs) rather than a single PRG, may be a more effective strategy for the understanding
role of pyroptosis. Thus, we first systematically analyzed the genomic and transcript PRG
alterations in this study and explored their potential cross-talk in LGG. Second, based on
PRGs, we developed and validated a risk-stratification signature to assess the prognosis
and drug sensitivity in LGG. This work may help to optimize clinical decision-making in
targeted therapy and immunotherapy for patients with LGG.

2. Materials and Methods
2.1. Datasets

RNA-seq data and corresponding clinical information of LGG patients were down-
loaded from the TCGA database (https://portal.gdc.cancer.gov/) (accessed on 19 July 2021).
Transcriptome profiles in normal brain tissues were obtained from the TCGA and GTEx
project (https://gtexportal.org/home/) (accessed on 19 July 2021). We used gene tran-
scripts per million (TPM) data for the subsequent data analysis. The “Combat” method is an
empirical Bayes method, which can estimate parameters for location and scale adjustment
of each batch for each gene independently [11]. Numerous previous studies have proven
its effectiveness [12–14]. Therefore, we used the “Combat” method to remove the batch
effect for batch effects between TCG-LGG and GTEx datasets. In addition, we downloaded
copy number variation (CNV) data and somatic mutation data from TCGA and UCSC Xena
Browser (http://xena.ucsc.edu/) (accessed on 19 July 2021). The normalized single-cell
dataset (TPM values) was downloaded from the GEO database (GSE163108, GSE182109),
GSE163108 was derived from CD3+ single-cell sequencing data from 31 gliomas (15 IDH-G
vs. 16 GBM), GSE182109 was derived from single-cell sequencing data from 18 gliomas
(16 GBM, 2 LGG). The immunotherapy cohorts were obtained from the IMvigor210 cohort
(urothelial carcinoma) and the GSE78220 cohort (melanoma).

2.2. Identification of Differentially Expressed PRGs

Thirty-three pyroptosis-related genes were extracted from prior studies [15–17]. Con-
sidering the small number of normal brain samples, we also obtained transcriptome data
of normal brain samples from the GTEx database. Expression data from the two datasets
were then merged and normalized to fragment per kilobase million (FRKM) values. The
“Limma” R package was used to identify differentially expressed pyroptosis-related genes
(DEGs) with FDR < 0.05 and |log2FC| ≥ 1.

2.3. CNV and Somatic Mutation Analysis of PRGs

The R package “Rcircos” was used to plot the genomic location of CNVs. The waterfall
plot of a mutational landscape was generated using the “maftools” package.

https://portal.gdc.cancer.gov/
https://gtexportal.org/home/
http://xena.ucsc.edu/
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2.4. Consensus Clustering Analysis of PRGs

Consensus clustering methods determined the matrix to classify the TCGA-LGG sam-
ples (R packages “limma” and “ConsensusClusterPlus”). We evaluated the relationships
between clinical features and clusters by the chi-square test and R package “survival.”.
Principal component analysis (PCA) was conducted by the “prcomp” function in the
“stats” R package. The gene expression patterns among clusters were visualized by R
packages “pheatmap”.

2.5. Development and Validation of a PyroScore Prognostic Signature
We used Cox regression analysis to evaluate each gene’s prognostic value, and genes

significantly associated with overall survival (OS) time were enrolled in further analysis.
We then performed the least absolute shrinkage and selection operator (LASSO) Cox
regression analysis to avoid overfitting to train the predictive model. Eight genes were
finally identified, their coefficients were determined by multivariate Cox regression, and
the minimum criteria decided the penalty parameter. The risk score formula was as follows:

Pyroscore = ∑8
i Coefi × Expi (Coef : coefficient, Exp : expression level of the gene) (1)

where Pyroscore denotes the risk score based on pyroptosis-related genes, Coef represents each
gene’s multivariate cox regression coefficient, and Exp represents the expression level of pyroptosis-
related genes.

TCGA-LGG samples were randomly divided into training cohorts and validation cohorts.
Patients were grouped according to the median risk score, and their survival time was compared
using Kaplan–Meier analysis and log-rank test. We also conducted time-dependent ROC analysis by
the “survivalROC” R package. A forest plot was used to display the significance of each variable
(risk score and clinical information) on prognosis.

2.6. Functional Enrichment Analysis and Immune Inflation Cell Analysis
DEGs among the high-risk and low-risk groups were identified based on the filter criteria

(|log2FC| ≥ 1 and FDR < 0.05). KEGG and GO analysis of the DEGs were performed by using the
“clusterProfiler” package, and the score of immune infiltrating cells and the activity of immune-related
pathways were calculated using the ssGSEA method (“GSVA” R package).

2.7. TME Cell Infiltration Estimates
We performed ssGSEA to quantify the immune cell infiltration levels based on gene expression

profiles. The specific marker genes of each immune cell were obtained from a previous study [18].
We calculated the stromal, immune, and ESTIMATE scores of all samples using the ESTIMATE
algorithm [19].

2.8. Prediction of Therapeutic Response with High- and Low-PyroScore
We used the IMvigor210 cohort [20] and the GSE78220 cohort to evaluate different outcomes

with immunotherapy. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.cancerrxgene.org) (accessed on 19 July 2021), the half-inhibitory concentration (IC50)
value of chemotherapies or targeted drugs were calculated via “pRRophetic” R package [21,22]. The
R (Version 3.6.3) (https://www.r-project.org) software was used to perform the analysis.

2.9. Single-Cell Analysis of PRGs
We further analyzed 15 IDH-G and 2 LGGs from the single-cell dataset (GSE163108, GSE182109).

The expression of model genes was analyzed in different cell subtypes after PCA analysis, cell
clustering, and UMAP downscaling using the Seurat v3 R package. First, 2000 differentially expressed
genes were selected for subsequent analysis using FindVariableFeatures, and gene expression was
normalized using ScaleData. Then, principal component analysis was performed by RunPCA, and
the top 15 were selected for clustering and UMAP downscaling. The clusters were determined by the
expression of classical immune cell markers combined with detailed information from the original
literature [23,24], where PTPRC is an immune cell marker; CD3D is a T cell marker; CD8A is a CD8+
T cell marker; CD4 is a CD4+ T cell marker; CD4, IL2RA, and FOXP3 are Treg cell markers; and
CDK1 and NUSAP1 are cell cycle markers. Each cell marker is as follows: myeloid cells (expressing
PTPRC/CD45, ITGAM/CD11B, and CD68), glioma cells (expressing SOX2, OLIG1, GFAP, and

https://www.cancerrxgene.org
https://www.r-project.org
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S100B), T cells (expressing PTPRC/CD45, CD3E, CD4, and CD8A), B cells (C11; expressing CD79A
and CD19).

3. Results
3.1. The Landscape of Genetic and Expression Alterations of Pyroptosis-Related Genes in LGG

As shown in Figure 1A, the genetic mutation was only found in 32 of the 506 samples (6.32%),
and no genetic alterations reached more than 2%. The CNV location is presented in Figure 1B, and
further CNV frequency analysis showed prevalent CNV alterations among PRGs (Figure 1C). We
observed that LGG samples could easily be distinguished from normal brain tissues according to the
expression level of 33 PRGs (Figure 1D).
Brain Sci. 2022, 12, 700 5 of 22 
 

 
Figure 1. The genomic and transcript alterations of PRGs in LGG. (A) The mutation frequency of
PRGs in LGG. (B) Location of CNV alteration of PRGs on 23 chromosomes in LGG. (C) CNV alteration
frequency of PRGs in LGG. The deletion (amplification) frequency was marked with a green (red) dot.
(D) PCA clusters. (E) Cross-talk between PRGs at the genomic level. (F) The expression difference of
PRGs among LGGs and normal brain tissues.
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The mRNA expression level of PRGs between LGG and normal samples was then investi-
gated to ascertain whether these genetic alterations affected the mRNA expression of the PRGs
(Figures 1F and Figure S1B). Our results indicated that PRGs with CNV gain demonstrated signifi-
cantly higher expression in LGG tissues than in normal brain tissues (e.g., GSDMC and TIRAP) and
vice versa (e.g., NLRP2 and SCAF11). However, we also noted that several PRGs presented incon-
sistent CNV and mRNA expression changes (e.g., GSDMD and NLRP3). We speculated that CNV
was not the only factor to regulate gene expression. Other factors, such as histone modification and
DNA methylation, can also regulate gene transcription [25–27]. Notably, gene expression differences
in some of the genes could also be influenced by the molecular type of LGG. For example, genes
located on chromosome 19q (oligodendroglioma, molecular type: IDH-mutated, 1p/1pq-codeleted)
and genes located on 7p (NOD1, GSDME, IL6) could be altered by frequent 7p gains in molecular
GBM. Besides, we also found potential cross-talks between 33 PRGs (Figure S1).

3.2. Identification of Tumor Cluster Pattern by Consensus Clustering
To characterize the relationships between PRGs and LGG subtypes, we then performed a

consensus clustering analysis based on gene expression patterns. The consensus matrix heatmap
showed the preferable sharp boundaries at K= 2, indicating stable samples clustering (Figure 2A).
Based on the Kaplan–Meier curves, Cluster 2 had a longer survival time than Cluster 1 (Figure 2C).
We also found a difference in the clinical characteristics of the two clusters (Figure 2B).

1 
 

 
Figure 2. Identification of tumor cluster pattern. (A) The TCGA-LGG patients were divided into
2 cluster patterns (K = 2). (B) Different clinical characteristics among the 2 clusters. (C) Survival
difference between 2 clusters.
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3.3. Development and validation of a PyroScore
The TCGA-LGG samples were randomly split into training and validation cohorts. We first

used univariate Cox regression analysis to screen the survival-related genes. A total of 20 genes were
identified as significantly associated with survival time. (Table S1, p < 0.05).

We then fitted a regression model by employing the LASSO method, and an 8-gene sig-
nature was finally constructed (Figure 3A,B). The risk score formula was obtained as follows:
risk score = (−0.0983) × TNF + (−0.116) × TIRAP + (−0.621) × CASP9 + (0.799) × PLCG1 + (0.193)
× PRKACA + (0.127) × CASP3+ (0.0685) × CASP8+ (0.474) × CASP4. Patients were stratified into
high-risk and low-risk groups according to the risk score (Figure 3C). An increasing risk score was
associated with more death events (Figure 3D). Significant survival difference was observed between
the two groups (Figure 3F). Further time-ROC analysis showed the sensitivity and specificity of the
model with AUCs of 0.896 (1-year), 0.893 (3-year), and 0.832 (5-year) (Figure 3G). In the validation
cohort, this model had AUCs of 0.879 (1-year), 0.871 (3-year), and 0.672 (5-year) (Figure S2E). Kaplan–
Meier analysis also demonstrated significantly worse survival in the high-risk group (Figure S2D).

1 
 

 

Figure 3. Development of the PyroScore. (A) The LASSO-Cox regression model was used to identify
the most robust genes. (B) Cross-validation of parameter selected by LASSO. (C) Distribution
of patients according to the PyroScore. (D) Survival status distribution of different risk patients.
(E) Heatmap showing expression levels of 8 PRGs among two risk groups. (F) Overall survival
difference among the two risk groups. (G) ROC curves measure the predictive value of PyroScore.

We also performed a subgroup survival analysis based on 2021 WHO classification [28]. The
subgroup analysis demonstrated the predictive value of pyroscore in astrocytoma, oligodendroglioma,
and IDH-wt patients (Figure 4).
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1 
 

 

Figure 4. Subgroup survival analysis based on histology types. (A) Overall survival difference
among two risk groups in astrocytoma patients. (B) Overall survival difference among two risk
groups in oligodendroglioma patients. (C) Overall survival difference among two risk groups in
IDH-wt patients.

3.4. Clinical Characters and Prognosis Value of PyroScore in LGG
We conducted a univariate and multivariate analysis to assess whether the pyroptosis-related

prognostic signature was independent of other clinical prognostic factors. The univariate analysis
showed that pyroptosis-related prognostic score was an essential indicator in training and validation
cohorts (Figure 5A,C). Multivariate analysis revealed that the pyroptosis-related prognostic score
was a solid independent prognostic factor (Figure 5B,D). As demonstrated in Figure 5E, there were
considerable differences between the high-risk and low-risk groups regarding age, grade, histology,
and survival status. Strikingly, significantly more IDH mutation events were found in the low-risk
group than in the high-risk group. Given the importance of clinical features, we also established an
integrative nomogram that combined the pyroptosis-related prognostic signature and clinical factors
(Figure S3A). The calibration curve indicated that the bias-corrected curve fitted the apparent curve
in the whole cohort relatively well (Figure S3B).
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1 
 

 

Figure 5. Univariate and multivariate Cox regression analyses for PyroScore. (A) Univariate analysis
for the TCGA training cohort. (B) Multivariate analysis for the TCGA training cohort. (C) Univari-
ate analysis for the TCGA validation cohort. (D) Multivariate analysis for the TCGA validation
cohort. (E) Heatmap showing the association between clinical characteristics and the risk groups
(*** p < 0.001).

3.5. PyroScore Is Associated with Immune Infiltration in LGG
We conducted the single-sample gene set enrichment analysis (ssGSEA) to compare the en-

richment levels of immune cells and pathways between the high-risk and low-risk groups. In the
TCGA-train cohort (Figure 6A), a higher level of immune cell infiltration was observed in the high-risk
group than in the low-risk group, especially pDCs, T-cell-co-inhibition, T-cell-co-stimulation, TILs,
Tregs, and T-helper cells (Th2, Th3, Th6). Most of the immune pathways were upregulated in the
high-risk group, including B cells, cytokine-cytokine receptor, APC co-inhibition, APC co-stimulation,
checkpoint, type-1 IFN responses, and type-2 IFN responses. Similarly, these findings were also
found in the TCGA-validation cohort, except for NK cells (Figure 6B). Our results revealed that Nk
cells were significantly higher in the low-risk group than in the high-risk group in the TCGA-train
cohort. We also found that the DEGs were significantly involved in tumor immunity (Figure S4).

Considering the known effect of IDH mutation on the tumor immune microenvironment [29,30],
we next performed a subgroup ssGSEA analysis based on IDH status (Figure 6C,D). The subgroup
analysis indicated that most differences in tumor immune microenvironment still existed in IDH-
mut and IDH-wt groups except T helper cells (Th3, Th6). Correspondingly, we did not find specific
distributions of model genes and Pyroscore in CD3+ single-cell sequencing data (Figure S5). However,
we found that most PRGs were expressed explicitly on myeloid cells (Figure 7). We then put PRGs as
a gene module to calculate the score using AddModuleScore methods, and the results also indicated
that PRGs were expressed explicitly on myeloid cells (Figure 8A–D). The 33 PRGs models could be
well represented by 8 PRGs models (Figure 8E). The above data demonstrated that PyroScore could
stratify the immune phenotypes of LGG.
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1 
 

 

Figure 6. ssGSEA analysis of immune cells and immune pathways. (A) Comparison of the enrichment
scores of immune cells and immune pathways between different risk groups in the training cohort.
(B) Comparison of the immune cells and immune pathways in the validation cohort. (C) Comparison
of the enrichment scores of immune cells and immune pathways between different risk groups in the
IDH-mut cohort. (D) Comparison of the immune cells and immune pathways in the IDH-wt cohort.
p values were shown as: ns not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

 
 

 

Figure 7. Single-cell analysis of PRGs (GSE182109). (A) UMAP plots for marker genes. (B) UMAP
plots for all cells. (C) Violin plots of the expression of 8 target genes in 4 cell subtypes. (D) UMAP
plots of the eight target genes’ expression.
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Figure 8. Single-cell analysis of PyroScore and model genes (GSE163108). (A) UMAP plot for 33 PRGs:
The 33 target genes were used as a gene module to calculate the score using AddModuleScore.
(B) Violin plots of the expression of the 33 gene module. (C) UMAP plot for eight PRGs: The eight
target genes were used as a gene module to calculate the score using AddModuleScore. (D) Violin
plots of the expression of the eight gene module. (E) Correlation between 33 PRGs modules and eight
PRGs modules.
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3.6. Characteristics of the TME in the Different PyroScore Risk Groups
Compared with the low-risk group, almost all the costimulus molecules were upregulated in

the high-risk group (Figure 9A). Elevated Enrichment Scores (StromalScore, ImmuneScore, ESTI-
MATEScore) were found in the high-risk group, representing a higher content of immune and stromal
cells in the TME (Figure 9C). We further analyzed the correlation between the risk score and immune
microenvironment cells. The results demonstrated a positive correlation between the score and nearly
all immune microenvironment cells, particularly central memory CD8 T cells and Type 1 T helper
cells (Figure 9B). A significant association was also found between the immune cells and the eight
model genes (Figure 9D).

 
 

 

Figure 9. Characteristics of the TME in the different PyroScore risk groups. (A) Differences in MHC
class I gene and immune checkpoint gene expression between different risk groups. (B) Correlation
analysis of PyroScore and immune cells. (C) Comparison of ImmuneScore, StromalScore, and
ESTIMATEscore between the two risk groups. (D) The relationship between immune cells and eight
model genes (ns not significant; * p < 0.05; ** p < 0.01; *** p < 0.001).
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3.7. Distinct Somatic Mutation Status in the High- and Low-Risk PyroScore Group
Our analyses suggested a specific somatic mutation distribution among two risk groups. As

shown in Figure 10A, IDH1, TP53, ATRX, EGFR, TTN, PTEN, and NF1 were the most frequently
mutated genes in the high-risk PyroScore group, while IDH1, TP53, ATRX, CIC, FUBP1, PIK3CA
were the top mutated genes in the low-risk PyroScore group (Figure 10B). We also observed that the
frequency of IDH1 mutations was significantly higher in the low-risk PyroScore group than in the
high-risk PyroScore group (93% versus 40%), which is consistent with previous studies IDH-mutant
mutation patients have a better prognosis [31,32].

 
 

 

Figure 10. Distinct somatic mutation status in the different PyroScore groups. (A) Most frequently
mutated genes in the high-risk group. (B) Most frequently mutated genes in the low-risk group.
(C) Comparison of tumor mutation burden between the low-and high-risk group. (D) The correlation
between PyroScore and tumor mutation burden.

We next analyzed the association between risk score and tumor mutation burden (TMB). Patients
in the high-risk group harbored a higher tumor mutation burden (Figure 10C). Meanwhile, the
PyroScore was positively corrected with TMB (Figure 10D).

3.8. PyroScore May Be an Effective Factor in Predicting Potential Therapeutic Benefits
Previous studies have confirmed TMB as a valuable response biomarker for immunotherapy in

various cancers [33–35], which indicated that PyroScore might also be a potential predictive marker in
patients with immunotherapy. Hence, we next explored whether PyroScore could predict the efficacy
of immunotherapy. In the anti-PD-L1 cohort (IMvigor210: urothelial carcinoma patients), patients
with a low PyroScore exhibited significantly prolonged survival (Figure 11A), and the objective
response rate was higher in the low-risk score group (Figure 11B). We did not find a significant
difference in the anti-PD-1 cohort (GSE78220: melanoma patients) (Figure 11C,D), likely due to the
limited sample size.
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Figure 11. The efficacy of PyroScore in predicting the therapeutic benefits of immune-checkpoint
blockade immunotherapy. (A) Kaplan–Meier survival plot showed a significant survival benefit in
the low PyroScore group of the IMvigor210 cohort (urothelial carcinoma). (B) The proportions of
clinical response in the low-and high-risk group of the IMvigor210 cohort (urothelial carcinoma).
(C) Kaplan–Meier survival plot did not show a significant survival difference between the two risk-
group of the GSE78220 cohort (melanoma). (D) The proportions of clinical response in the low-and
high-risk group of the GSE78220 cohort (melanoma).

Based on the GDSC database, we evaluated drug sensitivity between different risk score groups.
The results showed that patients with low PyroScore were more sensitive (lower IC50) to ABT-263,
ABT-888, AG-014699, AICAR, AMG-706, and ATRA (Figure 12). Therefore, we hypothesized that
pyroscore might be an effective factor in predicting potential therapeutic benefits. Notably, the above
in silico data warrants further validation in vitro, in vivo, and prospective trials.

 
 

 Figure 12. Estimated drug sensitivity in patients with high- and low-PyroScore group.
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4. Discussion
Both LGG and GBM belong to glioma, but they exhibit different clinical characteristics and

biological behaviors. Clinically, LGGs are more frequently seen in highly functional areas of the
brain [36], and seizures have become more prevalent [37]. LGG has a more indolent biological
behavior than GBM. The recent theory of immune normalization has considered altering the tumor
immune environment to be a gradual process, not an event. Based on the above summary, LGG might
be more effective for immunotherapy than GBM. Indeed, there has been considerable evidence that
LGG has a unique tumor immune microenvironment, which can be distinguished from GBM [38].
Multiple immunotherapy clinical trials have failed in GBM, but there is a relative paucity of clinical
trials in LGG precisely because of its longer survival time, which leads to higher research and
development costs.

Pyroptosis has recently emerged as an exciting area. To date, some pyroptosis-related gene
signatures have been developed in multiple tumor types, including bladder [39], ovarian [40],
and colorectal cancer [41]. Not unexpectedly, several studies have constructed pyroptosis-related
gene signatures in glioma [42,43], but all took lower-grade glioma and glioblastoma as a single
entity. Crucially, the impacts of pyroptosis on the tumor immune microenvironment and therapeutic
response have been poorly studied in the above studies.

In this study, we first systematically analyzed the alterations of 33 PRGs at the transcriptome
and genomic levels in LGG. The results showed an imbalanced expression of PRGs between LGG
and normal tissues. We identified two distinct pyroptosis clusters with significantly different survival
and clinical characteristics. Based on the univariate Cox regression analysis and LASSO regression
analysis, we constructed an 8-gene signature (TNF, TIRAP, CASP9, PLCG1, PRKACA, CASP3, CASP8,
CASP4) called PyroScore.

Among these signatures (TNF, TIRAP, CASP9, PLCG1, PRKACA, CASP3, CASP8, CASP4), TNF
(Tumor necrosis factor) is currently considered a two-edged sword in cancer development. On the one
hand, TNF can promote cancer as an endogenous tumor promoter. On the other hand, TNF is capable
of activating cell pyroptosis by caspase-8 [44]. Our results showed that TNF was highly expressed in
LGG, but positively, with a better prognosis. TIRAP is a signaling adaptor associated with Toll-like
Receptor (TLR)-mediated innate immune signaling. While TIRAP has long been thought to affect
antimicrobial immunity, recent work indicated that TIRAP can also be involved in tumorigenesis [45].
In the present study, we found that a high expression of TIRAP was associated with a more favorable
prognosis. Variants of CASP9 have shown a strong association with glioma. A germline stop–gain
mutation (R65X) was identified in a family with Li-Fraumeni-like syndrome. This mutation generated
a short CASP9 isoform and may disrupt the p53 signaling pathway [46]. Additionally, whole-exome
sequencing revealed another stop-gain mutation in pediatric astrocytoma [47]. Our study indicated
that CASP9 overexpression was beneficial to prognosis. The Phospholipase C gamma 1 (PLCG1) gene
is a member of the PLC superfamily. A previous study found that GSDMD N-terminal-mediated
pyroptosis is dependent on the PLCG1 gene in sepsis [48]. Consistent with our results, a high
expression of PLCG1 predicts poor survival in adult lower-grade gliomas. PRKACA belongs to the
PKA signaling pathway; an elevated expression of PRKACA can regulate HER2-targeted therapy
in breast cancer cells through the inactivation of the pro-apoptotic protein BAD [49]. CASP8 is an
extremely intriguing molecular switch for apoptosis, necroptosis, and pyroptosis [50]. The present
study revealed that CASP8 expression was strongly positively associated with the activation of most
immune cells, suggesting the contributory role of CASP8 in regulating tumor immunology in LGG.
CASP3 is a classical executioner caspase, and recent investigations uncovered another inflammatory
effect of CASP3 by cutting GSDME [51]. In our study, CASP3 was highly expressed in LGG and
was an unfavorable prognostic factor. Distinct from CASP3, CASP4 induces pyroptosis by cleaving
GSDMD [52]. A previous study demonstrated that CASP4 could activate CASP1 in inflammation [53].
Our results showed a close relationship between CASP4 and CASP1 at the transcriptome and genomic
levels in LGG. The overexpression of CASP4 indicated a worse prognosis.

Unlike apoptosis, Pyroptosis is characterized by cell membrane rupture, followed by amounts
of proinflammatory cytokines being released [8]. Recent studies indicated that the pyroptosis-related
gene (GSDME) could suppress tumor growth by activating anti-tumor immunity [54]. However,
the relationship between pyroptosis and the tumor immune microenvironment in LGG is still not
well-understood. In our study, PyroScore was positively associated with most immune cells. Patients
with a high PyroScore showed higher immune cell infiltration but worse prognosis, in contrast
with previous studies on other cancer types [55,56]. A possible explanation for this is that high-
PyroScore patients were characterized by both immune-hot and immune-suppressive phenotypes.
We observed an elevated expression of immune-suppressive cells in the high-PyroScore group (e.g.,
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Treg, macrophage). The above results are interesting but not surprising. In accordance with the
present results, previous studies demonstrated that immune-hot gliomas harbored an abundance
of immune-suppressive cells with a poorer prognosis [57,58]. We further explored the expression
of PRGs in different cell types. While T cells play a significant role in generating anti-tumor effects,
we did not find specific expression of PRGs in T cells but found PRGs were expressed explicitly
in myeloid cells. In fact, the myeloid cell is the largest part of the immune cell compartment in
glioma [59], which plays an essential and complex role in the tumor immune microenvironment [60].
As previously stated, pyroptosis is a double-edged sword in the tumor immune microenvironment.
Our study demonstrated that pyroptosis in myeloid cells shapes an inflammatory and immune-
suppressive microenvironment, thus promoting the development of lower-grade glioma, which
is consistent with previous studies in pancreatic carcinoma [61] and breast cancer [62]. All these
findings indicated that our risk model could assess the tumor immune microenvironment in LGG.

Consistently, the high-risk group presented with an immune-suppressive tumor microenviron-
ment. Given this, we further examined the efficacy of immunotherapy among the two risk groups in
both the anti-PD-L1 cohort and anti-PD-1 cohort. Unexpectedly, the low-PyroScore group showed
a better response to anti-PD-L1 than the high-PyroScore group but had a lower mutational burden.
These findings are consistent with earlier studies, indicating that a low tumor mutation burden is
associated with better survival when treated with recombinant polio virotherapy or an immune
checkpoint blockade in recurrent glioblastoma patients [63]. Due to the relatively small sample size,
we did not find survival differences in the anti-PD-1 cohort.

At present, pharmacotherapeutic options for LGG are still limited. This model identified
six potential drugs for low-PyroScore patients, including ABT-263, ABT-888, AG-014699, AICAR,
AMG-706, and ATRA. ABT-263, also known as Navitoclax, is a small-molecule Bcl-2 inhibitor, which
could effectively induce apoptosis [64]. The previous studies found that IDH1-mutated gliomas are
particularly vulnerable to ABT-263 [65]. Similarly, our study found that patients with low PyroScore
showed more percentage of mutant IDH gene. AG-014699 (rucaparib) is a PAPR inhibitor approved
to treat recurrent ovarian cancer, fallopian tube carcinoma, and primary peritoneal cancer [66].
Notably, several studies have suggested that rucaparib has a limited ability to pass the blood–
brain barrier [67]. ABT-888 (Veliparib) is another PARP inhibitor that can cross the blood–brain
barrier [68]. A multicenter randomized phase II clinical trial (the VERTU study) found that the
veliparib-containing regimen dose did not prolong survival time in glioblastoma, although it is
tolerable; further correlative analysis should be performed to identify subpopulation benefits from
veliparib [69]. The present study indicated that low-PyroScore patients were more sensitive to PAPR
inhibitors (AG-014699, ABT-888). AICAR is a direct AMPK agonist, showing therapeutic potential
for glioma, independent of AMPK [70]. Our results showed that the AICAR’s therapy response
was associated with pyroptosis. Further investigation is needed to clarify the relationship between
AICRA and pyroptosis. AMG-706 (Motesanib) is an oral multi-kinase inhibitor that selectively targets
VEGFR, KIT, RET, and PDGFR [71]. The phase III Motesanib trial did not improve progression-free
survival (PFS) in non-small cell lung cancer patients. However, a recent study demonstrated that the
combined treatment of Motesanib and Panitumumab is a promising strategy for glioma [72]. All-trans
retinoic acid (ATRA) is known for the treatment of acute promyelocytic leukemia. Interestingly, a
previous study found that ATRA specifically enhanced terminal granulocytic differentiation and
shrunk tumor burden in IDH-mut AML cell line and xenografted mice model [73]. In our research,
the low-risk PyroScore group carried a significantly higher mutant frequency of IDH, exhibiting a
higher sensitivity to ATRA. In summary, the above findings suggested that our risk model could
identify and select the patients who will respond to immunotherapy and targeted therapy.

The PyroScore can be easily quantified by qPCR assay, suggesting a promising clinical transla-
tional value. Some limitations should be noted. First, this model was only constructed for in silico
analysis, and some of the recognized prognostic factors were missed (such as the KPS score, the extent
of surgical resection). Thus, a well-designed prospective multicenter study containing complete data
should be performed to validate this scoring system in the future. Second, we could not classify
the IDH-wt glioma further due to the missing molecular information (such as the TERT promoter
mutation and EGFR amplification). Third, pyroptosis is a relatively new field of oncology. The roles
of most PRGs in LGG remain unknown. Future wet-lab experimental studies addressing the complex
functions are urgently needed. Fourth, there is currently no available LGG immunotherapy data for
direct validating the predictive value of pyroscore. The tumor immune microenvironment in the
IMvigor210 cohort (urothelial carcinoma) and GSE78220 cohort (melanoma) might differ from LGG.
Further validation of the LGG immunotherapy cohort is needed.
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5. Conclusions
In summary, our study compressively explored the genomic and transcript alterations of PRGs

in LGG. The pyroptosis-based signatures could refine the LGG with stratified prognosis, distinct
tumor immune microenvironment, and Pyscore may be a promising factor in predicting potential
therapeutic benefits. Further validation in vitro, in vivo, and prospective trials are needed.
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