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Human brucellosis remains a significant public health issue in the Ili Kazak Autonomous Prefecture, 
Xinjiang, China. To assist local Centers for Disease Control and Prevention (CDC) in promptly formulate 
effective prevention and control measures, this study leveraged time-series data on brucellosis cases 
from February 2010 to September 2023 in Ili Kazak Autonomous Prefecture. Three distinct predictive 
modeling techniques—Seasonal Autoregressive Integrated Moving Average (SARIMA), eXtreme 
Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) networks—were employed for 
long-term forecasting. Further, the optimal model will be used to explore the impact of COVID-19 on 
the transmission of Human brucellosis in the region. We constructed a SARIMA(4,1,1)(3,1,2)12 model, 
an XGBoost model with a time lag of 22, and an LSTM model featuring 3 LSTM layers and 100 neurons 
in the fully connected layer to predict monthly reported cases from January 2021 to September 2023. 
The results indicated that the occurrence of brucellosis exhibits pronounced seasonal patterns, with 
higher incidence during summer and autumn, peaking in June annually. Performance evaluations 
revealed low Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric Mean 
Absolute Percentage Error (SMAPE) for all three models. Specifically, the coefficient of determination 
(R2) was 0.6177 for the SARIMA model, 0.8033 for the XGBoost model, and 0.6523 for the LSTM model. 
The study found that the XGBoost model outperformed the other two in long-term forecasting of 
brucellosis, demonstrating higher predictive accuracy. This discovery can aid public health departments 
in advancing the deployment of prevention and control resources, particularly during peak seasons of 
brucellosis. It was also found that the impact of the COVID-19 pandemic on the transmission of human 
brucellosis in the region was minimal. This research not only provides a reliable predictive tool but also 
offers a scientific basis for formulating early prevention and control strategies, potentially reducing the 
spread of this disease. 

Keywords Brucellosis, Brucella, SARIMA, XGBoost, LSTM

Human brucellosis is a typical zoonosis caused by Brucella bacteria, which includes Brucella melitensis found in 
goats and sheep, Brucella abortus in cattle, Brucella canis in dogs, and Brucella suis in pigs1. This pathogen is a 
gram-negative, tiny, spherical bacterium that grows exclusively inside cells and has a tenacious ability to survive 
under extreme environmental conditions such as temperature, humidity, and pH2. Brucellosis is primarily 
transmitted through direct contact with secretions (such as aborted fetuses, placentas, or other bodily fluids) 
from infected animals, including cattle, sheep, goats, and pigs. Consumption of unpasteurized dairy products 
or contaminated food and water can also lead to infection. Inhalation of aerosols containing Brucella, though 
rare, is also possible. In animals, the disease typically manifests as abortions, stillbirths, premature births, and 
postpartum metritis, with infected female animals discharging bacterial secretions that serve as a source of 
infection. In humans, early symptoms of infection include fever, general fatigue, joint pain, and night sweats. If 
left untreated, the disease can lead to various complications involving the cardiovascular and nervous systems, 
and in severe cases, can be life-threatening3–5. Although advancements in medical technology have reduced the 
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global incidence of brucellosis, the incidence remains high in some developing countries with limited medical 
resources6.

In China, brucellosis remains an urgent public health challenge7,8. According to data from the China 
Public Health Data Center (http://www.phsciencedata.cn/Share/), the incidence rate of human brucellosis 
in the Xinjiang Uyghur Autonomous Region (referred to as Xinjiang) is 16.32 per 100,000, highlighting the 
severe situation faced by the region. Particularly in the Ili Kazakh Autonomous Prefecture (referred to as Ili) in 
Xinjiang, the incidence rate of human brucellosis has shown an upward trend, ranking first among all regions 
in Xinjiang. This trend poses a serious threat to the stable development of local animal husbandry and the 
social economy. Therefore, there is an urgent need to develop accurate epidemiological prediction models to 
effectively respond to this public health challenge. Considering China’s vast geographical area and significant 
differences in climate, environment, and economic development levels among provinces (autonomous regions), 
it is particularly crucial to formulate targeted disease prevention and control strategies.

Accurately predicting the number of zoonotic brucellosis cases and their trends is crucial for public health 
departments to promptly identify high-risk areas and populations, as well as to implement effective preventive 
measures to halt disease transmission. Additionally, it aids in the rational allocation of medical resources, timely 
deployment of healthcare personnel and supplies, and the conduct of targeted health education and promotional 
activities. The prediction methodologies primarily encompass statistical prediction, machine learning prediction, 
and deep learning prediction.

Statistical prediction methods involve the application of mathematical and statistical principles to forecast 
future events or trends. These methods include time series analysis and regression analysis. Time series analysis 
focuses on capturing time dependence in data, utilizing models such as Autoregressive Integrated Moving 
Average (ARIMA), Seasonal Autoregressive Integrated Moving Average (SARIMA), and Generalized Linear 
Autoregressive Moving Average (GLARMA). These models are well-suited for analyzing and predicting data that 
exhibits trends, seasonality, and other temporal patterns. In infectious disease prediction research, the SARIMA 
model is widely applied9–14. As a time series analysis model15–17, SARIMA can handle non-stationary time series, 
and capture trends, seasonality, and other linear information within the data, thereby enabling modeling and 
prediction.

In contrast, machine learning methods, including neural networks and deep learning, are more effective in 
extracting nonlinear information. As a subset of machine learning, deep learning utilizes multi-layer neural 
networks and excels at capturing complex nonlinear relationships within data. XGBoost, a machine learning 
method, has applications across various domains18–21 but is relatively limited in its application to infectious 
disease prediction22–24. Specifically, in the context of brucellosis prediction, related research remains scarce.

Within the realm of neural networks, Recurrent Neural Networks (RNN) are commonly used for processing 
and predicting long-sequence data. The connections between nodes in the hidden layers after the input layer 
form loops, enabling the network to effectively process sequential data, ultimately producing results in the output 
layer. Long Short-Term Memory (LSTM) networks25 have emerged as a prominent time series prediction method 
in the field of deep learning in recent years. Compared to RNN, LSTM addresses the issues of gradient explosion 
and gradient vanishing26, thus performing exceptionally well in time series prediction and frequently applied in 
industrial sectors27–30. In the field of infectious diseases, LSTM models are primarily used for predicting diseases 
such as hand-foot-and-mouth disease31, COVID-1932–34, and dengue fever35, but their application in brucellosis 
prediction remains relatively rare.

This study aims to utilize traditional SARIMA models, XGBoost models, and LSTM models to accurately 
predict the monthly incidence rate of brucellosis in Ili Kazakh Autonomous Prefecture, Xinjiang, China, over an 
extended period. The objective of the research is to evaluate the performance of these models and identify the 
most suitable model for predicting brucellosis in this region, thereby providing crucial early warning information 
to support local prevention and control efforts. Simultaneously, the optimal model is used to explore the impact 
of the spread of human brucellosis in the region during the COVID-19 pandemic.

Specifically, this study focuses on long-term forecasting, which entails predicting trends beyond one year into 
the future. In the context of time series forecasting, short-term forecasting typically refers to predicting trends 
within the next few weeks to several months; medium-term forecasting covers trends from several months up to 
one year; whereas long-term forecasting, as is the focus here, predicts trends beyond one year, aiming to provide 
a scientific basis for developing long-term prevention and control strategies.

Methods
Data sources
This study has received formal approval from the Ili Kazakh Autonomous Prefecture Center for Disease Control 
and Prevention. The data used in the research come from the county-level administrative units of the Ili Kazakh 
Autonomous Prefecture, covering the monthly reported cases of human brucellosis from January 2010 to 
September 2023. The data from January 2010 to January 2021 are used as the training set for model training, 
while the data from February 2021 to September 2023 are used as the prediction set to evaluate the predictive 
performance of the models. The diagnostic criteria for human brucellosis follow the health industry standard of 
the People’s Republic of China, “Brucellosis Diagnosis” (WS269-2019).

Based on China’s prevention and control policies for COVID-19, the time series is divided into the COVID-19 
pandemic period and the non-COVID-19 period. This division starts in January 2020, when China first issued 
control measures for COVID-19, and ends in January 2023, when the Chinese government announced the 
adjustment of COVID-19 management from "Class B, Category A" to "Class B, Category B". During this specific 
period, it is coded as "1", while the remaining periods are coded as "0", representing either the absence of the 
pandemic or the "Class B, Category B" period. Subsequently, this period classification is introduced as a new 
variable into the optimal model to once again predict the number of human brucellosis cases.
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SARIMA model
The incidence characteristics of human brucellosis are characterized by long-term trends, periodicity, and 
seasonality. ARIMA (Autoregressive Integrated Moving Average model) is a well-established model widely used 
in time series analysis, highly regarded for its long history of application and excellent performance. Its general 
form is ARIMA (p, d, q), where p represents the autoregressive order (AR), d represents the differencing order, 
and q represents the moving average order (MA). However, when time series data exhibits pronounced seasonal 
patterns, the traditional ARIMA model becomes insufficient. To address this issue, the SARIMA (Seasonal 
Autoregressive Integrated Moving Average model) was introduced, with its general form being SARIMA (p, 
d, q) (P, D, Q)s. This model, (p, d, q) handles non-seasonal information. In contrast (P, D, Q) handles seasonal 
information, where P represents the seasonal autoregressive order (SAR), D represents the seasonal differencing 
order, Q represents the seasonal moving average order (SMA), and S represents the seasonal period length. By 
incorporating seasonal components, the SARIMA model can better capture and predict time series data with 
distinct seasonal characteristics.

In order to deeply understand the characteristics and patterns of the data and to more accurately establish 
and apply the SARIMA model for future numerical predictions, we first used the STL(Seasonal and Trend 
decomposition using Loess) method36,37 to decompose the time series data of human brucellosis. The STL 
method includes two types of decomposition: additive model decomposition and multiplicative model 
decomposition. In the multiplicative model decomposition, a logarithmic or Box-Cox transformation of the 
original series is required. In this study, we chose the additive model decomposition, whose mathematical 
relationship is expressed as follows:

 Yt = Tt + St + Rt

where Yt represents the actual observed value of human brucellosis at time t, this value can be decomposed into 
long-term trend information Tt, seasonal trend information St, and random fluctuation information Rt. To 
ensure the stability of the time series, based on the Autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF), an Augmented Dickey-Fuller (ADF) test is employed to determine whether the entire time 
series is stationary. If the time series is stationary, no pre-processing is required; otherwise, preprocessing is 
necessary. In addition, with the assistance of grid search, we can select the optimal combination of model 
parameters (p, d, q, P, D, Q) according to the Akaike Information Criterion (AIC). Finally, the Ljung-Box (LB) 
test is used to perform a white noise test on the residuals of the model to ensure that the predictive results of the 
model are highly accurate.

XGBoost model
XGBoost is an additive model based on the idea of boosting ensemble, first proposed by Tianqi Chen et al38 in 
2016. After continuous research and improvement by many scientists, it has become a widely used model in 
multiple fields. The core concept of the XGBoost model is to achieve the best fit of the data by constructing a 
combination of multiple predictive functions and assigning weights to each function. The model uses the second-
order Taylor expansion as the loss function, effectively addressing the complexity of calculating derivatives for 
some first-order loss functions. Additionally, XGBoost introduces a regularization term in the loss function, 
which helps prevent overfitting and improves the generalization ability of the model. The objective function of 
the XGBoost model is as follows:

 
Objt =

n∑
i=1

L((yi, y
(t−1)
i ) + ft(xi)) + Ω(ft)

 
Ω (ft) = γT + 1

2λ

T∑
j=1

ω2
j

where n represents the total number of samples,xi denotes the i-th sample, ft(xi) represents the prediction 
for the i-th sample,yi signifies the observed value,y(t−1)

i  indicates the prediction for the i-th sample xi on 
the (t-1)-th tree,Ω(ft) represents the complexity of the t-th tree,L denotes the loss function used to measure 
the discrepancy between predictions and actual values, and is also used for the output of new trees.γT is the 
L1 regularization term aimed at reducing model complexity, while 1

2λ
∑T

j=1 ω
2
j  is the L2 regularization term 

used to smooth parameters and prevent overfitting.T indicates the number of leaves in the decision tree, and ω 
represents the weight parameters for each leaf node. To ensure the reliability of the model, we use grid search to 
determine specific hyperparameters, including learning rate, number of estimators, maximum depth, minimum 
child node weight, gamma, subsample rate, column sample rate, L1 regularization term, and L2 regularization 
term. Additionally, we employ GridSearchCV for grid searching parameters, with cross-validation utilizing 
the TimeSeriesSplit from the machine learning library sklearn. TimeSeriesSplit is designed specifically for 
cross-validation of time series data. It ensures that future data is not used to predict past events during model 
training, thereby preventing data leakage—the parameter n_splits = 5, indicating a fivefold cross-validation. By 
manually adjusting the time lag and determining the final value, we adjust as many model parameters as possible 
to enhance predictive performance and reduce loss bias, enabling the XGBoost model to effectively capture 
complex patterns in the data.
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LSTM model
LSTM networks are a special type of recurrent neural network that can efficiently handle and predict time series 
data. The structure of an LSTM model consists of four parts: an input layer, LSTM layer, a fully connected 
layer, and an output layer. Before model training, data is usually normalized for pre-processing to reduce the 
differences between data points and accelerate the model’s convergence. In this study, the maximum-minimum 
normalization method was employed. This method scales the data to the range of [-1,1], enhancing the model’s 
robustness and training efficiency. The formula for this normalization is as follows:

 
x∗ = x − min(x)

max(x) − min(x)

After determining the strategy for data normalization, it is necessary to adjust the hyperparameters of the model, 
including the learning rate, the number of LSTM layers, the number of neurons in the fully connected layer, 
and the optimizer, among others. These require careful tuning because these parameters have a crucial impact 
on the performance of the model. In addition, we have also implemented Dropout to prevent overfitting of the 
LSTM model. However, the complexity of the model is not always better. An overly complex model may lead to 
a decrease in generalization ability, meaning the model performs poorly on unseen data. Conversely, an overly 
simple model may struggle to converge, leading to unstable training and failing to achieve ideal prediction 
results. Therefore, parameter adjustment requires repeated trials and optimization to ensure that the model 
maintains good performance while also possessing sufficient generalization ability.

During the training process of a model, selecting the appropriate activation function and loss function is 
crucial. This study employed the gradient descent algorithm for training the model, using historical data from 
previous years to train the model to predict future trends in the data. The mathematical expression of the 
LSTM model is as follows, with its structural diagram shown in Fig. 1 outputi = F (Wi · Ai + bi)

 Ct = Ct−1 · ft + it · Ct′

 ft = σ(Wf · [ht−1, xt] + bf )

 Ct′ = tanh(Wc · [ht−1, xt] + bc)

Fig. 1. LSTM model structure diagram.

 

Scientific Reports |         (2025) 15:1232 4| https://doi.org/10.1038/s41598-024-80513-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 it = σ(Wi · [ht−1, xt] + bi)

 Ot = σ(Wt · [ht−1, xt] + bo)

 ht = tanh ([Ct−1 · ft + it · Ct′] · Wt + bt) · Ot

In each layer function of a neural network, there are two crucial attributes: the weight vector and the bias b. 
These parameters together determine the output of the neural network. The activation function represents each 
component of the input vector i and denotes the time.

Evaluation and comparison of models
In evaluating the model’s prediction results, we used four metrics: Mean Absolute Error (MAE), Symmetric Mean 
Absolute Percentage Error (SMAPE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2). 
Among these, the smaller values of MAE, SMAPE, and RMSE indicate that the model’s prediction results are 
more accurate. Conversely, the closer the value of R2 is to 1, the better the model’s fitting effect. The definitions 
of these metrics are as follows:

 
MAE = 1

n

n∑
t=1

|xt,ture − xt,predicted|

 
SMAP E = 100%

n

n∑
t=1

|xt,true − xt,predicted|
(|xt,true + xt,predicted|)/2

 

RMSE =

√√√√ 1
n

n∑
t=1

(xt,true − xt,predicted)2

 
R2 = 1 −

∑n
t=1 (xt,ture − xt,predicted)2

∑n
t=1 (xt,ture − xmean)2

Data analysis
The Python language as well as relevant third-party libraries were used for writ the model. In this study, the 
statistical significance level was set at α = 0.05.

Results
Analysis of the onset trend and distribution characteristics
Figure  2 illustrates the temporal trend of reported human brucellosis cases in the Ili, Xinjiang, China from 
January 2010 to September 2023. During this period, a total of 11,693 cases were reported. The incidence of 
human brucellosis from January 2010 to January 2012 was relatively low and showed a stable trend. Starting 
from 2012, the number of cases showed an upward trend, reaching its peak in 2015. After that, the number of 
cases began to decline, but the upward trend was resurgent after 2020. Further analysis from Fig. 3 shows that 
human brucellosis in the Ili is mainly concentrated in Yining County and Huocheng County, exhibiting a clear 
seasonal and periodic pattern, with a peak in cases from April to September each year, with the highest number 
of cases in May.

SARIMA model prediction analysis.
The time series of brucellosis cases in the Ili Kazakh Autonomous Prefecture, Xinjiang, China, is plotted in 
Fig. 2. It is evident from the graph that the brucellosis cases exhibit clear cyclical and seasonal characteristics. 
To analyze these features more thoroughly, we applied an additive model decomposition based on the Seasonal 
Local Trend (SLT) method to the time series data, separating the long-term trend, seasonal trend, and residual 
information, as shown in Fig. 4. Since the SARIMA model requires the input data to be a stationary time series, 
we performed a unit root test, such as the ADF (Augmented Dickey-Fuller) test, on the entire time series to 
confirm its stationarity. The results of the ADF test, as shown in Fig. 5(a), indicate that the original series is 
non-stationary, necessitating a differencing operation to achieve stationarity. After a first-order differencing 
operation, the P-value of the ADF test significantly decreased, approaching 0, suggesting that the series has 
become stationary, as shown in Fig. 5(b). Based on the results of the first-order differencing operation, we can 
determine that the values of d and D in the SARIMA (p, d, q) (P, D, Q)S model are both 1. Next, by observing 
the autocorrelation and partial autocorrelation plots, we can determine the values of p, q, P, and Q. However, 
this image-based method may introduce subjective judgments. Therefore, we employed a grid search method 
combined with the Akaike Information Criterion (AIC) to obtain the optimal values of parameters p, q, P, and Q. 
After multiple trials and adjustments, we found that the SARIMA (4, 1, 1) (3, 1, 2,)12 model had the best fitting 
effect, with an AIC value of 1436.80. To validate the effectiveness of the model, we conducted the Ljung-Box (LB) 
test, which revealed that the P-value of Q was greater than 0.05, indicating that the model’s residual lags are white 
noise. Additionally, we plotted the residual graph, as shown in Fig. 6, which further confirmed that the model’s 
residual lags are white noise. Thus, the parameters in the SARIMA (4, 1, 1) (3, 1, 2,)12 model were confirmed to 
be optimal. Finally, we used this model for prediction, with the results shown in Fig. 7(a).
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XGBoost model prediction analysis
To accurately determine the optimal model parameters, this study employed the GridSearchCV method, 
combining grid search techniques to pinpoint specific parameter values. Subsequently, the optimal model 
parameters were further determined by manually testing the adjacent values of specific parameters. To ensure 
the high reliability and robustness of the prediction model, we utilize GridSearchCV for parameter grid search 
and adopt TimeSeriesSplit for five-fold time-series cross-validation. Specifically, TimeSeriesSplit divides the 
training set into five consecutive periods, with the data from each period serving as the test set for one validation 
round, while the data from all previous periods constitute the training set. This approach ensures that the data 
in the training set for each validation round temporally precedes the data in the test set, thus avoiding the use of 
future information to predict past situations. Ultimately, we collect and average the validation results from the 
five-time periods to obtain an overall assessment of the model’s performance.

After a series of optimizations and validations, it was found that the performance was optimal when the lag 
was set to 22. To provide more detailed information, we have included the results varying with the time lag as 
supplementary material; see Fig S1 in the supplementary material. The optimal hyperparameters were set as 
follows: learning rate (learing_rate) at 0.01, the number of estimators (n_estimators) at 50, maximum depth 
(Max_depth) at 4, minimum child weight (min_child_weight) at 5, gamma at 78, subsample rate at 0.45, column 

Fig. 2. Time series of human brucellosis cases in Ili, Xinjiang, China, 2010–2023.
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sampling rate (colsample_bytree) at 1, L1 regularization term (reg_alpha) at 6.3, and L2 regularization term 
(reg_lambda) at 1. The prediction results are shown in Fig. 7(b).

LSTM model prediction analysis
In the initial phase of the experiment, we attempted to train the data using the sliding window method (by sliding 
a fixed-length window across the time series to generate a series of input–output pairs), but the prediction results 
did not meet expectations and were gap compared to the traditional method of feeding data into the model 
point by point (where the time series data is input into the model one time point at a time, considering only 

Fig. 4. Seasonal and trend decomposition of human brucellosis in Yili Kazakh Autonomous Prefecture from 
2010 to 2023 based on STL.

 

Fig. 3. Spatio-temporal aggregation of the number of reported cases of brucellosis in Ili Kazakh Autonomous 
Prefecture, Xinjiang, 2010–2023. (a) indicates the distribution of brucellosis in different counties and cities of 
Ili during 2010–2023. (b) indicates the distribution of brucellosis by month during 2010–2023.
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the data of the current time point). Therefore, this study ultimately adopted the method of feeding the model 
with data point by point for training. Through repeated trials and optimization, we successfully constructed 
the best model, with hyperparameters set as follows: a learning rate of 0.01, 3 LSTM layers, 100 neurons in the 
fully connected layer, using the tanh function as the activation function, MSELoss as the loss function, Adam 
as the optimizer, and 3000 training epochs. The final model’s loss value, loss, was 0.00002468, achieving good 
performance. The prediction results are shown in Fig. 7(c).

Comparison of models
Table 1 presents a performance comparison of the SARIMA, XGBoot, and LSTM models on a 32-month 
prediction set, including four evaluation metrics: MAE, SMAPE, RMSE, and R2.

In constructing the SARIMA (4, 1, 1)(3, 1, 2,)12 model, since the series was not stationary, we performed 
first-order differencing and seasonal differencing, resulting in the exclusion of the first 13 months of data, leaving 
120 months for subsequent model training. Additionally, the time lag for the XGBoost model was set to 22 
months, so 111 months of data were used for model training. Therefore, all the metrics in Table 1 are based on 
the 32-month test set data. In terms of MAE, SMAPE, and RMSE, the performance of the SARIMA and LSTM 
models was significantly higher than that of the XGBoost model, indicating that the SARIMA and LSTM models 
had poorer prediction accuracy. Conversely, in the Coefficient of Determination (R2) metric, the performance of 
the SARIMA and LSTM models was significantly lower than that of the XGBoost model, reflecting their poorer 
fitting capabilities. Considering these metrics together, the XGBoost model is more suitable for brucellosis 
prediction in the Ili Kazakh Autonomous Prefecture, Xinjiang, China. The high prediction accuracy and 
good fitting capabilities of the XGBoost model are of great significance for the early prevention and control of 
brucellosis in this region. We have decided to use the XGBoost model to explore the impact of the COVID-19 
pandemic on the spread of brucellosis in the region. The results are presented in Table 2.

Discussion
According to the analysis in this study, in the Ili Kazakh Autonomous Prefecture, Xinjiang, China, from 2010 to 
2012, the number of human brucellosis cases remained relatively stable. However, from 2012 to 2015, there was 
a significant increase in the number of cases. This increase may be attributed to the improvement of the local 
economic situation and the expansion of the livestock industry, as well as the lack of awareness of brucellosis 
among residents39. Additionally, the relative lack of experience in brucellosis prevention and control at that time 
may also have been one of the reasons for the increase in case numbers. In the mid-phase of the time series, with 
the strengthening of publicity and awareness education on brucellosis by relevant disease control centers due 
to the previous prevalence of brucellosis, residents’ awareness of brucellosis increased, leading to an increase 
in reported cases. This may have been one of the reasons why the number of cases began to decline after 2015. 
From 2015 to 2019, with the standardization of livestock management and the enhancement of public health 
awareness, the prevalence of brucellosis showed a clear downward trend. However, since 2019, the number 

Fig. 5. ADF test before and after difference of the time series as well as autocorrelation and partial 
autocorrelation after difference. Where (a) is the sequence before first-order difference, (b) is the sequence 
after first-order difference, (c) and (d) are the autocorrelation and partial autocorrelation after difference, 
respectively.
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of brucellosis cases has unexpectedly shown a year-on-year upward trend, a phenomenon that deserves high 
attention.

Further research has found that the geographical distribution of brucellosis has also undergone significant 
changes. In the past, brucellosis cases were mainly concentrated in Yining County and Huocheng County, but in 
recent years, they have begun to spread to other counties and cities, and this trend is still intensifying, as shown 
in Fig. 3(a). This change may be closely related to the ongoing economic development and the increased demand 
for beef and lamb among residents40,41. With the expansion of breeding scales, the frequency of human-animal 
contact has increased, especially during activities such as lambing, slaughtering cattle and sheep, and shearing 
sheep, which increases the opportunity for exposure to Brucella42. At the same time, the wider circulation 
of animal products has also increased the risk of residents contracting brucellosis43. These findings provide 

Model MAE SMAPE(%) RMSE R2

XGBoost 26.4062 19.2896 33.6912 0.8033

XGBoost + CVIOD-19 26.4062 19.2896 33.6912 0.8033

Table 2. A comparison of the optimal XGBoost model indicators between the best model XGBoost and the 
optimal XGBoost model with the new variable "whether during the COVID-19 period" was added.

 

Model MAE SMAPE(%) RMSE R2

SARIMA 36.8125 23.4204 46.9734 0.6177

XGBoost 26.4062 19.2896 33.6912 0.8033

LSTM 32.9062 20.8329 44.7957 0.6523

Table 1. Comparison of model performance: MAE, SMAPE,RMSE, R2.

 

Fig. 6. Residual graph, residual histogram, standard Q, correlation.
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important perspectives on the transmission and prevention of brucellosis and emphasize the necessity of further 
strengthening disease control and public health intervention measures. According to experience in prevention 
and control, enhancing public awareness of brucellosis and standardized management in the livestock industry 
can effectively suppress the occurrence of brucellosis44. Additionally, for the changing geographical distribution, 
active detection of animal products should be strengthened to contain infected products at the early stage of 
circulation.

Fig. 3(b) shows that human brucellosis has higher incidence rates in summer and autumn, while it is relatively 
low in spring and winter, which fully demonstrates its distinct seasonal characteristics. However, this seasonal 
variation is different from the results of other studies45,46 , and it may be closely related to the local climate 
conditions of the Ili Kazakh Autonomous Prefecture. For instance, the region experiences a short summer and 
a long winter, with late autumn and early spring often being affected by cold air, leading to a sharp drop in 
temperature, which may affect the activity of Brucella47. Moreover, the link between human brucellosis and 
the livestock industry cannot be overlooked. Sheep are the primary source of infection for this disease40, and 
the Ili Kazakh Autonomous Prefecture is an important base for raising fine-wool sheep in China. Compared 
to the cold of early spring and winter, as temperatures rise, the biological activity and reproductive capacity of 
Brucella gradually recover45. Additionally, pastoralists begin grazing activities at this time. Since the intake and 
weight gain of cattle and sheep are slower, and their immune systems are weaker, the risk of brucellosis infection 
increases47. These analyses provide deeper insights, which can help in formulating more effective strategies 
for disease prevention and control. For example, interventions can be conducted in late spring and during the 
peak of infection in summer44, or vaccination of the main infected livestock can be implemented to reduce the 
occurrence and spread of brucellosis.

To effectively prevent, control, and eliminate brucellosis, it is also necessary to further enhance early warning 
technologies. The prediction of infectious disease trends is a crucial aspect of disease control and eradication. 
The aim of this study was to provide a useful reference for the prevention and control of human brucellosis 
in the Ili Kazakh Autonomous Prefecture, Xinjiang. The SARIMA model, an extension of the ARIMA model, 
incorporates seasonal factors, trend factors, cyclic factors, and random errors into the time series variables. The 
SARIMA model is not restricted by data types, is adaptable, and can handle many infectious disease prediction 
tasks47,48. In this study, we selected SARIMA (4, 1, 1) (3, 1, 2)12 as a benchmark for comparison with other 
models. However, the results showed that the predictions of this model were not ideal, with an R2 value of 
only 0.6177. The possible reason is that SARIMA is a statistical model and may struggle to handle non-linear 
information in time series. In most cases, the ability to handle non-linear information in the data is crucial, 
whether in the field of infectious diseases or other areas. Despite this, as seen in Fig. 7(a), the SARIMA model’s 
predictions for the first 9 months were relatively accurate, indicating that SARIMA is more suitable for short-
term predictions49.

Compared to the SARIMA model, neural networks are well-suited for handling non-linear information in 
time series. In this study, the LSTM model exhibited lower MAE and RMSE than the SARIMA model, with an R2 
value of 0.6523, which is superior to the R2 value of the SARIMA model, aligning with the research conclusions 
of Ashutosh Kumar Dubey and others50. For input consisting solely of time variables, the LSTM model did 

Fig. 7. Observations versus model predictions, (a), (b), (c) are SARIMA, XGBoost, LSTM model predictions 
versus observations respectively.
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not demonstrate its expected predictive capabilities. As can be seen from Fig. 7(c), the LSTM model achieved 
satisfactory results in the first 9 months of predictions49.

In contrast to other models, XGBoost has demonstrated remarkable performance, especially when it 
comes to processing non-linear data. In the process of building the model, XGBoost can automatically choose 
and combine features, which improves prediction accuracy. In addition, regularization terms added during 
optimization reinforce the model’s generalization ability. As a deep learning model, LSTM relies heavily on a 
large amount of data and high-quality data preprocessing to fully utilize its predictive potentia51. In this study, 
the XGBoost model demonstrated lower MAE, SMAPE, and RMSE values compared to the other two models. 
Moreover, its coefficient of determination R2 reached a high of 0.8033, far exceeding the R2 values of the LSTM 
and SARIMA models, indicating that the XGBoost model has high predictive accuracy. This conclusion is 
consistent with other research52,53.

After a comprehensive comparison, it can be concluded that the XGBoost model is the best choice among the 
three models. In the application of brucellosis prediction, research on the XGBoost model is relatively scarce. 
For example, Alim et al54 designed a national-scale model but did not consider the differences in climate, dietary 
habits, and other factors between different regions. This study focuses on multiple counties and cities within 
the same region, which have smaller differences in various aspects and thus can be considered under similar 
conditions. Additionally, the prediction set in this study spans 32 months and still maintains good prediction 
results, which is not present in other studies. Additionally, the XGBoost model offers a rich set of tunable 
hyperparameters, providing a basis for subsequent model tuning. Compared to the complex modeling processes 
of SARIMA and LSTM models, their construction is more straightforward and can be quickly applied to real-
world scenarios. Therefore, the potential application of this model to the prediction of brucellosis deserves 
further exploration.

The indicators in Table 2 show that the impact of the COVID-19 period on the transmission of brucellosis in 
Yili Kazak Autonomous Prefecture, Xinjiang, China, is minimal. The prediction results of the XGBoost model, 
with the COVID-19 period as a new variable, are consistent with those without incorporating this variable, 
indicating that the COVID-19 period has a negligible effect on the transmission of brucellosis in the region. 
Additionally, we conducted a correlation analysis to further verify this point, with detailed information provided 
in Supplementary Material Fig S2. This conclusion is inconsistent with Ma C et al.55, which focused solely on the 
COVID-19 period, whereas our study encompasses both COVID-19 and non-COVID-19 periods. Furthermore, 
thanks to China’s government’s prevention and control policies, the number of infections in the region during 
the pandemic was low, resulting in minimal impact from the COVID-19 pandemic.

Although this study offers valuable insights, it also acknowledges several limitations. Firstly, the research 
focuses solely on the Ili Kazak Autonomous Prefecture in Xinjiang, China. Given China’s vast expanse and 
significant regional variations in geography, climate, and socio-economic conditions, these factors may 
considerably influence the prevalence of human brucellosis. Secondly, the study did not consider external factors 
such as cattle and sheep slaughter volumes, inventory levels, and dairy production. Incorporating these factors 
into the analysis could potentially enhance the accuracy of brucellosis case predictions in the region.

The purpose of this study is to provide support to healthcare workers in the Ili Kazak Autonomous Prefecture 
of Xinjiang for their efforts in brucellosis prevention and control, as well as to assist in disease control in similar 
regions. It is noteworthy that the predictions presented in this study are based on aggregated data at the county 
and city levels, and therefore, specific predictions at the individual county or city level are not available, which 
constitutes a limitation of the study.

Conclusions
In this study, we constructed SARIMA, XGBoost, and LSTM models and used them to predict brucellosis in 
the Ili Kazakh Autonomous Prefecture of Xinjiang. The results showed that the SARIMA model and LSTM 
model performed poorly in predicting the monthly number of human brucellosis cases in Xinjiang, while the 
XGBoost model showed excellent performance. The impact of the COVID-19 period on the transmission of 
human brucellosis in the region is minimal. Using XGBoost to predict brucellosis in the Ili Kazakh Autonomous 
Prefecture is of great significance for early warning, prevention, and control.

Data availability
As the data belong to the Center for Disease Control and Prevention of Ili Kazakh Autonomous Prefecture in 
Xinjiang, China, the original dataset is not publicly available during the current study period, but can be ob-
tained from the corresponding authors upon reasonable request.
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