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ABSTRACT
The low survival rate of cardiac stem cells (CSCs) in the ischemic myocardium is one
of the obstacles in ischemic cardiomyopathy cell therapy. The MicroRNA (miR)-21
and one of its target protein, the tensin homolog deleted on chromosome ten (PTEN),
contributes to the proliferation of many kinds of tissues and cell types. It is reported
that miR-21 promotes proliferation through PTEN/PI3K/Akt pathway, but its effects
on c-kit+ CSC remain unclear. The authors hypothesized that miR-21 promotes the
proliferation in c-kit+ CSC, and evaluated the involvement of PTEN/PI3K/Akt pathway
in vitro. miR-21 up-regulation with miR-21 efficiently mimics accelerated cell viability
and proliferation in c-kit+ CSC, which was evidenced by the CCK-8, EdU and cell cycle
analyses. In addition, the over-expression of miR-21 in c-kit+ CSCs notably down-
regulated the protein expression of PTEN although the mRNA level of PTEN showed
little change. Gain-of-function of miR-21 also increased the phosphor-Akt (p-Akt)
level. Phen, the selective inhibitor of PTEN, reproduced the pro-proliferation effects
of miR-21, while PI3K inhibitor, LY294002, totally attenuated the pro-survival effect
of miR-21. These results indicate that miR-21 is efficient in promoting proliferation in
c-kit+ CSCs, which is contributed by the PTEN/PI3K/Akt pathway. miR-21 holds the
potential to facilitate CSC therapy in ischemic myocardium.

Subjects Cell Biology, Cardiology, Translational Medicine
Keywords c-kit+ cardiac stem cell, microRNA-21, Proliferation, PTEN, PI3K-Akt pathway,
Ischemic cardiomyopathy

INTRODUCTION
Ischemic cardiomyopathy is still the leading cause of deaths worldwide. Despite advances
in interventional procedures, such as the catheter-based therapies, the five year mortality
rate for myocardial infarction (MI) remain as high as 50% (Mozaffarian et al., 2016).
Alternative strategies, such as stem cell-based therapies, are urgently needed (Fisher et al.,
2015).

Stem cell-based therapies are efficient in repairing cardiac damage resulted from
ischemiareperfusion (I/R) injury (Hong & Bolli, 2014; Sanganalmath & Roberto, 2013).
Among the many types of cardiac-derived stem cells being investigated, c-kit+ cardiac stem
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cells (CSCs) appeared to be particularly promising because of their ability of differentiating
into three cell types in the myocardium, the cardiomyocytes, smooth muscle cells and
endothelial cells (Beltrami et al., 2003). In the past decade, studies have demonstrated
that human and rodent c-kit+ CSCs promote cardiac regeneration and attenuate heart
dysfunction and remodeling after MI in various animal models (Angert et al., 2011; Bearzi
et al., 2007; Bolli et al., 2013; Fischer et al., 2009; Linke et al., 2005; Taghavi et al., 2015;
Tang et al., 2016; Tang et al., 2010) A recent study showed that the benefits of c-kit+

CSCs on ventricular remodeling and dysfunction lasted for more than one year in rats
(Tang et al., 2016).

Two Phase I trials, the CADUCEUS and SCIPIO (Malliaras et al., 2014; Bolli et al., 2011)
demonstrated the safety and feasibility of cardiac derived stem cells inMI treatment. Despite
the minimal cardiomyogenic potential of CSCs (Tang et al., 2016; Van Berlo et al., 2014),
reports have demonstrated their potential to promote angiogenesis and decrease cellular
apoptosis and necrosis in vivo, either by differentiation towards vascular lineages (Tallini
et al., 2009) or via secretion of growth factors (Huang et al., 2011) and/or extracellular
microRNAs (miRNAs) (Gray et al., 2015).

However, poor engraftment and low viability of CSCsminimizes the percentage survived
CSCs and hampers functional improvements and cardiac outcomes (Hu et al., 2011). The
very poor survival of donor cells is one of the challenges needed to be overcome before
CSC-based therapies become a clinical reality. In mice with MI, it has been shown that
>90% of transplanted CSCs die within a week and >95% within five weeks (Hong et al.,
2014;Hong et al., 2013). It is apparent that this massive loss of cells limits their effectiveness
as a therapy. Strategies to enhance CSC survival after adoptive transfer would have
significant therapeutic implications for patients with ischemic heart disease and post-MI
heart failure. Strategies to increase cell survival including preconditioning the cells with
a variety of techniques, including heat shock of the cells prior to transplantation, forced
expression of survival factors in the donor cells, and exposure of cells to pro-survival factors
(Haider & Ashraf, 2010; Laflamme et al., 2007; Mohsin et al., 2012). Hu et al. (2011)
improved the engraftment of transplanted CSCs and therapeutic efficacy for treatment
of ischemic heart disease using a miRNA prosurvival cocktail, which contained miR-21,
miR-24 and miR-221.

MicroRNAs are small non-coding RNAs, which inhibit translation or promote mRNA
degradation of their target genes (Bartel, 2004; Small, Frost & Olson, 2010). Accumulating
evidence indicates that miR-21 plays important roles in tumor growth (Lv, Hao &
Tu, 2016), lung tumor cell lines (Xu et al., 2014), skin fibroblasts (Liu et al., 2014) and
hepatocyte (Yan-nan et al., 2014) proliferation and cardiac cell growth (Cheng & Zhang,
2010). miRNAs also play critical roles in cardiogenesis and cardiac regeneration (Anton et
al., 2011; Fuller & Qian, 2014; Hosoda, 2013; Thomas et al., 2010). Gain-of function studies
indicated miR-21 reduces cardiomyocyte apoptosis under oxidative stress (Lv et al., 2016;
Wei et al., 2014). Importantly, miRNA expression is capable of controlling CSCs fate and
holds the potential of enhancing clinical efficacy of cellular therapy (Hosoda, 2013;Hu et al.,
2011). It is reported that miRNAs contribute to CSC differentiation (Hosoda et al., 2011;
Van Rooij et al., 2007; Zhao, Samal & Srivastava, 2005). For example, miR-21 not only
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modulates immunoregulatory function of bone marrow mesenchymal stem cells (BMSCs)
through the PTEN/Akt/TGF-β1 pathway (Wu et al., 2015), but also enhances human
multipotent cardiovascular progenitors therapeutic effects via PTEN/HIF-1α/VEGF-A
signaling (Richart et al., 2014).

The phosphatase and tensin homolog deleted on chromosome ten (PTEN), which
was first found as a tumor suppressor gene, participates in tumor growth, apoptosis,
adhesion, invasion and migration (Ciuffreda et al., 2014; Panigrahi et al., 2004). Silencing
of PTEN promotes cell proliferation (Gregorian et al., 2009). Pharmacological inhibition
of PTEN limits myocardial infarction and improves left ventricular function after MI
(Keyes et al., 2010). PTEN works partially through the prosurvival signaling by inhibiting
phosphorylation of Akt (p-Akt), which is the active form of Akt (Panigrahi et al.,
2004). The up-regulation of PTEN increases apoptosis in cardiomyocytes, whereas its
inactivation activates the Akt signaling, reduces apoptosis, and increases survival (Mocanu
& Yellon, 2007; Schmid et al., 2004; Schwartzbauer & Robbins, 2001; Wu et al., 2006). It
is well documented that PTEN is one of miR-21′s target genes (Li et al., 1997; Qi et al.,
2015; Stambolic et al., 1998; Wu et al., 2015). Accumulating evidence suggests that miR-21
promotes cell proliferation via PTEN-dependent PI3K/Akt signaling activation in cancer
cells (Bai et al., 2011; Di Cristofano & Pandolfi, 2000; Meng et al., 2006; Ou, Li & Kang,
2014; Yan-nan et al., 2014). Gain-of-function of miR-21 can efficiently reduce I/R injury
via down-regulation of PTEN (Sayed et al., 2010; Tu et al., 2013). Recently, we found that
miR-21 can reduces hydrogen peroxide-induced apoptosis and promotes cell survival in
c-kit+ cardiac stem cells in vitro through PTEN/PI3K/Akt signaling (Deng et al., 2016).

In this study, by using the gain-of-function experiments of miR-21 in c-kit+ CSCs in
vitro, we provide evidence that miR-21 may accelerate c-kit+ CSCs proliferation through
the PI3K/PTEN/Akt signaling. This suggests that miR-21 possess the pro-survival ability in
c-kit+ CSCs in vivo. miR-21 could be a potential molecule to facilitate stem cell treatment
of ischemic myocardium.

MATERIALS AND METHODS
Animals
Male Sprague-Dawley rats (3-week old, 45–60 g) were purchased from the Third Military
Medical University (Chongqing, China), and maintained in Zunyi Medical College. Twelve
hours light/dark (8:00 am–8:00 pm light on) cycles were given and they can freely access to
rat chow and water. All experimental procedures were performed according to the ‘‘Guide
for the Care and Use of Laboratory Animals’’ in China and approved by the Experimental
Animal Care and Use Committee of Zunyi Medical College (approval No. 2013032).

Materials
PE conjugated anti-CD34 and anti-CD45 primary antibodies were from BioLegend (USA).
The collagenase type II was from Sigma (St. Louis, MO, USA). Ham’s/F-12 medium and
fetal bovine serum (FBS) were purchased from HyClone (Logan, UT, USA). Trypsin
was purchased from Gibco (Billings, MT, USA). Penicillin and streptomycin were from
Sorlabio (Beijing, China). Fibroblast growth factor was from Peprotech (Rocky Hill, NJ,

Shi et al. (2017), PeerJ, DOI 10.7717/peerj.2859 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.2859


USA). Leukocyte inhibitory factor was product of Gibco. Rabbit anti-rat c-kit+ primary
antibody was supplied by Biorbyt (Cambridge, UK). M-280 beads conjugated with sheep
anti-rabbit secondary antibody were from Dynal Biotech (Hovik, Norway). miR-21
mimics and the negative control scramble were synthesized by RIBOBIO (Guangzhou,
China). Lipofectamine 2,000 was from Invitrogen (Carlsbad, CA, USA). Primers, miRNA
reverse transcript kit and qRT-PCR kit were from Sangon Biotech (Shanghai, China).
Anti-β-Actin, anti-PTEN, anti-BrdU, anti-P-Akt, anti-Akt primary antibody, and other
secondary antibodies were obtained from Boster bio (Wuhan, China). EdU (5-ethynyl-
29-deoxyuridine) cell proliferation detecting kit was from RIBOBIO (China). Cell cycle
detecting kit was from KeyGEN (Nanjing, China). LY294002 (PI3K inhibitor) was from
Beyotime (Jiangsu, China). Phen (PTEN inhibitor) was product of Merck (Darmstadt,
Germany). The unlisted reagents were of analytical grade.

c-kit+ cells isolation, purification and identification
CSCs were isolated (Choi et al., 2013) and purified (Kazakov et al., 2015) using previously
published methods, with some modifications. Breifly, rats were deeply anesthetized with
sevoflurane, then the atrial appendage was sliced and digested with 0.1% collagenase type
II (Sigma). After about 40 min digestion at 37 ◦C, cells were collected by sedimentation at
1,200 rpm for 5 min (min). Then cells from atrial appendage were incubated in a humidity
chamber in Ham’s F12 medium containing 10% FBS, 1% penicillin and streptomycin, 1%
L-glutamine, 20 ng/mL human recombinant fibroblast growth factor, 20 ng/mL leukocyte
inhibitory factor, 10 ng/mL epidermal growth factor (EGF). When cells confluence reached
>90%, they were suspended by trypsinization. Then CSCs were incubated with rabbit anti-
c-kit antibody (1:250 in F12 medium) for 1 h (h), and sorted with anti-rabbit secondary
antibody conjugated 2.8 µm magnetic beads (Dynal Biotech, Hovik, Norway) in 30 min
as instructed by the manufacturer’s protocols. The purified c-kit+ CSCs were cultured
in aforementioned F12 medium. Flow cytometry was used to confirm the expression
patterns of CSCs markers. Cells were incubated with fluorochrome-conjugated primary
antibodies: anti-CD34-PE, anti-CD45-PE, and anti-c-kit primary antibody and anti-c-kit
IgG- allophycocyanin (APC) secondary antibody (all from BioLegend, San Diego, CA,
USA).

miR-21 mimics transfection and the detection of miR-21 level in CSCs
For the miR-21 gain-of-function experiments, 2 µg miR-21 mimic or its control scramble
were added in 1.5 mL F12 medium in 6-well plates with 5 µL transfection reagent
Lipofectamine 2,000 (Invitrogen), and incubated with c-kit+ CSCs for 48 h according
to the manufacturer’s instructions. Real-time PCR was used to detect miR-21 expression
change.

Cell proliferation and viability detection with CCK-8 kit
Adult cardiomyocytes’ viability was detected with Cell Counting Kit-8 (CCK-8, Beyotime,
China) as previously reported (Cao et al., 2015). The same amount of CSCs were seeded
into 24-well plates and incubated with miR-21 mimics or its scramble for 24, 48 or 72 h,
then 30 µL WST-8 solution was added into F-12 medium to form a 3% WST-8 solution
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(final concentration). After 1 h incubation, the mixture’s optical density (OD) values were
detected at 450 nm wavelength.

Immunofluorescence of c-kit
To characterize the purity of isolated CSCs, immunocytochemistry was used to verify
c-kit expression on purified cells as reported elsewhere (Elisabetta et al., 2013). Cells were
fixed with 4% paraformaldehyde, then blocked with 10% goat serum before incubated
with anti-c-kit antibody. c-kit+ CSCs were subsequently incubated with FITC-conjugated
secondary antibody. After washing, the nuclei were counterstained with DAPI. The
immunofluorescence photos were taken with a fluorescence microscope (Olympus, Japan).

Proliferation detection with EdU assay
To detect proliferation of c-kit+ CSCs, the EdU assay kit was employed according to the
manufacturer’s instructions. Briefly, c-kit+ CSCs were cultured in triplicate in 96-well
plates and were transfected with 50 nM of miR-21 mimics or its control RNA for 48 h. The
cells were then exposed to 50 mM EdU for additional 4 h at 37 ◦C. Then, CSCs were fixed
with 4% formaldehyde for 15 min and treated with 0.5% Triton X-100 for 20 min at room
temperature. Then, cells were incubated with Apollo cocktail then the DNA contents of
CSCs were stained with Hoechst for 30 min and visualized under a fluorescent microscope
(Olympus, Tokyo, Japan).

Cell cycle assay
Cell cycle was determined by flow cytometry. Briefly, CSCs were cultured in 6-well plates
and transfected with 50 nM of miR-21 mimics or its scramble for 48 h. The c-kit+ CSCs
were then fixed in 70% ethanol for 24 h, followed by propidium iodide (PI) staining. The
cell cycle phases were analyzed using a flow cytometry instrument (BD, FACS Calibur; San
Jose, CA, USA).

Reverse transcription and Real-Time PCR of miR-21 and PTEN
mRNA and miRNA levels were determined by using quantitative RT-PCR as previously
reported (Cao et al., 2015; Cheng et al., 2009). Briefly, RNAs from CSCs were isolated with
the TRIzol (Invitrogen) method. RT-PCR was performed on cDNA generated from 3
µg of total RNA with a cDNA synthesis kit (TaKaRa, Tokyo, Japan) according to the
manufacturer’s protocol. RT-qPCR was performed with the CFX Connect Real-Time
system (Bio-Rad, USA) using a SYBR green PrimScript RT kit (TaKaRa) based on the
manufacturer’s instructions. The PCR conditions included pre-denaturing at 95 ◦C for 30
s followed by 40 cycles of denaturation at 95 ◦C for 10 s and combined annealing/extension
at 58 ◦C for 30 s. All the mRNA expression levels were calculated based on the comparative
quantification method (2−11CT). The U6 and β-actin were used as internal controls for
miR-21 and PTEN mRNA quantitation respectively.

Western blot
Western blot analysis of total protein from c-kit+ cell lysis was performed as described
previously (Cao et al., 2016). The protein extracts were separated by SDS-polyacrylamide
gels electrophoresis (SDS-PAGE) and transferred to PVDF membranes. After overnight
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blocking in nonfat milk solution, membranes were probed with anti -PTEN, -phospho-Akt,
-Akt, -BrdU, -β-actin or -GAPDH primary antibodies. PVDF membranes were incubated
with horseradish peroxidase-conjugated secondary antibodies for 1 h and then enhanced
chemiluminescence (Amersham Biosciences, Sunnyvale, CA, USA). Immunoreactivity was
visualized by a ChemiDoc MP system (Bio-Rad). Protein levels were normalized to β-actin
or GAPDH.

Statistical analysis
Data are presented as mean ± SD. All data were analyzed by the Student’s t -test or by
one-way ANOVA followed by LSD or Dunnett’s T3 post-hoc test for multiple comparisons.
A P value of less than 0.05 was considered to be statistically significant. Data analyses were
carried out using SPSS (v.19.0, IBM, USA).

RESULTS
Isolated c-kit+ CSCs
c-kit+ CSCs were isolated from rat atrial appendage and purified using anti-rabbit
secondary antibody conjugated magnetic beads. Flow cytometry showed that 90.2% of cells
were c-kit positive after the purification (Fig. 1A). Purified cells were stained with anti-c-kit
antibody, and counterstained with DAPI to visualize the nuclei. The immunofluorescence
staining also showed a high percentage of double-staining of c-kit+ and DAPI (Fig. 1B).

Transfection of CSCs with miR-21 mimics increased miR-21
expression
RT-PCR of miR-21 showed a significant increase of miR-21 when cells were transfected
with miR-21 mimics 48 h later (P < 0.05 compared with Control or Scramble group,
Figs. 1C–1D). The up-regulation of miR-21 was stable at 72 h, and no difference was
detected among 24, 48 and 72 h group (Fig. 1C). We choose 48 h as the incubation time in
the subsequent experiments.

miR-21 increased proliferation in CSCs
The pro-proliferation effect of miR-21 was detected with CCK-8 and EdU assays and
immunoblotting of BrdU. miR-21 significantly increased cell proliferation compared with
the negative control scramble group (Fig. 2), which is evidenced by the increased OD value
in CCK-8 experiments (Fig. 2A) and a larger proportion of EdU positive CSCs in EdU
assay analysis (Figs. 2B–2C). In addition, the BrdU expression was markedly increased, in
the miR-21 mimics group compared with Control or Scramble group (Fig. 2D).

miR-21 decreased PTEN protein expression
Although PTEN was extensively reported as one of miR-21′s target genes in many cell
types, Western blot was employed to verify miR-mimic’s effect on PTEN expression
in c-kit+ CSCs. mRNA level of PTEN didn’t change (Fig. 3A), while PTEN protein
significantly down-regulated inmimics group as compared with Control or Scramble group
(P < 0.05, Fig. 3B).
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A 

Figure 1 c-kit+ CSCs isolation and overexpression of miR-21in CSCs. After isolation from rat atrial
appendage, cells were purified by a combined use of c-kit antibody and magnetic beads conjugated with
secondary antibody. Flow cytometry showed c-kit+ cells were more than 90% (A). (B) Purified cells were
double stained by c-kit (green) and DAPI (blue), and observed under a fluorescence microscope (Olym-
pus). Bar= 50 µm. (C) Cultured CSCs were treated with miR-21 mimics for 24, 48 or 72 h before miR-21
RT-PCR detection. miR-21 mimics significantly increased miR-21 but no difference was detected among
the three time points. *, P < 0.05 compared with Control. (D) CSCs were incubated with miR-21 mim-
ics or its negative control scramble for 48 h. miR-21 mimics significantly increased miR-21 level in c-kit+

CSCs. *, P < 0.05. n= 3 in each group.
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Figure 2 miR-21 effect of on CSC proliferation. (A) Cultured CSCs were treated with miR-21 mimics
or its negative control scramble for 24 h, 48 h or 72 h respectively. Cell proliferation and viability were de-
tected with CCK-8 assay. miR-21 mimics remarkably increased proliferation of c-kit+ CSC at the three
time points (with P values < 0.05) and 48 h was the peak point of cell viability. n= 3. (B) c-kit+ CSCs were
double stained by c-kit (green) and DAPI (blue), and observed under a (continued on next page. . . )
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Figure 2 (. . .continued)
fluorescence microscope (Olympus). Bar= 50 µm. DAPI= propidium iodide. (C) The statistics of EdU
positive CSCs from immunofluorescence in (B). n= 6 in each group. (D) miR-21 mimics’s in-fluences on
BrdU expression, which was detected with immune blotting. miR-21 mimics dramatically increased the
expression of BrdU compared with Control or Scramble group. n= 3. *, P < 0.05.

miR-21 increase proliferation of c-kit+ CSCs via the PTEN/PI3K/Akt
pathway
To study the mechanisms responsible for miR-21 mediated pro-proliferation effects in
c-kit+ CSCs, we blocked PTEN and PI3K with their specific inhibitors Phen or LY294002
respectively. Phen administration increased proliferation of CSCs just like the effect of
miR-21 mimics, while LY294002 partially reversed the pro-proliferation effect of miR-21
mimics (all P < 0.05 Figs. 4A–4B). Flow cytometry was employed to detect cell cycle profiles
in CSCs underwent different treatments miR-21 mimics or Phen increased the proportion
of S phase CSCs compared with Control or scramble treated groups (Fig. 4C). Just like
miR-21 mimics’ effect on BrdU, when PTEN was inhibited by Phen, there was notably
increase of BrdU compared with Control or Scramble group. When PI3K was inhibited
by LY294002, there was notably decrease of BrdU in mimics+LY294002 group compared
with mimics group in CSCs (Fig. 4D).

Molecular detection of PTEN/PI3K/Akt pathway displayed that Phen efficiently
decreased mRNA level of PTEN while LY294002 showed little effect (Fig. 5A). However,
Phen significantly increased p-Akt and LY294002 reversed miR-21 mimics’ effect on p-Akt
level (Figs. 5B–5C).

DISCUSSION
Stem cell based therapy is promising for the prevention or treatment of ischemic
cardiomyopathy (Mozaffarian et al., 2016). c-kit+ CSCs is one of the most promising stem
cell types (Nigro et al., 2015). Nevertheless, poor engraftment minimizes the survival rate
of injected stem cells that contribute to heart functional improvement (Hu et al., 2011).
miRNAs hold the potential to improve engraftment and functional outcomes of CSC
transplantation (Hosoda, 2013; Hu et al., 2011). Studies have shown that miR-21 protects
myocardium from ischemic injury (Cheng et al., 2009). miR-21 also protects BMSCs (Lv et
al., 2016) and cardiomyocytes (Cheng et al., 2009;Wei et al., 2014) from H2O2 induced cell
damage, such as the apoptosis and necrosis. We also found that miR-21 reduces hydrogen
peroxide-induced apoptosis and promotes cell survival in c-kit+ cardiac stem cells in vitro
through PTEN/PI3K/Akt signaling (Deng et al., 2016). However, it is not known whether
miR-21 can promote proliferation in c-kit+ CSCs. Additionally, the underlying molecular
mechanisms between miR-21 and CSC proliferation need to be elucidated.

In this study, we established an in vitro miR-21 gain-of-function model to test
miR-21’s effect on proliferation and the involvement of PI3K/Akt signaling pathway.
The pro-proliferation effect of miR-21 was detected with CCK-8 and EdU assays and
immunoblotting of BrdU. miR-21 significantly improved cell proliferation parameters in
the three kind of experiments. Flow cytometry was employed to detect cell cycle profiles
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GAPDH

PTEN

Figure 3 miR-21 effect of on PTEN expression in CSCs. Cultured CSCs were treated with miR-21 mim-
ics or its negative control scramble for 48 h, then cells were harvested and subjected to RT-PCR or West-
ern blot. PTEN mRNA of Control, scramble treated or miR-21 mimics treated CSCs showed no significant
difference (A), but PTEN protein dramatically decreased after miR-21 mimics treatment (B). a, P < 0.05
compared with Control; b, P < 0.05 compared with Scramble. n= 3 in each group.
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Figure 4 PTEN/PI3K/Akt pathway’s contribution in miR-21 induced proliferation in c-kit+ CSCs.
Cultured c-kit+ CSCs were treated with miR-21 mimics for 48 h before subjected to EdU immunofluo-
rescence (A–B), flow cytometry (C) or Western blot (D). To test the contribution of PTEN/PI3K/Akt sig-
naling, PTEN and PI3K were inhibited with Phen or LY294002 respectively. (A) c-kit+ CSCs were double
stained by EdU (green) and DAPI (blue), and observed under a fluorescence microscope (Olympus). Bar
= 50 µm. DAPI= propidium iodide. (B) The statistics of EdU positive CSCs from immunofluorescence
in (A). n= 6 in each group. (C) Flow cytometry was employed to detect cell cycle profiles in CSCs under-
went different treatments miR-21 mimics or Phen increased the proportion of S phase CSCs compared
with Control or scramble treated groups. n = 3. (D) PTEN/PI3K/Akt pathway’s influences on BrdU ex-
pression, which was detected with immune blotting. Just like miR-21 mimics’ effect on BrdU, when PTEN
was inhibited by Phen, there was notably increase of BrdU compared with Normal or Scramble group.
When PI3K was inhibited by LY294002, there was notably decrease of BrdU in mimics+LY294002 group
compared with mimics group in CSCs. n = 3 in each group. a, P < 0.05 compared with Control; b, P <
0.05 compared with Scramble; c, P < 0.05 compared with miR-21 mimics group; d, P < 0.05 compared
with Phen group.
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Figure 5 Expression change of PTEN/PI3K/Akt pathway in the process of miR-21 mimics induced
proliferation in c-kit+ CSCs. Cultured CSCs were treated with miR-21 mimics for 48 h before the
subsequent procedures. To test the contribution of PTEN/PI3K/Akt signaling to miR-21 mimics’s
pro-proliferation effects in c-kit+ CSCs, PTEN and (continued on next page. . . )
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Figure 5 (. . .continued)
PI3K were inhibited with Phen or LY294002 respectively. (A) RT-PCR was carried out to detect miR-
21 mimics’s effects on PTEN expression at the mRNA level, which showed no change between Control,
miR-21 scramble, miR-21 mimics and miR-21 mimics+ LY294002 group, while Phen resulted in a signif-
icant down-regulation of PTEN compared with the other groups. (B–C) Western blot was carried out to
detect miR-21 mimics’s effects on PTEN protein expression, which showed that miR-21 mimics signifi-
cantly down-regulated PTEN protein in miR-21 mimics group compared with the scramble group. In ad-
dition, both Phen treatment and miR-21 mimics incubation increased p-Akt level, while PI3K inhibitor
LY294002 decreased p-Akt level dramatically (P < 0.05). a, P < 0.05 compared with Control; b, P < 0.05
compared with miR-21 scramble group; c, P < 0.05 compared with miR-21 mimics group; d, P < 0.05
compared with Phen group. n= 3 in each group. p-Akt= phosphor-Akt.

in CSCs after miR-21 mimics transfection. miR-21 mimics increased the proportion of S
phase CSCs. These results indicate that miR-21 may be a pro-survival factor in c-kit+ CSCs
in vitro.

PTEN has been extensively reported as one of target genes of miR-21, but it is not
confirmed in c-kit+ CSCs to our knowledge. In many cell types, e.g., hepatocytes,
cardiomyocytes and cancer cells, miR-21 mediates the expression of PTEN (Lv, Hao &
Tu, 2016; Qi et al., 2015; Tu et al., 2013). We hypothesized that PTEN is the target gene of
miR-21 in c-kit+ CSCs too. PTEN expression was directly examined after up-regulation of
miR-21 and the Western blot results confirmed our assumption. miR-21 over-expression
caused significant down-regulation of PTEN protein although the mRNA did not change
much

The PI3K/Akt pathway participates in inhibiting apoptosis and promoting cell
proliferation (Mark, 2007). The activation of Akt significantly protects cells from oxidation
induced cell apoptosis (Suk Ho et al., 2010; Yang et al., 2006). It was reported that miR-21
acts via the PI3K/Akt pathway by the down-regulation of PTEN (Qi et al., 2015), which
is the upstream of PI3K/Akt pathway, but this effect has not been investigated in c-kit+

CSCs. To study whether the PTEN/PI3K/Akt signaling is responsible for miR-21 mediated
pro-proliferation effect, we blocked PTEN and PI3K with their specific inhibitor Phen
or LY294002 respectively, and examined the phosphorylation of Akt. Just like the pro-
proliferation effects of miR-21, Phen administration increased proliferation in c-kit+

CSCs. PI3K blocker LY294002 partially reversed pro-survival effects of miR-21 mimics.
Furthermore, both Phen and miR-21 mimics increased p-Akt level, while PI3K inhibitor
LY294002 decreased p-Akt level dramatically, which suggests that Akt is the downstream
of PI3K and Phen.

In the present study, PI3K inhibitor nearly completely offset the pro-proliferation effects
ofmiR-21. At the same time, PTEN inhibitor Phen increased proliferation of c-kit+ CSCs to
a great extent equal to miR-21. This indicated miR-21’s pro-proliferation effect was mostly
achieved via PTEN-PI3K signaling, and just PTEN inhibition with Phen can reproduce
pro-survival effect of miR-21. However, what should be realized is thatmiR-21 targets more
than one genes and PI3K/Akt is not the only downstream pathway of PTEN. For example,
miR-21 protects cardiac myocytes from the H2O2-induced injury by targeting PDCD4 gene
(Cheng et al., 2009). In addition, miR-21 targets the tissue inhibitor of metalloproteinase-3
(TIMP-3) gene to influence gliomamigration and invasion (Galina et al., 2008). PTEN also
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enhances human multipotent cardiovascular progenitors therapeutic effects via miR-21
initiated PTEN/HIF-1α/VEGF-A signaling (Richart et al., 2014).

In conclusion, our data reveal that miR-21 promotes proliferation in c-kit+ CSCs
partially through the PTEN/PI3K/Akt pathway. The present study demonstrates that
miR-21 is a pro-survival molecule for c-kit+ CSCs. It also indicates that modification on
miRNA expression may be able to enhance the clinical efficacy of cellular therapy.

We must confess some shortcomings of this study. The direct link to any favorable effect
of miR-21 on CSC proliferation in clinical trials is limited. In vivo studies are warranted to
further confirm miR-21 and the PTEN/PI3K/Akt pathway’s effects on survival of c-kit+

CSCs. Besides, the luciferase assay could be a more direct and relevant way to confirm that
PTEN is the target gene of miR-21.
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